Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Breast Cancer | Research

Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis

Authors: Jiawei Xu, Chengdong Yu, Xiaoqiang Zeng, Weifeng Tang, Siyi Xu, Lei Tang, Yanxiao Huang, Zhengkui Sun, Tenghua Yu

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Breast cancer, as a daunting global health threat, has driven an exponential growth in related research activity in recent decades. An area of research of paramount importance is protein synthesis, and the analysis of specific proteins inextricably linked to breast cancer. In this article, we undertake a bibliometric analysis of the literature on breast cancer and protein synthesis, aiming to provide crucial insights into this esoteric realm of investigation. Our approach was to scour the Web of Science database, between 2003 and 2022, for articles containing the keywords “breast cancer” and “protein synthesis” in their title, abstract, or keywords. We deployed bibliometric analysis software, exploring a range of measures such as publication output, citation counts, co-citation analysis, and keyword analysis. Our search yielded 2998 articles that met our inclusion criteria. The number of publications in this area has steadily increased, with a significant rise observed after 2003. Most of the articles were published in oncology or biology-related journals, with the most publications in Journal of Biological Chemistry, Cancer Research, Proceedings of the National Academy of Sciences of the United States of America, and Oncogene. Keyword analysis revealed that “breast cancer,” “expression,” “cancer,” “protein,” and “translation” were the most commonly researched topics. In conclusion, our bibliometric analysis of breast cancer and related protein synthesis literature underscores the burgeoning interest in this research. The focus of the research is primarily on the relationship between protein expression in breast cancer and the development and treatment of tumors. These studies have been instrumental in the diagnosis and treatment of breast cancer. Sustained research in this area will yield essential insights into the biology of breast cancer and the genesis of cutting-edge therapies.
Literature
2.
go back to reference Gaudet MM, et al. Active smoking and breast cancer risk: original cohort data and meta-analysis. J Natl Cancer Inst. 2013;105(8):515–25.PubMedCrossRef Gaudet MM, et al. Active smoking and breast cancer risk: original cohort data and meta-analysis. J Natl Cancer Inst. 2013;105(8):515–25.PubMedCrossRef
4.
go back to reference Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran. 2016;30:369.PubMedPubMedCentral Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran. 2016;30:369.PubMedPubMedCentral
5.
go back to reference Naeem M, et al. Risk factors, genetic mutations and prevention of breast cancer. Int J Biosci. 2019;14(4):492–6. Naeem M, et al. Risk factors, genetic mutations and prevention of breast cancer. Int J Biosci. 2019;14(4):492–6.
6.
go back to reference Sidransky D, et al. Inherited p53 gene mutations in breast cancer fr1. Can Res. 1992;52(10):2984–6. Sidransky D, et al. Inherited p53 gene mutations in breast cancer fr1. Can Res. 1992;52(10):2984–6.
7.
go back to reference Nahleh Z. Breast cancer, obesity and hormonal imbalance: a worrisome trend. Expert Rev Anticancer Ther. 2011;11(6):817–9.PubMedCrossRef Nahleh Z. Breast cancer, obesity and hormonal imbalance: a worrisome trend. Expert Rev Anticancer Ther. 2011;11(6):817–9.PubMedCrossRef
8.
9.
go back to reference Screening P, Board PE. Breast Cancer Prevention (PDQ®): health professional version. PDQ cancer information summaries; 2002. Screening P, Board PE. Breast Cancer Prevention (PDQ®): health professional version. PDQ cancer information summaries; 2002.
10.
go back to reference Hashemi M, et al. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: revisiting signaling networks. Int J Biol Macromol. 2023;232:123377.PubMedCrossRef Hashemi M, et al. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: revisiting signaling networks. Int J Biol Macromol. 2023;232:123377.PubMedCrossRef
11.
go back to reference Amirian M, et al. Overview of the miR-29 family members’ function in breast cancer. Int J Biol Macromol. 2023;230:123280.PubMedCrossRef Amirian M, et al. Overview of the miR-29 family members’ function in breast cancer. Int J Biol Macromol. 2023;230:123280.PubMedCrossRef
12.
14.
go back to reference Jensen EV, et al. Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr. 1971;34:55–70.PubMed Jensen EV, et al. Estrogen receptors and breast cancer response to adrenalectomy. Natl Cancer Inst Monogr. 1971;34:55–70.PubMed
15.
go back to reference Slamon DJ, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMedCrossRef Slamon DJ, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235(4785):177–82.PubMedCrossRef
16.
go back to reference Tanos T, et al. ER and PR signaling nodes during mammary gland development. Breast Cancer Res. 2012;14(4):1–12.CrossRef Tanos T, et al. ER and PR signaling nodes during mammary gland development. Breast Cancer Res. 2012;14(4):1–12.CrossRef
17.
go back to reference Militello AM, et al. Mechanism of action and clinical efficacy of CDK4/6 inhibitors in BRCA-mutated, estrogen receptor-positive breast cancers: case report and literature review. Front Oncol. 2019;9:759.PubMedPubMedCentralCrossRef Militello AM, et al. Mechanism of action and clinical efficacy of CDK4/6 inhibitors in BRCA-mutated, estrogen receptor-positive breast cancers: case report and literature review. Front Oncol. 2019;9:759.PubMedPubMedCentralCrossRef
18.
19.
go back to reference Neven P, et al. Abemaciclib plus fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in premenopausal women: subgroup analysis from the MONARCH 2 trial. Breast Cancer Res. 2021;23(1):1–10.CrossRef Neven P, et al. Abemaciclib plus fulvestrant in hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer in premenopausal women: subgroup analysis from the MONARCH 2 trial. Breast Cancer Res. 2021;23(1):1–10.CrossRef
21.
go back to reference Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101–26.PubMedCrossRef Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101–26.PubMedCrossRef
22.
go back to reference Oh D-Y, Bang Y-J. HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48.PubMedCrossRef Oh D-Y, Bang Y-J. HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48.PubMedCrossRef
23.
24.
go back to reference Glück S, et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine±trastuzumab. Breast Cancer Res Treat. 2012;132:781–91.PubMedCrossRef Glück S, et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine±trastuzumab. Breast Cancer Res Treat. 2012;132:781–91.PubMedCrossRef
25.
26.
go back to reference Santos M, et al. tRNA deregulation and its consequences in cancer. Trends Mol Med. 2019;25(10):853–65.PubMedCrossRef Santos M, et al. tRNA deregulation and its consequences in cancer. Trends Mol Med. 2019;25(10):853–65.PubMedCrossRef
27.
go back to reference Duffy M, et al. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284–98.PubMedCrossRef Duffy M, et al. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur J Cancer. 2017;75:284–98.PubMedCrossRef
28.
go back to reference Dong P, et al. Identification of key genes and pathways in triple-negative breast cancer by integrated bioinformatics analysis. BioMed Res Int. 2018;2018:2760918.PubMedPubMedCentralCrossRef Dong P, et al. Identification of key genes and pathways in triple-negative breast cancer by integrated bioinformatics analysis. BioMed Res Int. 2018;2018:2760918.PubMedPubMedCentralCrossRef
29.
go back to reference Brigham, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef Brigham, et al. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
30.
31.
go back to reference Li S, et al. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol. 2023;210:115464.PubMedCrossRef Li S, et al. Glutamine metabolism in breast cancer and possible therapeutic targets. Biochem Pharmacol. 2023;210:115464.PubMedCrossRef
32.
go back to reference Passarelli MC, et al. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat Cell Biol. 2022;24(3):307–15.PubMedPubMedCentralCrossRef Passarelli MC, et al. Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat Cell Biol. 2022;24(3):307–15.PubMedPubMedCentralCrossRef
33.
go back to reference Martín M, et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2–advanced breast cancer (BELLE-4). Ann Oncol. 2017;28(2):313–20.PubMedCrossRef Martín M, et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2–advanced breast cancer (BELLE-4). Ann Oncol. 2017;28(2):313–20.PubMedCrossRef
34.
go back to reference Jovanović B, et al. A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67Cisplatin, paclitaxel and everolimus in TNBC. Clin Cancer Res. 2017;23(15):4035–45.PubMedPubMedCentralCrossRef Jovanović B, et al. A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67Cisplatin, paclitaxel and everolimus in TNBC. Clin Cancer Res. 2017;23(15):4035–45.PubMedPubMedCentralCrossRef
35.
go back to reference Baselga J, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(7):904–16.PubMedPubMedCentralCrossRef Baselga J, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(7):904–16.PubMedPubMedCentralCrossRef
37.
go back to reference Perez EA, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2–positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol. 2017;35(2):141.PubMedCrossRef Perez EA, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab plus taxane for human epidermal growth factor receptor 2–positive, advanced breast cancer: primary results from the phase III MARIANNE study. J Clin Oncol. 2017;35(2):141.PubMedCrossRef
38.
go back to reference Perez EA, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab with taxane for human epidermal growth factor receptor 2–positive advanced breast cancer: final results from MARIANNE. Cancer. 2019;125(22):3974–84.PubMedCrossRef Perez EA, et al. Trastuzumab emtansine with or without pertuzumab versus trastuzumab with taxane for human epidermal growth factor receptor 2–positive advanced breast cancer: final results from MARIANNE. Cancer. 2019;125(22):3974–84.PubMedCrossRef
39.
go back to reference Zou Y, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022;13(1):2672.PubMedPubMedCentralCrossRef Zou Y, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022;13(1):2672.PubMedPubMedCentralCrossRef
40.
go back to reference Ma C, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci. 2022;119(6): e2114006119.PubMedPubMedCentralCrossRef Ma C, et al. miR-182 targeting reprograms tumor-associated macrophages and limits breast cancer progression. Proc Natl Acad Sci. 2022;119(6): e2114006119.PubMedPubMedCentralCrossRef
41.
go back to reference Liu Q, et al. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother. 2022;156: 113861.PubMedCrossRef Liu Q, et al. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother. 2022;156: 113861.PubMedCrossRef
42.
go back to reference Strepkos D, et al. Histone methyltransferase SETDB1: a common denominator of tumorigenesis with therapeutic potentialSETDB1 in cancer. Can Res. 2021;81(3):525–34.CrossRef Strepkos D, et al. Histone methyltransferase SETDB1: a common denominator of tumorigenesis with therapeutic potentialSETDB1 in cancer. Can Res. 2021;81(3):525–34.CrossRef
43.
go back to reference Wang K, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression. J Exp Clin Cancer Res. 2022;41(1):1–15.PubMedPubMedCentralCrossRef Wang K, et al. Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression. J Exp Clin Cancer Res. 2022;41(1):1–15.PubMedPubMedCentralCrossRef
44.
go back to reference Zhang F-L, et al. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics. 2023;13(3):973.PubMedPubMedCentralCrossRef Zhang F-L, et al. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics. 2023;13(3):973.PubMedPubMedCentralCrossRef
45.
go back to reference Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. In: Seminars in cancer biology. Elsevier; 2022. Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. In: Seminars in cancer biology. Elsevier; 2022.
46.
go back to reference Zhang T-M, et al. TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Autophagy. 2022;19:1–17.PubMedCrossRef Zhang T-M, et al. TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Autophagy. 2022;19:1–17.PubMedCrossRef
47.
go back to reference Cai Z, et al. Overexpressed Cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci China Life Sci. 2023;66(1):94–109.PubMedCrossRef Cai Z, et al. Overexpressed Cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci China Life Sci. 2023;66(1):94–109.PubMedCrossRef
48.
go back to reference Xu C, et al. BCKDK regulates breast cancer cell adhesion and tumor metastasis by inhibiting TRIM21 ubiquitinate talin1. Cell Death Dis. 2023;14(7):445.PubMedPubMedCentralCrossRef Xu C, et al. BCKDK regulates breast cancer cell adhesion and tumor metastasis by inhibiting TRIM21 ubiquitinate talin1. Cell Death Dis. 2023;14(7):445.PubMedPubMedCentralCrossRef
49.
go back to reference Yang S, et al. ncRNA-mediated ceRNA regulatory network: transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother. 2023;162: 114698.PubMedCrossRef Yang S, et al. ncRNA-mediated ceRNA regulatory network: transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother. 2023;162: 114698.PubMedCrossRef
50.
go back to reference Blažun Vošner H, et al. Trends in nursing ethics research: Mapping the literature production. Nurs Ethics. 2017;24(8):892–907.PubMedCrossRef Blažun Vošner H, et al. Trends in nursing ethics research: Mapping the literature production. Nurs Ethics. 2017;24(8):892–907.PubMedCrossRef
51.
52.
go back to reference Ninkov A, Frank JR, Maggio LA. Bibliometrics: methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173–6.PubMedCrossRef Ninkov A, Frank JR, Maggio LA. Bibliometrics: methods for studying academic publishing. Perspect Med Educ. 2022;11(3):173–6.PubMedCrossRef
53.
go back to reference Leydesdorff L, Rafols I. Indicators of the interdisciplinarity of journals: diversity, centrality, and citations. J Informet. 2011;5(1):87–100.CrossRef Leydesdorff L, Rafols I. Indicators of the interdisciplinarity of journals: diversity, centrality, and citations. J Informet. 2011;5(1):87–100.CrossRef
54.
go back to reference Bornmann L, Leydesdorff L. Scientometrics in a changing research landscape: bibliometrics has become an integral part of research quality evaluation and has been changing the practice of research. EMBO Rep. 2014;15(12):1228–32.PubMedPubMedCentralCrossRef Bornmann L, Leydesdorff L. Scientometrics in a changing research landscape: bibliometrics has become an integral part of research quality evaluation and has been changing the practice of research. EMBO Rep. 2014;15(12):1228–32.PubMedPubMedCentralCrossRef
55.
go back to reference Velayos-Ortega G, López-Carreño R. Indicators for measuring the impact of scientific citations in patents. World Patent Inf. 2023;72: 102171.CrossRef Velayos-Ortega G, López-Carreño R. Indicators for measuring the impact of scientific citations in patents. World Patent Inf. 2023;72: 102171.CrossRef
56.
go back to reference Romanelli JP, et al. Four challenges when conducting bibliometric reviews and how to deal with them. Environ Sci Pollut Res. 2021;28:1–11.CrossRef Romanelli JP, et al. Four challenges when conducting bibliometric reviews and how to deal with them. Environ Sci Pollut Res. 2021;28:1–11.CrossRef
57.
go back to reference Cheng K, Zhou Y, Wu H. Bibliometric analysis of global research trends on monkeypox: Are we ready to face this challenge? J Med Virol. 2022;95:e27892.PubMedCrossRef Cheng K, Zhou Y, Wu H. Bibliometric analysis of global research trends on monkeypox: Are we ready to face this challenge? J Med Virol. 2022;95:e27892.PubMedCrossRef
58.
go back to reference Sharma K, et al. Impact of NIH and FDA tobacco research funding: a bibliometrics analyses. Nicotine Tob Res. 2023;25:1082–108.PubMedCrossRef Sharma K, et al. Impact of NIH and FDA tobacco research funding: a bibliometrics analyses. Nicotine Tob Res. 2023;25:1082–108.PubMedCrossRef
59.
go back to reference Gao H, et al. Influence of lecithin cholesterol acyltransferase alteration during different pathophysiologic conditions: a 45 years bibliometrics analysis. Front Pharmacol. 2022;13:1062249.PubMedPubMedCentralCrossRef Gao H, et al. Influence of lecithin cholesterol acyltransferase alteration during different pathophysiologic conditions: a 45 years bibliometrics analysis. Front Pharmacol. 2022;13:1062249.PubMedPubMedCentralCrossRef
60.
go back to reference Wang K, et al. Endoscopic full-thickness resection, indication, methods and perspectives. Dig Endosc. 2023;35(2):195–205.PubMedCrossRef Wang K, et al. Endoscopic full-thickness resection, indication, methods and perspectives. Dig Endosc. 2023;35(2):195–205.PubMedCrossRef
62.
go back to reference de Andrade VÉ, de Magalhães Cordeiro AMT. Bioprospecting and potential of cactus mucilages: a bibliometric review. Food Chem. 2022;401:134121.CrossRef de Andrade VÉ, de Magalhães Cordeiro AMT. Bioprospecting and potential of cactus mucilages: a bibliometric review. Food Chem. 2022;401:134121.CrossRef
63.
go back to reference Veiga-del-Baño JM, et al. Trends in dithiocarbamates food research: a bibliometric vision. Chemosphere. 2022;313:137342.PubMedCrossRef Veiga-del-Baño JM, et al. Trends in dithiocarbamates food research: a bibliometric vision. Chemosphere. 2022;313:137342.PubMedCrossRef
64.
go back to reference van den Hoven AF, et al. Current research topics in FAPI theranostics: a bibliometric analysis. Eur J Nucl Med Mol Imaging. 2023;50(4):1014–27.PubMedCrossRef van den Hoven AF, et al. Current research topics in FAPI theranostics: a bibliometric analysis. Eur J Nucl Med Mol Imaging. 2023;50(4):1014–27.PubMedCrossRef
65.
66.
go back to reference Kokol P, Završnik J, Vošner HB. Bibliographic-based identification of hot future research topics: an opportunity for hospital librarianship. J Hosp Librariansh. 2018;18(4):315–22.CrossRef Kokol P, Završnik J, Vošner HB. Bibliographic-based identification of hot future research topics: an opportunity for hospital librarianship. J Hosp Librariansh. 2018;18(4):315–22.CrossRef
67.
go back to reference Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Inf Lib J. 2021;38(2):125–38.CrossRef Kokol P, Blažun Vošner H, Završnik J. Application of bibliometrics in medicine: a historical bibliometrics analysis. Health Inf Lib J. 2021;38(2):125–38.CrossRef
68.
69.
go back to reference Jiang C, et al. Emerging trends in DNA and RNA methylation modifications in type 2 diabetes mellitus: a bibliometric and visual analysis from 1992 to 2022. Front Endocrinol. 2023;14:1145067.CrossRef Jiang C, et al. Emerging trends in DNA and RNA methylation modifications in type 2 diabetes mellitus: a bibliometric and visual analysis from 1992 to 2022. Front Endocrinol. 2023;14:1145067.CrossRef
70.
go back to reference Ji Z, et al. Research trend of circulating tumor DNA associated with breast cancer from 2012 to 2021: a bibliometric analysis. Front Oncol. 2023;12:1090503.PubMedPubMedCentralCrossRef Ji Z, et al. Research trend of circulating tumor DNA associated with breast cancer from 2012 to 2021: a bibliometric analysis. Front Oncol. 2023;12:1090503.PubMedPubMedCentralCrossRef
71.
go back to reference Wei Q, et al. A bibliometric analysis of researches on flap endonuclease 1 from 2005 to 2019. BMC Cancer. 2021;21:1–14.CrossRef Wei Q, et al. A bibliometric analysis of researches on flap endonuclease 1 from 2005 to 2019. BMC Cancer. 2021;21:1–14.CrossRef
72.
74.
go back to reference Wang R, et al. Comprehensive bibliometric analysis of stem cell research in Alzheimer’s disease from 2004 to 2022. Dement Geriatr Cogn Disord. 2023;52(2):47–73.PubMedCrossRef Wang R, et al. Comprehensive bibliometric analysis of stem cell research in Alzheimer’s disease from 2004 to 2022. Dement Geriatr Cogn Disord. 2023;52(2):47–73.PubMedCrossRef
75.
go back to reference Lv Z, et al. Bibliometric analysis of IgG4-related disease research from 2003 to 2022 based on Web of Science Core Collection Databases. Clin Rheumatol. 2023;42(1):15–27.PubMedCrossRef Lv Z, et al. Bibliometric analysis of IgG4-related disease research from 2003 to 2022 based on Web of Science Core Collection Databases. Clin Rheumatol. 2023;42(1):15–27.PubMedCrossRef
77.
go back to reference Shi Y, et al. The global status of research in breast cancer liver metastasis: a bibliometric and visualized analysis. Bioengineered. 2021;12(2):12246–62.PubMedPubMedCentralCrossRef Shi Y, et al. The global status of research in breast cancer liver metastasis: a bibliometric and visualized analysis. Bioengineered. 2021;12(2):12246–62.PubMedPubMedCentralCrossRef
78.
79.
go back to reference Zhang Y, et al. Landscape of artificial intelligence in breast cancer (2000–2021): a bibliometric analysis. Front Biosci Landmark. 2022;27(8):224.CrossRef Zhang Y, et al. Landscape of artificial intelligence in breast cancer (2000–2021): a bibliometric analysis. Front Biosci Landmark. 2022;27(8):224.CrossRef
80.
go back to reference Liu B, et al. Bibliometric analysis of γδ T cells as immune regulators in cancer prognosis. Front Immunol. 2022;13:1525. Liu B, et al. Bibliometric analysis of γδ T cells as immune regulators in cancer prognosis. Front Immunol. 2022;13:1525.
81.
go back to reference Wang Q, et al. Characterization of global research trends and prospects on single-cell sequencing technology: bibliometric analysis. J Med Internet Res. 2021;23(8): e25789.PubMedPubMedCentralCrossRef Wang Q, et al. Characterization of global research trends and prospects on single-cell sequencing technology: bibliometric analysis. J Med Internet Res. 2021;23(8): e25789.PubMedPubMedCentralCrossRef
82.
go back to reference Qi X, et al. Research trend of publications concerning antibody-drug conjugate in solid cancer: a bibliometric study. Front Pharmacol. 2022;13: 921385.PubMedPubMedCentralCrossRef Qi X, et al. Research trend of publications concerning antibody-drug conjugate in solid cancer: a bibliometric study. Front Pharmacol. 2022;13: 921385.PubMedPubMedCentralCrossRef
83.
84.
go back to reference Hanis TM, Islam MA, Musa KI. Top 100 most-cited publications on breast cancer and machine learning research: a bibliometric analysis. Curr Med Chem. 2022;29(8):1426–35.PubMedCrossRef Hanis TM, Islam MA, Musa KI. Top 100 most-cited publications on breast cancer and machine learning research: a bibliometric analysis. Curr Med Chem. 2022;29(8):1426–35.PubMedCrossRef
85.
go back to reference Fresno-Alba S, et al. Breast cancer and physical activity: a bibliometric analysis. Front Oncol. 2022;12:1051482.PubMedCrossRef Fresno-Alba S, et al. Breast cancer and physical activity: a bibliometric analysis. Front Oncol. 2022;12:1051482.PubMedCrossRef
86.
87.
go back to reference Wang Y, et al. Advances in studies on the plant rhizosphere microorganisms in wetlands: a visualization analysis based on CiteSpace. Chemosphere. 2023;317:137860.PubMedCrossRef Wang Y, et al. Advances in studies on the plant rhizosphere microorganisms in wetlands: a visualization analysis based on CiteSpace. Chemosphere. 2023;317:137860.PubMedCrossRef
88.
go back to reference Hua N, et al. Medical decision-making for adolescents with depression: a bibliometric study and visualization analysis via CiteSpace. Int J Ment Health Nurs. 2022;32:365–77.PubMedCrossRef Hua N, et al. Medical decision-making for adolescents with depression: a bibliometric study and visualization analysis via CiteSpace. Int J Ment Health Nurs. 2022;32:365–77.PubMedCrossRef
89.
go back to reference Liu M, et al. Knowledge domain and emerging trends in HIV-MTB co-infection from 2017 to 2022: a scientometric analysis based on VOSviewer and CiteSpace. Front Public Health. 2023;11:1044426.PubMedPubMedCentralCrossRef Liu M, et al. Knowledge domain and emerging trends in HIV-MTB co-infection from 2017 to 2022: a scientometric analysis based on VOSviewer and CiteSpace. Front Public Health. 2023;11:1044426.PubMedPubMedCentralCrossRef
90.
go back to reference Liu J, et al. Exploring the potential of big data analytics in urban epidemiology control: a comprehensive study using CiteSpace. Int J Environ Res Public Health. 2023;20(5):3930.PubMedPubMedCentralCrossRef Liu J, et al. Exploring the potential of big data analytics in urban epidemiology control: a comprehensive study using CiteSpace. Int J Environ Res Public Health. 2023;20(5):3930.PubMedPubMedCentralCrossRef
91.
go back to reference Gao F, et al. Knowledge graph analysis of pyroptosis research in traditional Chinese medicine based on VOSviewer and CiteSpace. Zhongguo Zhong yao za zhi Zhongguo Zhongyao Zazhi China J Chin Materia Med. 2023;48(4):1098–107. Gao F, et al. Knowledge graph analysis of pyroptosis research in traditional Chinese medicine based on VOSviewer and CiteSpace. Zhongguo Zhong yao za zhi Zhongguo Zhongyao Zazhi China J Chin Materia Med. 2023;48(4):1098–107.
92.
94.
go back to reference Akbari R, et al. A bibliometric review of 35 years of studies about preeclampsia. Front Physiol. 2023;14:111.CrossRef Akbari R, et al. A bibliometric review of 35 years of studies about preeclampsia. Front Physiol. 2023;14:111.CrossRef
95.
go back to reference Lim M, et al. Developmental disabilities in Africa: a scientometric review. Res Dev Disabil. 2023;133: 104395.PubMedCrossRef Lim M, et al. Developmental disabilities in Africa: a scientometric review. Res Dev Disabil. 2023;133: 104395.PubMedCrossRef
96.
go back to reference Chang Y, et al. Biometrics data visualization of ginsenosides in anticancer investigations. Am J Chin Med. 2022;51:1–17. Chang Y, et al. Biometrics data visualization of ginsenosides in anticancer investigations. Am J Chin Med. 2022;51:1–17.
98.
go back to reference Chatterji S, et al. Defining genomic, transcriptomic, proteomic, epigenetic, and phenotypic biomarkers with prognostic capability in male breast cancer: a systematic review. Lancet Oncol. 2023;24(2):e74–85.PubMedCrossRef Chatterji S, et al. Defining genomic, transcriptomic, proteomic, epigenetic, and phenotypic biomarkers with prognostic capability in male breast cancer: a systematic review. Lancet Oncol. 2023;24(2):e74–85.PubMedCrossRef
99.
go back to reference Hassan T, et al. Role of proteomics in surgical oncology. In: Proteomics. Elsevier; 2023. p. 155–78.CrossRef Hassan T, et al. Role of proteomics in surgical oncology. In: Proteomics. Elsevier; 2023. p. 155–78.CrossRef
100.
go back to reference Kumar A, Golani A, Kumar LD. EMT in breast cancer metastasis: an interplay of microRNAs, signaling pathways and circulating tumor cells. Front Biosci Landmark. 2020;25(5):979–1010.CrossRef Kumar A, Golani A, Kumar LD. EMT in breast cancer metastasis: an interplay of microRNAs, signaling pathways and circulating tumor cells. Front Biosci Landmark. 2020;25(5):979–1010.CrossRef
101.
go back to reference Almansour NM. Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci. 2022;9:32.CrossRef Almansour NM. Triple-negative breast cancer: a brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front Mol Biosci. 2022;9:32.CrossRef
102.
go back to reference van Eck NJ. Vosviewer: a computer program for bibliometric mapping. SSRN; 2010. van Eck NJ. Vosviewer: a computer program for bibliometric mapping. SSRN; 2010.
103.
105.
go back to reference Jackson SR, et al. Prostate cancer, online health information and communication technology–bibliometric analysis of field with research frontiers. Patient Educ Counsel. 2023;115: 107887.CrossRef Jackson SR, et al. Prostate cancer, online health information and communication technology–bibliometric analysis of field with research frontiers. Patient Educ Counsel. 2023;115: 107887.CrossRef
106.
go back to reference Duan Y, et al. Characterization of global research trends and prospects on platinum-resistant ovarian cancer: a bibliometric analysis. Front Oncol. 2023;13:1151871.PubMedPubMedCentralCrossRef Duan Y, et al. Characterization of global research trends and prospects on platinum-resistant ovarian cancer: a bibliometric analysis. Front Oncol. 2023;13:1151871.PubMedPubMedCentralCrossRef
107.
go back to reference Qin X, et al. Organisational culture research in healthcare: a big data bibliometric study. In: Healthcare. MDPI; 2023. Qin X, et al. Organisational culture research in healthcare: a big data bibliometric study. In: Healthcare. MDPI; 2023.
108.
go back to reference Li L, Sun Y. Research hotspots and trends of the tele-rehabilitation for stroke survivors based on CiteSpace: a review. Medicine. 2023;102(13): e33398.PubMedPubMedCentralCrossRef Li L, Sun Y. Research hotspots and trends of the tele-rehabilitation for stroke survivors based on CiteSpace: a review. Medicine. 2023;102(13): e33398.PubMedPubMedCentralCrossRef
110.
go back to reference Mrvar, A. and V. Batagelj, Programs for analysis and visualization of very large networks reference manual. Recuperado el 2018;12:3. Mrvar, A. and V. Batagelj, Programs for analysis and visualization of very large networks reference manual. Recuperado el 2018;12:3.
111.
go back to reference Vincent CT, Schneider RJ. Selective tRNA charging in breast cancer. Nat Cell Biol. 2022;24(3):287–9.PubMedCrossRef Vincent CT, Schneider RJ. Selective tRNA charging in breast cancer. Nat Cell Biol. 2022;24(3):287–9.PubMedCrossRef
112.
go back to reference Silvera D, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol. 2009;11(7):903–8.PubMedCrossRef Silvera D, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol. 2009;11(7):903–8.PubMedCrossRef
113.
go back to reference Braunstein S, et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell. 2007;28(3):501–12.PubMedCrossRef Braunstein S, et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. Mol Cell. 2007;28(3):501–12.PubMedCrossRef
114.
go back to reference Silvera D, et al. mTORC1 and-2 coordinate transcriptional and translational reprogramming in resistance to DNA damage and replicative stress in breast cancer cells. Mol Cell Biol. 2017;37(5):e00577-e616.PubMedPubMedCentralCrossRef Silvera D, et al. mTORC1 and-2 coordinate transcriptional and translational reprogramming in resistance to DNA damage and replicative stress in breast cancer cells. Mol Cell Biol. 2017;37(5):e00577-e616.PubMedPubMedCentralCrossRef
115.
go back to reference Connolly E, et al. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol. 2006;26(10):3955–65.PubMedPubMedCentralCrossRef Connolly E, et al. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol. 2006;26(10):3955–65.PubMedPubMedCentralCrossRef
116.
go back to reference Le Quesne JP, et al. Dysregulation of protein synthesis and disease. J Pathol J Pathol Soc Great Britain Ireland. 2010;220(2):140–51. Le Quesne JP, et al. Dysregulation of protein synthesis and disease. J Pathol J Pathol Soc Great Britain Ireland. 2010;220(2):140–51.
117.
go back to reference Orellana EA, Siegal E, Gregory RI. tRNA dysregulation and disease. Nat Rev Genet. 2022;23(11):651–64.PubMedCrossRef Orellana EA, Siegal E, Gregory RI. tRNA dysregulation and disease. Nat Rev Genet. 2022;23(11):651–64.PubMedCrossRef
118.
go back to reference Kuschel A, Simon P, Tug S. Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J Cell Physiol. 2012;227(2):514–24.PubMedCrossRef Kuschel A, Simon P, Tug S. Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation? J Cell Physiol. 2012;227(2):514–24.PubMedCrossRef
119.
go back to reference Alam U. Translational regulation of target gene expression by G3BPs in breast cancer cells; 2018:7–8. Alam U. Translational regulation of target gene expression by G3BPs in breast cancer cells; 2018:7–8.
120.
go back to reference Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer. 2010;10(4):254–66.PubMedCrossRef Silvera D, Formenti SC, Schneider RJ. Translational control in cancer. Nat Rev Cancer. 2010;10(4):254–66.PubMedCrossRef
121.
go back to reference Tomar D, et al. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta BBA Gene Regul Mech. 2020;1863(4):194378.CrossRef Tomar D, et al. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta BBA Gene Regul Mech. 2020;1863(4):194378.CrossRef
122.
go back to reference Chen S, et al. Non-coding RNAs, guardians of the p53 galaxy. In: Seminars in cancer biology. Elsevier; 2021. Chen S, et al. Non-coding RNAs, guardians of the p53 galaxy. In: Seminars in cancer biology. Elsevier; 2021.
123.
go back to reference Marei HE, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):1–15.CrossRef Marei HE, et al. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021;21(1):1–15.CrossRef
125.
go back to reference Graff JR, et al. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Can Res. 2008;68(3):631–4.CrossRef Graff JR, et al. Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Can Res. 2008;68(3):631–4.CrossRef
126.
go back to reference Wang B, et al. Breast cancer resistance to cyclin-dependent kinases 4/6 inhibitors: intricacy of the molecular mechanisms. Front Oncol. 2021;11: 651541.PubMedPubMedCentralCrossRef Wang B, et al. Breast cancer resistance to cyclin-dependent kinases 4/6 inhibitors: intricacy of the molecular mechanisms. Front Oncol. 2021;11: 651541.PubMedPubMedCentralCrossRef
127.
go back to reference Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res. 2022;24(1):1–11.CrossRef Watt AC, Goel S. Cellular mechanisms underlying response and resistance to CDK4/6 inhibitors in the treatment of hormone receptor-positive breast cancer. Breast Cancer Res. 2022;24(1):1–11.CrossRef
128.
go back to reference Du Q, et al. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J Hematol Oncol. 2020;13:1–12.CrossRef Du Q, et al. The application and prospect of CDK4/6 inhibitors in malignant solid tumors. J Hematol Oncol. 2020;13:1–12.CrossRef
129.
go back to reference Pervin S, et al. Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Can Res. 2007;67(1):289–99.CrossRef Pervin S, et al. Nitric oxide in physiologic concentrations targets the translational machinery to increase the proliferation of human breast cancer cells: involvement of mammalian target of rapamycin/eIF4E pathway. Can Res. 2007;67(1):289–99.CrossRef
130.
go back to reference Shin S, et al. Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene. 2014;33(13):1690–9.PubMedCrossRef Shin S, et al. Glycogen synthase kinase-3β positively regulates protein synthesis and cell proliferation through the regulation of translation initiation factor 4E-binding protein 1. Oncogene. 2014;33(13):1690–9.PubMedCrossRef
131.
go back to reference Zou Z, et al. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10(1):1–11.CrossRef Zou Z, et al. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10(1):1–11.CrossRef
133.
go back to reference Sher G, et al. Epigenetic and breast cancer therapy: promising diagnostic and therapeutic applications. In: Seminars in cancer biology. Elsevier; 2022. Sher G, et al. Epigenetic and breast cancer therapy: promising diagnostic and therapeutic applications. In: Seminars in cancer biology. Elsevier; 2022.
134.
go back to reference Haber DA. Breast cancer in carriers of BRCA1 and BRCA2 mutations: tackling a molecular and clinical conundrum. J Clin Oncol. 1999;17(11):3367–70.PubMedCrossRef Haber DA. Breast cancer in carriers of BRCA1 and BRCA2 mutations: tackling a molecular and clinical conundrum. J Clin Oncol. 1999;17(11):3367–70.PubMedCrossRef
135.
go back to reference Butti R, et al. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018;17(1):1–18.CrossRef Butti R, et al. Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018;17(1):1–18.CrossRef
136.
go back to reference Salemme V, et al. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol. 2021;11:289.CrossRef Salemme V, et al. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol. 2021;11:289.CrossRef
139.
go back to reference Costa RL, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169:397–406.PubMedCrossRef Costa RL, Han HS, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Breast Cancer Res Treat. 2018;169:397–406.PubMedCrossRef
140.
go back to reference Rakha E, Toss M, Quinn C. Specific cell differentiation in breast cancer: a basis for histological classification. J Clin Pathol. 2022;75(2):76–84.PubMedCrossRef Rakha E, Toss M, Quinn C. Specific cell differentiation in breast cancer: a basis for histological classification. J Clin Pathol. 2022;75(2):76–84.PubMedCrossRef
141.
go back to reference De Azambuja E, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients. Br J Cancer. 2007;96(10):1504–13.PubMedPubMedCentralCrossRef De Azambuja E, et al. Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients. Br J Cancer. 2007;96(10):1504–13.PubMedPubMedCentralCrossRef
142.
go back to reference Łukasiewicz S, et al. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13(17):4287.PubMedPubMedCentralCrossRef Łukasiewicz S, et al. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers. 2021;13(17):4287.PubMedPubMedCentralCrossRef
143.
go back to reference Sannino S, Brodsky JL. Targeting protein quality control pathways in breast cancer. BMC Biol. 2017;15(1):1–20.CrossRef Sannino S, Brodsky JL. Targeting protein quality control pathways in breast cancer. BMC Biol. 2017;15(1):1–20.CrossRef
144.
go back to reference Hao P, et al. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal. 2020;18:1–20.CrossRef Hao P, et al. Eukaryotic translation initiation factors as promising targets in cancer therapy. Cell Commun Signal. 2020;18:1–20.CrossRef
145.
go back to reference Kim S-H, et al. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol Lett. 2021;21(6):1–10.CrossRef Kim S-H, et al. Silymarin inhibits proliferation of human breast cancer cells via regulation of the MAPK signaling pathway and induction of apoptosis. Oncol Lett. 2021;21(6):1–10.CrossRef
146.
go back to reference Gupta A, et al. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv Protein Chem Struct Biol. 2021;125:215–57.PubMedCrossRef Gupta A, et al. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv Protein Chem Struct Biol. 2021;125:215–57.PubMedCrossRef
147.
go back to reference Singh D, Assaraf YG, Gacche RN. Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat. 2022;63:100851.PubMedCrossRef Singh D, Assaraf YG, Gacche RN. Long non-coding RNA mediated drug resistance in breast cancer. Drug Resist Updat. 2022;63:100851.PubMedCrossRef
148.
go back to reference Pavitra E, et al. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother. 2023;163: 114822.PubMedCrossRef Pavitra E, et al. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother. 2023;163: 114822.PubMedCrossRef
150.
go back to reference Karami Fath M, et al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022;27(1):1–25.CrossRef Karami Fath M, et al. The role of epigenetic modifications in drug resistance and treatment of breast cancer. Cell Mol Biol Lett. 2022;27(1):1–25.CrossRef
151.
go back to reference Zhou Q-M, et al. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int. 2017;17(1):1–13.CrossRef Zhou Q-M, et al. Curcumin reduces mitomycin C resistance in breast cancer stem cells by regulating Bcl-2 family-mediated apoptosis. Cancer Cell Int. 2017;17(1):1–13.CrossRef
152.
go back to reference Hu H, et al. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Ann Transl Med. 2021;9(5):410.PubMedPubMedCentralCrossRef Hu H, et al. PIK3CA mutation confers resistance to chemotherapy in triple-negative breast cancer by inhibiting apoptosis and activating the PI3K/AKT/mTOR signaling pathway. Ann Transl Med. 2021;9(5):410.PubMedPubMedCentralCrossRef
153.
go back to reference Ku JM, et al. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol Cell Biochem. 2015;409:33–43.PubMedPubMedCentralCrossRef Ku JM, et al. Cucurbitacin D induces cell cycle arrest and apoptosis by inhibiting STAT3 and NF-κB signaling in doxorubicin-resistant human breast carcinoma (MCF7/ADR) cells. Mol Cell Biochem. 2015;409:33–43.PubMedPubMedCentralCrossRef
154.
go back to reference Labi V, et al. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ. 2008;15(6):977–87.PubMedCrossRef Labi V, et al. Targeting the Bcl-2-regulated apoptosis pathway by BH3 mimetics: a breakthrough in anticancer therapy? Cell Death Differ. 2008;15(6):977–87.PubMedCrossRef
155.
go back to reference Townsend PA, et al. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res. 2021;40(1):1–33.CrossRef Townsend PA, et al. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res. 2021;40(1):1–33.CrossRef
156.
158.
go back to reference Kamarulzaman NS, et al. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int. 2017;17:1–12.CrossRef Kamarulzaman NS, et al. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int. 2017;17:1–12.CrossRef
159.
160.
go back to reference Lu Y, et al. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19:1–16.CrossRef Lu Y, et al. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer. 2020;19:1–16.CrossRef
161.
go back to reference Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877–919.PubMedCrossRef Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877–919.PubMedCrossRef
162.
go back to reference Gong L, et al. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun. 2019;39(1):1–13.CrossRef Gong L, et al. Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun. 2019;39(1):1–13.CrossRef
163.
go back to reference Xia L, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20:1–21.CrossRef Xia L, et al. The cancer metabolic reprogramming and immune response. Mol Cancer. 2021;20:1–21.CrossRef
164.
go back to reference Zhang T, et al. Symphony of epigenetic and metabolic regulation—interaction between the histone methyltransferase EZH2 and metabolism of tumor. Clin Epigenet. 2020;12(1):1–15.CrossRef Zhang T, et al. Symphony of epigenetic and metabolic regulation—interaction between the histone methyltransferase EZH2 and metabolism of tumor. Clin Epigenet. 2020;12(1):1–15.CrossRef
165.
go back to reference Coronel-Hernandez J, et al. Aberrant metabolism as inductor of epigenetic changes in breast cancer: therapeutic opportunities. Front Oncol. 2021;11: 676562.PubMedPubMedCentralCrossRef Coronel-Hernandez J, et al. Aberrant metabolism as inductor of epigenetic changes in breast cancer: therapeutic opportunities. Front Oncol. 2021;11: 676562.PubMedPubMedCentralCrossRef
166.
go back to reference Wang Y, et al. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem. 2012;287(17):13877–88.PubMedPubMedCentralCrossRef Wang Y, et al. Clinicopathological and biological significance of human voltage-gated proton channel Hv1 protein overexpression in breast cancer. J Biol Chem. 2012;287(17):13877–88.PubMedPubMedCentralCrossRef
167.
go back to reference Hu N, et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem. 2011;286(15):13714–22.PubMedPubMedCentralCrossRef Hu N, et al. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8. J Biol Chem. 2011;286(15):13714–22.PubMedPubMedCentralCrossRef
168.
go back to reference Zhang S, et al. HBXIP is a novel regulator of the unfolded protein response that sustains tamoxifen resistance in ER+ breast cancer. J Biol Chem. 2022;298(3):101644.PubMedPubMedCentralCrossRef Zhang S, et al. HBXIP is a novel regulator of the unfolded protein response that sustains tamoxifen resistance in ER+ breast cancer. J Biol Chem. 2022;298(3):101644.PubMedPubMedCentralCrossRef
170.
go back to reference Poria DK, et al. The STAT3 inhibitor Stattic acts independently of STAT3 to decrease histone acetylation and modulate gene expression. J Biol Chem. 2021;296:100220.PubMedCrossRef Poria DK, et al. The STAT3 inhibitor Stattic acts independently of STAT3 to decrease histone acetylation and modulate gene expression. J Biol Chem. 2021;296:100220.PubMedCrossRef
171.
go back to reference Liu J, et al. AMBRA1 promotes TGFβ signaling via nonproteolytic polyubiquitylation of Smad4. Can Res. 2021;81(19):5007–20.CrossRef Liu J, et al. AMBRA1 promotes TGFβ signaling via nonproteolytic polyubiquitylation of Smad4. Can Res. 2021;81(19):5007–20.CrossRef
172.
go back to reference Miller KD, et al. Targeting ACSS2 with a transition-state mimetic inhibits triple-negative breast cancer growth. Can Res. 2021;81(5):1252–64.CrossRef Miller KD, et al. Targeting ACSS2 with a transition-state mimetic inhibits triple-negative breast cancer growth. Can Res. 2021;81(5):1252–64.CrossRef
173.
go back to reference Mitobe Y, et al. PSF promotes ER-positive breast cancer progression via posttranscriptional regulation of ESR1 and SCFD2. Can Res. 2020;80(11):2230–42.CrossRef Mitobe Y, et al. PSF promotes ER-positive breast cancer progression via posttranscriptional regulation of ESR1 and SCFD2. Can Res. 2020;80(11):2230–42.CrossRef
174.
go back to reference Kesavan R, et al. Cyp2c44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. Proc Natl Acad Sci. 2020;117(11):5923–30.PubMedPubMedCentralCrossRef Kesavan R, et al. Cyp2c44 regulates prostaglandin synthesis, lymphangiogenesis, and metastasis in a mouse model of breast cancer. Proc Natl Acad Sci. 2020;117(11):5923–30.PubMedPubMedCentralCrossRef
175.
go back to reference Zhang Z, et al. lncRNA BREA2 promotes metastasis by disrupting the WWP2-mediated ubiquitination of Notch1. Proc Natl Acad Sci. 2023;120(8): e2206694120.PubMedPubMedCentralCrossRef Zhang Z, et al. lncRNA BREA2 promotes metastasis by disrupting the WWP2-mediated ubiquitination of Notch1. Proc Natl Acad Sci. 2023;120(8): e2206694120.PubMedPubMedCentralCrossRef
176.
go back to reference Li C, et al. Coiled-coil domain containing 3 suppresses breast cancer growth by protecting p53 from proteasome-mediated degradation. Oncogene. 2023;42(2):154–64.PubMedCrossRef Li C, et al. Coiled-coil domain containing 3 suppresses breast cancer growth by protecting p53 from proteasome-mediated degradation. Oncogene. 2023;42(2):154–64.PubMedCrossRef
177.
go back to reference Wei L, et al. PACT promotes the metastasis of basal-like breast cancer through Rac1 SUMOylation and activation. Oncogene. 2022;41(37):4282–94.PubMedCrossRef Wei L, et al. PACT promotes the metastasis of basal-like breast cancer through Rac1 SUMOylation and activation. Oncogene. 2022;41(37):4282–94.PubMedCrossRef
178.
179.
go back to reference Chen J, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature. 2018;557(7706):585–9.PubMedCrossRef Chen J, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature. 2018;557(7706):585–9.PubMedCrossRef
180.
go back to reference Pastushenko I, et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021;589(7842):448–55.PubMedCrossRef Pastushenko I, et al. Fat1 deletion promotes hybrid EMT state, tumour stemness and metastasis. Nature. 2021;589(7842):448–55.PubMedCrossRef
181.
go back to reference Toska E, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355(6331):1324–30.PubMedPubMedCentralCrossRef Toska E, et al. PI3K pathway regulates ER-dependent transcription in breast cancer through the epigenetic regulator KMT2D. Science. 2017;355(6331):1324–30.PubMedPubMedCentralCrossRef
182.
go back to reference Villa E, et al. mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis. Mol Cell. 2021;81(10):2076-2093.e9.PubMedPubMedCentralCrossRef Villa E, et al. mTORC1 stimulates cell growth through SAM synthesis and m6A mRNA-dependent control of protein synthesis. Mol Cell. 2021;81(10):2076-2093.e9.PubMedPubMedCentralCrossRef
183.
go back to reference Guo Y, et al. Loss of TRIM31 promotes breast cancer progression through regulating K48-and K63-linked ubiquitination of p53. Cell Death Dis. 2021;12(10):945.PubMedPubMedCentralCrossRef Guo Y, et al. Loss of TRIM31 promotes breast cancer progression through regulating K48-and K63-linked ubiquitination of p53. Cell Death Dis. 2021;12(10):945.PubMedPubMedCentralCrossRef
185.
go back to reference Dimitrakopoulos F-I, Kottorou A, Tzezou A. Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer. Cancer Lett. 2021;517:55–65.PubMedCrossRef Dimitrakopoulos F-I, Kottorou A, Tzezou A. Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer. Cancer Lett. 2021;517:55–65.PubMedCrossRef
186.
187.
go back to reference Zhao J, et al. Glucose-sensitive acetylation of Seryl tRNA synthetase regulates lipid synthesis in breast cancer. Signal Transduct Target Ther. 2021;6(1):303.PubMedPubMedCentralCrossRef Zhao J, et al. Glucose-sensitive acetylation of Seryl tRNA synthetase regulates lipid synthesis in breast cancer. Signal Transduct Target Ther. 2021;6(1):303.PubMedPubMedCentralCrossRef
188.
go back to reference Liu L, et al. Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene. 2021;40(20):3548–63.PubMedCrossRef Liu L, et al. Arginine and lysine methylation of MRPS23 promotes breast cancer metastasis through regulating OXPHOS. Oncogene. 2021;40(20):3548–63.PubMedCrossRef
189.
go back to reference Faheem MM, et al. Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant). Int J Pharm. 2022;619: 121710.CrossRef Faheem MM, et al. Induction of p53 mediated mitochondrial apoptosis and cell cycle arrest in human breast cancer cells by plant mediated synthesis of silver nanoparticles from Bergenia ligulata (Whole plant). Int J Pharm. 2022;619: 121710.CrossRef
190.
go back to reference El-Deeb NM, et al. Arthrospira platensis-mediated green biosynthesis of silver nano-particles as breast cancer controlling agent: In vitro and in vivo safety approaches. Appl Biochem Biotechnol. 2022;194(5):2183–203.PubMedCrossRef El-Deeb NM, et al. Arthrospira platensis-mediated green biosynthesis of silver nano-particles as breast cancer controlling agent: In vitro and in vivo safety approaches. Appl Biochem Biotechnol. 2022;194(5):2183–203.PubMedCrossRef
191.
192.
go back to reference Chen F, et al. N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis. Can Res. 2021;81(11):2847–60.CrossRef Chen F, et al. N6-methyladenosine regulates mRNA stability and translation efficiency of KRT7 to promote breast cancer lung metastasis. Can Res. 2021;81(11):2847–60.CrossRef
193.
go back to reference Yu J, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Investig. 2018;128(6):2376–88.PubMedPubMedCentralCrossRef Yu J, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Investig. 2018;128(6):2376–88.PubMedPubMedCentralCrossRef
194.
go back to reference Shirangi A, et al. Theranostic silk sericin/SPION nanoparticles for targeted delivery of ROR1 siRNA: synthesis, characterization, diagnosis and anticancer effect on triple-negative breast cancer. Int J Biol Macromol. 2022;221:604–12.PubMedCrossRef Shirangi A, et al. Theranostic silk sericin/SPION nanoparticles for targeted delivery of ROR1 siRNA: synthesis, characterization, diagnosis and anticancer effect on triple-negative breast cancer. Int J Biol Macromol. 2022;221:604–12.PubMedCrossRef
Metadata
Title
Visualization of breast cancer-related protein synthesis from the perspective of bibliometric analysis
Authors
Jiawei Xu
Chengdong Yu
Xiaoqiang Zeng
Weifeng Tang
Siyi Xu
Lei Tang
Yanxiao Huang
Zhengkui Sun
Tenghua Yu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01364-4

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue