Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Electroencephalography | Research

Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG

Authors: Congzhi Tang, Ting Zhou, Yun Zhang, Runping Yuan, Xianghu Zhao, Ruian Yin, Pengfei Song, Bo Liu, Ruyan Song, Wenli Chen, Hongxing Wang

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

Upper limb dysfunction after stroke seriously affects quality of life. Bilateral training has proven helpful in recovery of upper limb motor function in these patients. However, studies evaluating the effectiveness of bilateral upper limb robot-assisted training on improving motor function and quality of life in stroke patients are lacking. Quantitative electroencephalography (EEG) is non-invasive, simple, and monitors cerebral cortical activity, which can be used to evaluate the effectiveness of interventions. In this study, EEG was used to evaluate the effect of end-drive bilateral upper extremity robot-assisted training on upper extremity functional recovery in stroke patients.

Methods

24 stroke patients with hemiplegia were randomly divided into a conventional training (CT, n = 12) group or a bilateral upper limb robot-assisted training (BRT, n = 12) group. All patients received 60 min of routine rehabilitation treatment including rolling, transferring, sitting, standing, walking, etc., per day, 6 days a week, for three consecutive weeks. The BRT group added 30 min of bilateral upper limb robot-assisted training per day, while the CT group added 30 min of upper limb training (routine occupational therapy) per day, 6 days a week, for 3  weeks. The primary outcome index to evaluate upper limb motor function was the Fugl-Meyer functional score upper limb component (FMA-UE), with the secondary outcome of activities of daily living (ADL), assessed by the modified Barthel index (MBI) score. Quantitative EEG was used to evaluate functional brain connectivity as well as alpha and beta power current source densities of the brain.

Results

Significant (p < 0.05) within-group differences were found in FMA-UE and MBI scores for both groups after treatment. A between-group comparison indicated the MBI score of the BRT group was significantly different from that of the CT group, whereas the FMA-UE score was not significantly different from that of the CT group after treatment. The differences of FMA-UE and MBI scores before and after treatment in the BRT group were significantly different as compared to the CT group. In addition, beta rhythm power spectrum energy was higher in the BRT group than in the CT group after treatment. Functional connectivity in the BRT group, under alpha and beta rhythms, was significantly increased in both the bilateral frontal and limbic lobes as compared to the CT group.

Conclusions

BRT outperformed CT in improving ADL in stroke patients within three months, and BRT facilitates the recovery of upper limb function by enhancing functional connectivity of the bilateral cerebral hemispheres.
Literature
1.
go back to reference Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014;11:111.PubMedPubMedCentralCrossRef Basteris A, Nijenhuis SM, Stienen AH, Buurke JH, Prange GB, Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. J Neuroeng Rehabil. 2014;11:111.PubMedPubMedCentralCrossRef
2.
go back to reference Batool S, Soomro N, Amjad F, Fauz R. To compare the effectiveness of constraint induced movement therapy versus motor relearning programme to improve motor function of hemiplegic upper extremity after stroke. Pak J Med Sci. 2015;31(5):1167–71.PubMedPubMedCentral Batool S, Soomro N, Amjad F, Fauz R. To compare the effectiveness of constraint induced movement therapy versus motor relearning programme to improve motor function of hemiplegic upper extremity after stroke. Pak J Med Sci. 2015;31(5):1167–71.PubMedPubMedCentral
3.
go back to reference Dehem S, Gilliaux M, Stoquart G, Detrembleur C, Jacquemin G, Palumbo S, Frederick A, Lejeune T. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: a single-blind, randomised, controlled trial. Ann Phys Rehabil Med. 2019;62(5):313–20.PubMedCrossRef Dehem S, Gilliaux M, Stoquart G, Detrembleur C, Jacquemin G, Palumbo S, Frederick A, Lejeune T. Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: a single-blind, randomised, controlled trial. Ann Phys Rehabil Med. 2019;62(5):313–20.PubMedCrossRef
4.
go back to reference Wu CY, Yang CL, Chuang LL, Lin KC, Chen HC, Chen MD, Huang WC. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther. 2012;92(8):1006–16.PubMedCrossRef Wu CY, Yang CL, Chuang LL, Lin KC, Chen HC, Chen MD, Huang WC. Effect of therapist-based versus robot-assisted bilateral arm training on motor control, functional performance, and quality of life after chronic stroke: a clinical trial. Phys Ther. 2012;92(8):1006–16.PubMedCrossRef
5.
go back to reference Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Aird L, Alvarado N, Andole S, Cohen DL, Dawson J, Fernandez-Garcia C, Finch T, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Ternent L, Turner DL, Vale L, Wilkes S, Shaw L. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394(10192):51–62.PubMedPubMedCentralCrossRef Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Aird L, Alvarado N, Andole S, Cohen DL, Dawson J, Fernandez-Garcia C, Finch T, Ford GA, Francis R, Hogg S, Hughes N, Price CI, Ternent L, Turner DL, Vale L, Wilkes S, Shaw L. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394(10192):51–62.PubMedPubMedCentralCrossRef
6.
go back to reference Takebayashi T, Takahashi K, Amano S, Gosho M, Sakai M, Hashimoto K, Hachisuka K, Uchiyama Y, Domen K. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: a randomized controlled trial. Stroke. 2022;53(7):2182–91.PubMedCrossRef Takebayashi T, Takahashi K, Amano S, Gosho M, Sakai M, Hashimoto K, Hachisuka K, Uchiyama Y, Domen K. Robot-assisted training as self-training for upper-limb hemiplegia in chronic stroke: a randomized controlled trial. Stroke. 2022;53(7):2182–91.PubMedCrossRef
7.
go back to reference Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–21.PubMedCrossRef Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107–21.PubMedCrossRef
8.
go back to reference Fan YT, Lin KC, Liu HL, Wu CY, Wai YY, Lee TH. Neural correlates of motor recovery after robot-assisted stroke rehabilitation: a case series study. Neurocase. 2016;22(5):416–25.PubMedCrossRef Fan YT, Lin KC, Liu HL, Wu CY, Wai YY, Lee TH. Neural correlates of motor recovery after robot-assisted stroke rehabilitation: a case series study. Neurocase. 2016;22(5):416–25.PubMedCrossRef
9.
go back to reference Kim DH, Lee KD, Bulea TC, Park HS. Increasing motor cortex activation during grasping via novel robotic mirror hand therapy: a pilot fNIRS study. J Neuroeng Rehabil. 2022;19(1):8.PubMedPubMedCentralCrossRef Kim DH, Lee KD, Bulea TC, Park HS. Increasing motor cortex activation during grasping via novel robotic mirror hand therapy: a pilot fNIRS study. J Neuroeng Rehabil. 2022;19(1):8.PubMedPubMedCentralCrossRef
10.
go back to reference Osumi M, Sumitani M, Otake Y, Morioka S. A hypothetical explanatory sensorimotor model of bilateral limb interference. Med Hypotheses. 2019;122:89–91.PubMedCrossRef Osumi M, Sumitani M, Otake Y, Morioka S. A hypothetical explanatory sensorimotor model of bilateral limb interference. Med Hypotheses. 2019;122:89–91.PubMedCrossRef
11.
go back to reference Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2001;56(3):401–4.PubMedCrossRef Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2001;56(3):401–4.PubMedCrossRef
12.
go back to reference Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131(Pt 5):1381–90.PubMedCrossRef Stinear CM, Barber PA, Coxon JP, Fleming MK, Byblow WD. Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain. 2008;131(Pt 5):1381–90.PubMedCrossRef
13.
go back to reference Byblow WD, Stinear CM, Smith MC, Bjerre L, Flaskager BK, McCambridge AB. Mirror symmetric bimanual movement priming can increase corticomotor excitability and enhance motor learning. PLoS ONE. 2012;7(3): e33882.PubMedPubMedCentralCrossRef Byblow WD, Stinear CM, Smith MC, Bjerre L, Flaskager BK, McCambridge AB. Mirror symmetric bimanual movement priming can increase corticomotor excitability and enhance motor learning. PLoS ONE. 2012;7(3): e33882.PubMedPubMedCentralCrossRef
14.
go back to reference Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84(6):915–20.PubMedCrossRef Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil. 2003;84(6):915–20.PubMedCrossRef
15.
go back to reference Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.PubMedCrossRef Hesse S, Werner C, Pohl M, Rueckriem S, Mehrholz J, Lingnau ML. Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke. 2005;36(9):1960–6.PubMedCrossRef
16.
go back to reference Jette N, Hirsch LJ. Continuous electroencephalogram monitoring in critically ill patients. Curr Neurol Neurosci Rep. 2005;5(4):312–21.PubMedCrossRef Jette N, Hirsch LJ. Continuous electroencephalogram monitoring in critically ill patients. Curr Neurol Neurosci Rep. 2005;5(4):312–21.PubMedCrossRef
17.
go back to reference Nunez PL, Wingeier BM, Silberstein RB. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp. 2001;13(3):125–64.PubMedPubMedCentralCrossRef Nunez PL, Wingeier BM, Silberstein RB. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp. 2001;13(3):125–64.PubMedPubMedCentralCrossRef
18.
go back to reference Bentes C, Peralta AR, Viana P, Martins H, Morgado C, Casimiro C, Ferro JM. Quantitative EEG and functional outcome following acute ischemic stroke. Clin Neurophysiol. 2018;129(8):1680–7.PubMedCrossRef Bentes C, Peralta AR, Viana P, Martins H, Morgado C, Casimiro C, Ferro JM. Quantitative EEG and functional outcome following acute ischemic stroke. Clin Neurophysiol. 2018;129(8):1680–7.PubMedCrossRef
19.
go back to reference Khanna P, Carmena JM. Neural oscillations: beta band activity across motor networks. Curr Opin Neurobiol. 2015;32:60–7.PubMedCrossRef Khanna P, Carmena JM. Neural oscillations: beta band activity across motor networks. Curr Opin Neurobiol. 2015;32:60–7.PubMedCrossRef
20.
go back to reference Del Campo-Vera RM, Tang AM, Gogia AS, Chen KH, Sebastian R, Gilbert ZD, Nune G, Liu CY, Kellis S, Lee B. Neuromodulation in beta-band power between movement execution and inhibition in the human hippocampus. Neuromodulation. 2022;25(2):232–44.PubMedPubMedCentralCrossRef Del Campo-Vera RM, Tang AM, Gogia AS, Chen KH, Sebastian R, Gilbert ZD, Nune G, Liu CY, Kellis S, Lee B. Neuromodulation in beta-band power between movement execution and inhibition in the human hippocampus. Neuromodulation. 2022;25(2):232–44.PubMedPubMedCentralCrossRef
21.
go back to reference Roopun AK, Middleton SJ, Cunningham MO, LeBeau FE, Bibbig A, Whittington MA, Traub RD. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U S A. 2006;103(42):15646–50.PubMedPubMedCentralCrossRef Roopun AK, Middleton SJ, Cunningham MO, LeBeau FE, Bibbig A, Whittington MA, Traub RD. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc Natl Acad Sci U S A. 2006;103(42):15646–50.PubMedPubMedCentralCrossRef
22.
go back to reference Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage. 2011;55(3):1147–58.PubMedCrossRef Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage. 2011;55(3):1147–58.PubMedCrossRef
23.
go back to reference Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-assisted therapy for upper extremity motor impairment after stroke: a systematic review and meta-analysis. Phys Ther. 2021;101(4):pzab010.PubMedCrossRef Wu J, Cheng H, Zhang J, Yang S, Cai S. Robot-assisted therapy for upper extremity motor impairment after stroke: a systematic review and meta-analysis. Phys Ther. 2021;101(4):pzab010.PubMedCrossRef
24.
go back to reference Ma D, Li X, Xu Q, Yang F, Feng Y, Wang W, Huang JJ, Pei YC, Pan Y. Robot-assisted bimanual training improves hand function in patients with subacute stroke: a randomized controlled pilot study. Front Neurol. 2022;13: 884261.PubMedPubMedCentralCrossRef Ma D, Li X, Xu Q, Yang F, Feng Y, Wang W, Huang JJ, Pei YC, Pan Y. Robot-assisted bimanual training improves hand function in patients with subacute stroke: a randomized controlled pilot study. Front Neurol. 2022;13: 884261.PubMedPubMedCentralCrossRef
25.
go back to reference Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018;9(9): CD006876.PubMed Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018;9(9): CD006876.PubMed
26.
go back to reference Lee MJ, Lee JH, Koo HM, Lee SM. Effectiveness of bilateral arm training for improving extremity function and activities of daily living performance in hemiplegic patients. J Stroke Cerebrovasc Dis. 2017;26(5):1020–5.PubMedCrossRef Lee MJ, Lee JH, Koo HM, Lee SM. Effectiveness of bilateral arm training for improving extremity function and activities of daily living performance in hemiplegic patients. J Stroke Cerebrovasc Dis. 2017;26(5):1020–5.PubMedCrossRef
27.
go back to reference Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.PubMedCrossRef Kwakkel G, Kollen BJ, Krebs HI. Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil Neural Repair. 2008;22(2):111–21.PubMedCrossRef
28.
go back to reference Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134(Pt 5):1264–76.PubMedPubMedCentralCrossRef Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134(Pt 5):1264–76.PubMedPubMedCentralCrossRef
29.
go back to reference Pirovano I, Mastropietro A, Antonacci Y, Barà C, Guanziroli E, Molteni F, Faes L, Rizzo G. Resting state EEG directed functional connectivity unveils changes in motor network organization in subacute stroke patients after rehabilitation. Front Physiol. 2022;13: 862207.PubMedPubMedCentralCrossRef Pirovano I, Mastropietro A, Antonacci Y, Barà C, Guanziroli E, Molteni F, Faes L, Rizzo G. Resting state EEG directed functional connectivity unveils changes in motor network organization in subacute stroke patients after rehabilitation. Front Physiol. 2022;13: 862207.PubMedPubMedCentralCrossRef
30.
go back to reference Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke. 2015;46(1):296–301.PubMedCrossRef Thiel A, Vahdat S. Structural and resting-state brain connectivity of motor networks after stroke. Stroke. 2015;46(1):296–301.PubMedCrossRef
31.
go back to reference Kweon SH, Kweon HJ, Kim SJ. A brain wave research on VR (Virtual Reality) usage: comparison between VR and 2D Video in EEG Measurement. Adv Human Fact Syst Interact. 2018;34(18):194–203.CrossRef Kweon SH, Kweon HJ, Kim SJ. A brain wave research on VR (Virtual Reality) usage: comparison between VR and 2D Video in EEG Measurement. Adv Human Fact Syst Interact. 2018;34(18):194–203.CrossRef
32.
go back to reference Loubinoux I, Carel C, Pariente J, et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage. 2003;20(4):2166–80.PubMedCrossRef Loubinoux I, Carel C, Pariente J, et al. Correlation between cerebral reorganization and motor recovery after subcortical infarcts. Neuroimage. 2003;20(4):2166–80.PubMedCrossRef
34.
go back to reference Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim YH. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42(5):1357–62.PubMedPubMedCentralCrossRef Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, Kim YH. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke. 2011;42(5):1357–62.PubMedPubMedCentralCrossRef
35.
go back to reference Nudo RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol. 2006;16(6):638–44.PubMedCrossRef Nudo RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol. 2006;16(6):638–44.PubMedCrossRef
37.
go back to reference Carter AR, Shulman GL, Corbetta M. Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage. 2012;62(4):2271–80.PubMedCrossRef Carter AR, Shulman GL, Corbetta M. Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage. 2012;62(4):2271–80.PubMedCrossRef
38.
go back to reference Li R, Li S, Roh J, Wang C, Zhang Y. Multimodal neuroimaging using concurrent EEG/fNIRS for poststroke recovery assessment: an exploratory study. Neurorehabil Neural Repair. 2020;34(12):1099–110.PubMedCrossRef Li R, Li S, Roh J, Wang C, Zhang Y. Multimodal neuroimaging using concurrent EEG/fNIRS for poststroke recovery assessment: an exploratory study. Neurorehabil Neural Repair. 2020;34(12):1099–110.PubMedCrossRef
39.
go back to reference Hoshino T, Oguchi K, Inoue K, Hoshino A, Hoshiyama M. Relationship between upper limb function and functional neural connectivity among motor related-areas during recovery stage after stroke. Top Stroke Rehabil. 2020;27(1):57–66.PubMedCrossRef Hoshino T, Oguchi K, Inoue K, Hoshino A, Hoshiyama M. Relationship between upper limb function and functional neural connectivity among motor related-areas during recovery stage after stroke. Top Stroke Rehabil. 2020;27(1):57–66.PubMedCrossRef
40.
go back to reference Hordacre B, Moezzi B, Ridding MC. Neuroplasticity and network connectivity of the motor cortex following stroke: a transcranial direct current stimulation study. Hum Brain Mapp. 2018;39(8):3326–39.PubMedPubMedCentralCrossRef Hordacre B, Moezzi B, Ridding MC. Neuroplasticity and network connectivity of the motor cortex following stroke: a transcranial direct current stimulation study. Hum Brain Mapp. 2018;39(8):3326–39.PubMedPubMedCentralCrossRef
41.
go back to reference Dubovik S, Ptak R, Aboulafia T, Magnin C, Gillabert N, Allet L, Pignat JM, Schnider A, Guggisberg AG. EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. Behav Neurol. 2013;26(3):187–9.PubMedPubMedCentralCrossRef Dubovik S, Ptak R, Aboulafia T, Magnin C, Gillabert N, Allet L, Pignat JM, Schnider A, Guggisberg AG. EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. Behav Neurol. 2013;26(3):187–9.PubMedPubMedCentralCrossRef
42.
go back to reference Nicolo P, Rizk S, Magnin C, Pietro MD, Schnider A, Guggisberg AG. Coherent neural oscillations predict future motor and language improvement after stroke. Brain. 2015;138(Pt 10):3048–60.PubMedCrossRef Nicolo P, Rizk S, Magnin C, Pietro MD, Schnider A, Guggisberg AG. Coherent neural oscillations predict future motor and language improvement after stroke. Brain. 2015;138(Pt 10):3048–60.PubMedCrossRef
43.
go back to reference Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain. 2022;145(4):1211–28.PubMedCrossRef Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain. 2022;145(4):1211–28.PubMedCrossRef
Metadata
Title
Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG
Authors
Congzhi Tang
Ting Zhou
Yun Zhang
Runping Yuan
Xianghu Zhao
Ruian Yin
Pengfei Song
Bo Liu
Ruyan Song
Wenli Chen
Hongxing Wang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01565-x

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue