Skip to main content
Top
Published in: Cancer Cell International 1/2017

Open Access 01-12-2017 | Primary Research

The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer

Authors: Nur Sabrina Kamarulzaman, Hemaniswarri Dewi Dewadas, Chiuan Yee Leow, Nik Soriani Yaacob, Noor Fatmawati Mokhtar

Published in: Cancer Cell International | Issue 1/2017

Login to get access

Abstract

Background

Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its ‘neonatal’ splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors.

Aim

This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA).

Methods

The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10–10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured.

Results

mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin.

Conclusions

This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.
Literature
1.
go back to reference Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25.CrossRefPubMed Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25.CrossRefPubMed
2.
go back to reference Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett. 1995;369:290–4.CrossRefPubMed Grimes JA, Fraser SP, Stephens GJ, Downing JE, Laniado ME, Foster CS, et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Lett. 1995;369:290–4.CrossRefPubMed
3.
go back to reference Bennett ES, Smith BA, Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Eur J Physiol. 2004;447:908–14.CrossRef Bennett ES, Smith BA, Harper JM. Voltage-gated Na+ channels confer invasive properties on human prostate cancer cells. Eur J Physiol. 2004;447:908–14.CrossRef
4.
go back to reference Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta Biomembr. 2003;1616:107–11.CrossRef Roger S, Besson P, Le Guennec JY. Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta Biomembr. 2003;1616:107–11.CrossRef
5.
go back to reference Fraser SP, Diss JKJ, Chioni A-M, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 2005;11:5381–9.CrossRefPubMed Fraser SP, Diss JKJ, Chioni A-M, Mycielska ME, Pan H, Yamaci RF, et al. Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 2005;11:5381–9.CrossRefPubMed
6.
go back to reference Onganer PU, Djamgoz MBA. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na+ channel expression in vitro. J Membr Biol. 2005;204:67–75.CrossRefPubMed Onganer PU, Djamgoz MBA. Small-cell lung cancer (human): potentiation of endocytic membrane activity by voltage-gated Na+ channel expression in vitro. J Membr Biol. 2005;204:67–75.CrossRefPubMed
7.
go back to reference Fulgenzi G, Graciotti L, Faronato M, Virginia M, Miceli F, Amoroso S, et al. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol. 2006;38:1146–59.CrossRefPubMed Fulgenzi G, Graciotti L, Faronato M, Virginia M, Miceli F, Amoroso S, et al. Human neoplastic mesothelial cells express voltage-gated sodium channels involved in cell motility. Int J Biochem Cell Biol. 2006;38:1146–59.CrossRefPubMed
8.
go back to reference Roger S, Rollin J, Barascu A, Besson P, Raynal P-I, Iochmann S, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol. 2007;39:774–86.CrossRefPubMed Roger S, Rollin J, Barascu A, Besson P, Raynal P-I, Iochmann S, et al. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. Int J Biochem Cell Biol. 2007;39:774–86.CrossRefPubMed
9.
go back to reference Diaz D, Delgadillo DM, Herna E, Mari LUZ, Hinojosa A, Ortiz CS, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol. 2007;210:469–78.CrossRefPubMed Diaz D, Delgadillo DM, Herna E, Mari LUZ, Hinojosa A, Ortiz CS, et al. Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol. 2007;210:469–78.CrossRefPubMed
10.
go back to reference Gao R, Shen Y, Cai J, Lei M, Wang Z. Expression of voltage-gated sodium channel a subunit in human ovarian cancer. Oncol Rep. 2010;23:1293–9.PubMed Gao R, Shen Y, Cai J, Lei M, Wang Z. Expression of voltage-gated sodium channel a subunit in human ovarian cancer. Oncol Rep. 2010;23:1293–9.PubMed
11.
go back to reference House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 2010;70:6957–67.CrossRefPubMedPubMedCentral House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, et al. Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 2010;70:6957–67.CrossRefPubMedPubMedCentral
12.
go back to reference Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL, et al. Therapeutic potential for phenytoin: targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat. 2012;134:603–15.CrossRefPubMedPubMedCentral Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD, Isom LL, et al. Therapeutic potential for phenytoin: targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res Treat. 2012;134:603–15.CrossRefPubMedPubMedCentral
13.
go back to reference Nelson M, Yang M, Dowle AA, Thomas JR, Brackenbury WJ. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer. 2015;14:13.CrossRefPubMedPubMedCentral Nelson M, Yang M, Dowle AA, Thomas JR, Brackenbury WJ. The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer. 2015;14:13.CrossRefPubMedPubMedCentral
14.
go back to reference Brackenbury WJ, Djamgoz MBA. Nerve growth factor enhances voltage-gated Na þ channel activity and transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol. 2007;210:602–8.CrossRefPubMedPubMedCentral Brackenbury WJ, Djamgoz MBA. Nerve growth factor enhances voltage-gated Na þ channel activity and transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol. 2007;210:602–8.CrossRefPubMedPubMedCentral
15.
go back to reference Onganer PU, Djamgoz MB. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel. Mol Cancer. 2007;6:76.CrossRef Onganer PU, Djamgoz MB. Epidermal growth factor potentiates in vitro metastatic behaviour of human prostate cancer PC-3M cells: involvement of voltage-gated sodium channel. Mol Cancer. 2007;6:76.CrossRef
16.
go back to reference Fraser SP, Ozerlat-Gunduz I, Onkal R, Diss JKJ, Latchman DS, Djamgoz MB. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol. 2007;224:527–39.CrossRef Fraser SP, Ozerlat-Gunduz I, Onkal R, Diss JKJ, Latchman DS, Djamgoz MB. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol. 2007;224:527–39.CrossRef
17.
go back to reference Brackenbury WJ, Djamgoz MB. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol. 2006;573(Pt 2):343–56.CrossRefPubMedPubMedCentral Brackenbury WJ, Djamgoz MB. Activity-dependent regulation of voltage-gated Na+ channel expression in Mat-LyLu rat prostate cancer cell line. J Physiol. 2006;573(Pt 2):343–56.CrossRefPubMedPubMedCentral
18.
go back to reference Diss JKJ, Fraser SP, Walker MM, Patel A, Latchman DS, Djamgoz MB. Beta-subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. Prostate Cancer Prostatic Dis. 2008;11:325–33.CrossRefPubMed Diss JKJ, Fraser SP, Walker MM, Patel A, Latchman DS, Djamgoz MB. Beta-subunits of voltage-gated sodium channels in human prostate cancer: quantitative in vitro and in vivo analyses of mRNA expression. Prostate Cancer Prostatic Dis. 2008;11:325–33.CrossRefPubMed
20.
go back to reference Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, Coombes RC, et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130105.CrossRefPubMedPubMedCentral Fraser SP, Ozerlat-Gunduz I, Brackenbury WJ, Fitzgerald EM, Campbell TM, Coombes RC, et al. Regulation of voltage-gated sodium channel expression in cancer: hormones, growth factors and auto-regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130105.CrossRefPubMedPubMedCentral
21.
go back to reference Mori N, Schoenherr C, Vandenbergh DJ, Anderson DJ. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron. 1992;9:45–54.CrossRefPubMed Mori N, Schoenherr C, Vandenbergh DJ, Anderson DJ. A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron. 1992;9:45–54.CrossRefPubMed
22.
go back to reference Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995;80:949–57.CrossRefPubMed Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995;80:949–57.CrossRefPubMed
23.
go back to reference Schoenherr CJ, Paquette AJ, Anderson DJ. Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA. 1996;93:9881–6.CrossRefPubMedPubMedCentral Schoenherr CJ, Paquette AJ, Anderson DJ. Identification of potential target genes for the neuron-restrictive silencer factor. Proc Natl Acad Sci USA. 1996;93:9881–6.CrossRefPubMedPubMedCentral
24.
go back to reference Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron. 2001;31:353–65.CrossRefPubMed Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, et al. Regulation of neuronal traits by a novel transcriptional complex. Neuron. 2001;31:353–65.CrossRefPubMed
25.
go back to reference Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, et al. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol. 2000;20:2147–57.CrossRefPubMedPubMedCentral Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, et al. Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol. 2000;20:2147–57.CrossRefPubMedPubMedCentral
26.
go back to reference Van Swearingen AE, Siegel MB, Anders CK. Breast cancer brain metastases: evidence for neuronal-like adaptation in a “breast-to-brain” transition? Breast Cancer Res. 2014;16:304.CrossRefPubMedPubMedCentral Van Swearingen AE, Siegel MB, Anders CK. Breast cancer brain metastases: evidence for neuronal-like adaptation in a “breast-to-brain” transition? Breast Cancer Res. 2014;16:304.CrossRefPubMedPubMedCentral
27.
go back to reference Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell. 2005;121:837–48.CrossRefPubMed Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, et al. A genetic screen for candidate tumor suppressors identifies REST. Cell. 2005;121:837–48.CrossRefPubMed
28.
go back to reference Robey RW, Chakraborty AR, Basseville A, Luchenko V, Zhan Z, Bates SE. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011;8:2021–31.CrossRefPubMedPubMedCentral Robey RW, Chakraborty AR, Basseville A, Luchenko V, Zhan Z, Bates SE. Histone deacetylase inhibitors: emerging mechanisms of resistance. Mol Pharm. 2011;8:2021–31.CrossRefPubMedPubMedCentral
29.
go back to reference Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–941.CrossRefPubMedPubMedCentral Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–941.CrossRefPubMedPubMedCentral
30.
go back to reference Moradzadeh M, Tabarraei A, Sadeghnia HR. The role of histone deacetylase (HDAC) as a biomarker in cancer. Mol Biomark Diagn. 2015;6:4–7. Moradzadeh M, Tabarraei A, Sadeghnia HR. The role of histone deacetylase (HDAC) as a biomarker in cancer. Mol Biomark Diagn. 2015;6:4–7.
31.
go back to reference Mutze K, Langer R, Becker K, Ott K, Novotny A, Luber B, et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol. 2010;17:3336–43.CrossRefPubMed Mutze K, Langer R, Becker K, Ott K, Novotny A, Luber B, et al. Histone deacetylase (HDAC) 1 and 2 expression and chemotherapy in gastric cancer. Ann Surg Oncol. 2010;17:3336–43.CrossRefPubMed
32.
go back to reference Wu LM, Yang Z, Zhou L, Zhang F, Xie HY, Feng XW, et al. Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS ONE. 2010;5:e14460.CrossRefPubMedPubMedCentral Wu LM, Yang Z, Zhou L, Zhang F, Xie HY, Feng XW, et al. Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS ONE. 2010;5:e14460.CrossRefPubMedPubMedCentral
33.
go back to reference Wang L, Zou X, Berger AD, Twiss C, Peng Y, Li Y, et al. Increased expression of histone deacetylaces (HDACs) and inhibition of prostate cancer growth and invasion by HDAC inhibitor SAHA. Am J Transl Res. 2009;1:62–71.PubMedPubMedCentral Wang L, Zou X, Berger AD, Twiss C, Peng Y, Li Y, et al. Increased expression of histone deacetylaces (HDACs) and inhibition of prostate cancer growth and invasion by HDAC inhibitor SAHA. Am J Transl Res. 2009;1:62–71.PubMedPubMedCentral
34.
go back to reference Müller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13:215.CrossRefPubMedPubMedCentral Müller BM, Jana L, Kasajima A, Lehmann A, Prinzler J, Budczies J, et al. Differential expression of histone deacetylases HDAC1, 2 and 3 in human breast cancer–overexpression of HDAC2 and HDAC3 is associated with clinicopathological indicators of disease progression. BMC Cancer. 2013;13:215.CrossRefPubMedPubMedCentral
35.
go back to reference Ramakrishnan S, Ku S, Ciamporcero E, Miles KM, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617.CrossRefPubMedPubMedCentral Ramakrishnan S, Ku S, Ciamporcero E, Miles KM, Attwood K, Chintala S, et al. HDAC 1 and 6 modulate cell invasion and migration in clear cell renal cell carcinoma. BMC Cancer. 2016;16:617.CrossRefPubMedPubMedCentral
36.
go back to reference Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, et al. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer. 2010;127:1332–46.CrossRefPubMed Hayashi A, Horiuchi A, Kikuchi N, Hayashi T, Fuseya C, Suzuki A, et al. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer. 2010;127:1332–46.CrossRefPubMed
37.
go back to reference Colon-Diaz M, Baez-Vega P, Garcia M, Ruiz A, Monteiro JB, Fourquet J, et al. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod Sci. 2012;19:483–92.CrossRefPubMedPubMedCentral Colon-Diaz M, Baez-Vega P, Garcia M, Ruiz A, Monteiro JB, Fourquet J, et al. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod Sci. 2012;19:483–92.CrossRefPubMedPubMedCentral
38.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–8.CrossRefPubMed
39.
go back to reference Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol. 2003;195:479–87.CrossRefPubMed Fraser SP, Salvador V, Manning EA, Mizal J, Altun S, Raza M, et al. Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. J Cell Physiol. 2003;195:479–87.CrossRefPubMed
40.
go back to reference Nadeau H, Lester HA. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons. J Neurophysiol. 2002;88:409–21.PubMed Nadeau H, Lester HA. NRSF causes cAMP-sensitive suppression of sodium current in cultured hippocampal neurons. J Neurophysiol. 2002;88:409–21.PubMed
41.
go back to reference Drews VL, Shi K, De Haan G, Meisler MH. Identification of evolutionarily conserved, functional noncoding elements in the promoter region of the sodium channel gene SCN8A. Mamm Genome. 2007;18:723–31.CrossRefPubMedPubMedCentral Drews VL, Shi K, De Haan G, Meisler MH. Identification of evolutionarily conserved, functional noncoding elements in the promoter region of the sodium channel gene SCN8A. Mamm Genome. 2007;18:723–31.CrossRefPubMedPubMedCentral
42.
go back to reference Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, D’Alessandro R, et al. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 2013;32:2994–3007.CrossRefPubMedPubMedCentral Pozzi D, Lignani G, Ferrea E, Contestabile A, Paonessa F, D’Alessandro R, et al. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 2013;32:2994–3007.CrossRefPubMedPubMedCentral
43.
go back to reference Chioni AM, Shao D, Grose R, Djamgoz MBA. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol. 2010;42:346–58.CrossRefPubMed Chioni AM, Shao D, Grose R, Djamgoz MBA. Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol. 2010;42:346–58.CrossRefPubMed
44.
go back to reference Kuwahara K. Role of NRSF/REST in the regulation of cardiac gene expression and function. Circ J. 2013;77:2682–6.CrossRefPubMed Kuwahara K. Role of NRSF/REST in the regulation of cardiac gene expression and function. Circ J. 2013;77:2682–6.CrossRefPubMed
45.
go back to reference Paonessa F, Criscuolo S, Sacchetti S, Amoroso D, Scarongella H, Pecoraro Bisogni F, et al. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc Natl Acad Sci USA. 2016;113:E91–100.CrossRefPubMed Paonessa F, Criscuolo S, Sacchetti S, Amoroso D, Scarongella H, Pecoraro Bisogni F, et al. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc Natl Acad Sci USA. 2016;113:E91–100.CrossRefPubMed
46.
go back to reference Matsushita Y, Araki K, Omotuyi OI, Mukae T, Ueda H. HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol. 2013;170:991–8.CrossRefPubMedPubMedCentral Matsushita Y, Araki K, Omotuyi OI, Mukae T, Ueda H. HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol. 2013;170:991–8.CrossRefPubMedPubMedCentral
47.
go back to reference Colussi C, Berni R, Rosati J, Straino S, Vitale S, Spallotta F, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice. Cardiovasc Res. 2010;87:73–82.CrossRefPubMed Colussi C, Berni R, Rosati J, Straino S, Vitale S, Spallotta F, et al. The histone deacetylase inhibitor suberoylanilide hydroxamic acid reduces cardiac arrhythmias in dystrophic mice. Cardiovasc Res. 2010;87:73–82.CrossRefPubMed
48.
go back to reference Yamamoto R, Yanagita T, Kobayashi H, Yokoo H, Wada A. Up-regulation of sodium channel subunit mRNAs and their cell surface expression by antiepileptic valproic acid: activation of calcium channel and catecholamine secretion in adrenal chromaffin cells. J Neurochem. 1997;68:1655–62.CrossRefPubMed Yamamoto R, Yanagita T, Kobayashi H, Yokoo H, Wada A. Up-regulation of sodium channel subunit mRNAs and their cell surface expression by antiepileptic valproic acid: activation of calcium channel and catecholamine secretion in adrenal chromaffin cells. J Neurochem. 1997;68:1655–62.CrossRefPubMed
49.
go back to reference Reddy BY, Greco SJ, Patel PS, Trzaska KA, Rameshwar P. RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc Natl Acad Sci USA. 2009;106:4408–13.CrossRefPubMedPubMedCentral Reddy BY, Greco SJ, Patel PS, Trzaska KA, Rameshwar P. RE-1-silencing transcription factor shows tumor-suppressor functions and negatively regulates the oncogenic TAC1 in breast cancer cells. Proc Natl Acad Sci USA. 2009;106:4408–13.CrossRefPubMedPubMedCentral
50.
go back to reference Negrini S, Prada I, D’Alessandro R, Meldolesi J. REST: an oncogene or a tumor suppressor? Trends Cell Biol. 2013;23:289–95.CrossRefPubMed Negrini S, Prada I, D’Alessandro R, Meldolesi J. REST: an oncogene or a tumor suppressor? Trends Cell Biol. 2013;23:289–95.CrossRefPubMed
51.
go back to reference Coulson JM, Edgson JL, Woll PJ, Quinn JP. A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res. 2000;60:1840–4.PubMed Coulson JM, Edgson JL, Woll PJ, Quinn JP. A splice variant of the neuron-restrictive silencer factor repressor is expressed in small cell lung cancer: a potential role in derepression of neuroendocrine genes and a useful clinical marker. Cancer Res. 2000;60:1840–4.PubMed
52.
go back to reference Wagoner MP, Gunsalus KTW, Schoenike B, Richardson AL, Friedl A, Roopra A. The transcription factor REST is lost in aggressive breast cancer. PLoS Genet. 2010;6:e1000979.CrossRefPubMedPubMedCentral Wagoner MP, Gunsalus KTW, Schoenike B, Richardson AL, Friedl A, Roopra A. The transcription factor REST is lost in aggressive breast cancer. PLoS Genet. 2010;6:e1000979.CrossRefPubMedPubMedCentral
53.
go back to reference Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet. 2006;38:566–9.CrossRefPubMed Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet. 2006;38:566–9.CrossRefPubMed
54.
go back to reference Duong V, Bret C, Altucci L, Mai A, Duraffourd C, Loubersac J, et al. Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res. 2008;6:1908–19.CrossRefPubMedPubMedCentral Duong V, Bret C, Altucci L, Mai A, Duraffourd C, Loubersac J, et al. Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res. 2008;6:1908–19.CrossRefPubMedPubMedCentral
55.
go back to reference Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18:436–47.CrossRefPubMedPubMedCentral Bhaskara S, Knutson SK, Jiang G, Chandrasekharan MB, Wilson AJ, Zheng S, et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell. 2010;18:436–47.CrossRefPubMedPubMedCentral
56.
go back to reference Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin a (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57:3697–707.PubMed Medina V, Edmonds B, Young GP, James R, Appleton S, Zalewski PD. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin a (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57:3697–707.PubMed
57.
go back to reference Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, et al. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs. 2008;26:483–8.CrossRefPubMed Vansteenkiste J, Van Cutsem E, Dumez H, Chen C, Ricker JL, Randolph SS, et al. Early phase II trial of oral vorinostat in relapsed or refractory breast, colorectal, or non-small cell lung cancer. Invest New Drugs. 2008;26:483–8.CrossRefPubMed
58.
go back to reference Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem. 2013;4:505–24.CrossRef Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem. 2013;4:505–24.CrossRef
59.
go back to reference Pulukuri SMK, Gorantla B, Rao JS. Inhibition of histone deacetylase activity promotes invasion of human cancer cells through activation of urokinase plasminogen activator. J Biol Chem. 2007;282:35594–603.CrossRefPubMedPubMedCentral Pulukuri SMK, Gorantla B, Rao JS. Inhibition of histone deacetylase activity promotes invasion of human cancer cells through activation of urokinase plasminogen activator. J Biol Chem. 2007;282:35594–603.CrossRefPubMedPubMedCentral
60.
go back to reference Yu Y, Zeng P, Xiong J, Liu Z, Berger SL, Merlino G. Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic Ezrin gene. PLoS ONE. 2010;5:1–10. Yu Y, Zeng P, Xiong J, Liu Z, Berger SL, Merlino G. Epigenetic drugs can stimulate metastasis through enhanced expression of the pro-metastatic Ezrin gene. PLoS ONE. 2010;5:1–10.
61.
go back to reference Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691–701.CrossRefPubMed Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691–701.CrossRefPubMed
62.
go back to reference Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS ONE. 2012;7:1–12.CrossRef Kong D, Ahmad A, Bao B, Li Y, Banerjee S, Sarkar FH. Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS ONE. 2012;7:1–12.CrossRef
63.
go back to reference Brackenbury WJ, Chioni AM, Diss JKJ. Djamgoz MBA. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 2007;101:149–60.CrossRefPubMed Brackenbury WJ, Chioni AM, Diss JKJ. Djamgoz MBA. The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 2007;101:149–60.CrossRefPubMed
64.
go back to reference Driffort V, Gillet L, Bon E, Marionneau-Lambot S, Oullier T, Joulin V, et al. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization. Mol Cancer. 2014;13:264.CrossRefPubMedPubMedCentral Driffort V, Gillet L, Bon E, Marionneau-Lambot S, Oullier T, Joulin V, et al. Ranolazine inhibits NaV1.5-mediated breast cancer cell invasiveness and lung colonization. Mol Cancer. 2014;13:264.CrossRefPubMedPubMedCentral
65.
go back to reference Martin F, Ufodiama C, Watt I, Bland M, Brackenbury WJ. Therapeutic value of voltage-gated sodium channel inhibitors in breast, colorectal, and prostate cancer: a systematic review. Front Pharmacol. 2015;6:152.CrossRef Martin F, Ufodiama C, Watt I, Bland M, Brackenbury WJ. Therapeutic value of voltage-gated sodium channel inhibitors in breast, colorectal, and prostate cancer: a systematic review. Front Pharmacol. 2015;6:152.CrossRef
66.
go back to reference Mohammed FH, Khajah MA, Yang M, Brackenbury WJ, Luqmani YA. Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells. Int J Oncol. 2016;48:73–83.PubMed Mohammed FH, Khajah MA, Yang M, Brackenbury WJ, Luqmani YA. Blockade of voltage-gated sodium channels inhibits invasion of endocrine-resistant breast cancer cells. Int J Oncol. 2016;48:73–83.PubMed
Metadata
Title
The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer
Authors
Nur Sabrina Kamarulzaman
Hemaniswarri Dewi Dewadas
Chiuan Yee Leow
Nik Soriani Yaacob
Noor Fatmawati Mokhtar
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2017
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-017-0442-6

Other articles of this Issue 1/2017

Cancer Cell International 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine