Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2022

Open Access 01-03-2022 | Breast Cancer

MicroRNAs as a clue to overcome breast cancer treatment resistance

Authors: Iris Garrido-Cano, Birlipta Pattanayak, Anna Adam-Artigues, Ana Lameirinhas, Sandra Torres-Ruiz, Eduardo Tormo, Raimundo Cervera, Pilar Eroles

Published in: Cancer and Metastasis Reviews | Issue 1/2022

Login to get access

Abstract

Breast cancer is the most frequent cancer in women worldwide. Despite the improvement in diagnosis and treatments, the rates of cancer relapse and resistance to therapies remain higher than desirable. Alterations in microRNAs have been linked to changes in critical processes related to cancer development and progression. Their involvement in resistance or sensitivity to breast cancer treatments has been documented by different in vivo and in vitro experiments. The most significant microRNAs implicated in modulating resistance to breast cancer therapies are summarized in this review. Resistance to therapy has been linked to cellular processes such as cell cycle, apoptosis, epithelial-to-mesenchymal transition, stemness phenotype, or receptor signaling pathways, and the role of microRNAs in their regulation has already been described. The modulation of specific microRNAs may modify treatment response and improve survival rates and cancer patients’ quality of life. As a result, a greater understanding of microRNAs, their targets, and the signaling pathways through which they act is needed. This information could be useful to design new therapeutic strategies, to reduce resistance to the available treatments, and to open the door to possible new clinical approaches.
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin.
2.
go back to reference Abdalla F, Singh B, Bhat HK. MicroRNAs and gene regulation in breast cancer. J Biochem Mol Toxicol 2020; 34(11):e22567. Abdalla F, Singh B, Bhat HK. MicroRNAs and gene regulation in breast cancer. J Biochem Mol Toxicol 2020; 34(11):e22567.
3.
go back to reference Abolghasemi, M., Tehrani, S. S., Yousefi, T., Karimian, A., Mahmoodpoor, A., Ghamari, A., et al. (2020). MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. Journal of Cellular Physiology, 235(6), 5008–5029.PubMedCrossRef Abolghasemi, M., Tehrani, S. S., Yousefi, T., Karimian, A., Mahmoodpoor, A., Ghamari, A., et al. (2020). MicroRNAs in breast cancer: Roles, functions, and mechanism of actions. Journal of Cellular Physiology, 235(6), 5008–5029.PubMedCrossRef
4.
go back to reference Dastmalchi N, Safaralizadeh R, Baradaran B, Hosseinpourfeizi M, Baghbanzadeh A. An update review of deregulated tumor suppressive microRNAs and their contribution in various molecular subtypes of breast cancer. Gene 2020; 729:144301. Dastmalchi N, Safaralizadeh R, Baradaran B, Hosseinpourfeizi M, Baghbanzadeh A. An update review of deregulated tumor suppressive microRNAs and their contribution in various molecular subtypes of breast cancer. Gene 2020; 729:144301.
5.
go back to reference Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, et al. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells 2019; 8(12). Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, et al. MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells 2019; 8(12).
6.
go back to reference Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019; 8(11). Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019; 8(11).
7.
go back to reference Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874(2):188413. Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874(2):188413.
8.
go back to reference Khalife, H., Skafi, N., Fayyad-Kazan, M., & Badran, B. (2020). MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genetics, 246–247, 18–40.PubMedCrossRef Khalife, H., Skafi, N., Fayyad-Kazan, M., & Badran, B. (2020). MicroRNAs in breast cancer: New maestros defining the melody. Cancer Genetics, 246–247, 18–40.PubMedCrossRef
9.
go back to reference Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, et al. miRNA expression profiles in luminal A breast cancer-implications in biology, prognosis, and prediction of response to hormonal treatment. Int J Mol Sci 2020; 21(20). Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, et al. miRNA expression profiles in luminal A breast cancer-implications in biology, prognosis, and prediction of response to hormonal treatment. Int J Mol Sci 2020; 21(20).
10.
go back to reference Loh HY, Norman BP, Lai KS, Rahman N, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci 2019; 20(19). Loh HY, Norman BP, Lai KS, Rahman N, Alitheen NBM, Osman MA. The regulatory role of microRNAs in breast cancer. Int J Mol Sci 2019; 20(19).
11.
go back to reference Mandujano-Tinoco, E. A., Garcia-Venzor, A., Melendez-Zajgla, J., & Maldonado, V. (2018). New emerging roles of microRNAs in breast cancer. Breast Cancer Research and Treatment, 171(2), 247–259.PubMedCrossRef Mandujano-Tinoco, E. A., Garcia-Venzor, A., Melendez-Zajgla, J., & Maldonado, V. (2018). New emerging roles of microRNAs in breast cancer. Breast Cancer Research and Treatment, 171(2), 247–259.PubMedCrossRef
12.
go back to reference Niu, L., Yang, W., Duan, L., Wang, X., Li, Y., Xu, C., et al. (2021). Biological implications and clinical potential of metastasis-related miRNA in colorectal cancer. Mol Ther Nucleic Acids, 23, 42–54.PubMedCrossRef Niu, L., Yang, W., Duan, L., Wang, X., Li, Y., Xu, C., et al. (2021). Biological implications and clinical potential of metastasis-related miRNA in colorectal cancer. Mol Ther Nucleic Acids, 23, 42–54.PubMedCrossRef
13.
go back to reference Petri, B. J., & Klinge, C. M. (2020). Regulation of breast cancer metastasis signaling by miRNAs. Cancer and Metastasis Reviews, 39(3), 837–886.PubMedCrossRef Petri, B. J., & Klinge, C. M. (2020). Regulation of breast cancer metastasis signaling by miRNAs. Cancer and Metastasis Reviews, 39(3), 837–886.PubMedCrossRef
14.
go back to reference Plantamura, I., Cosentino, G., & Cataldo, A. (2018). MicroRNAs and DNA-damaging drugs in breast cancer: Strength in numbers. Frontiers in Oncology, 8, 352.PubMedPubMedCentralCrossRef Plantamura, I., Cosentino, G., & Cataldo, A. (2018). MicroRNAs and DNA-damaging drugs in breast cancer: Strength in numbers. Frontiers in Oncology, 8, 352.PubMedPubMedCentralCrossRef
15.
go back to reference Saikia M, Paul S, Chakraborty S. Role of microRNA in forming breast carcinoma. Life Sci 2020; 259:118256. Saikia M, Paul S, Chakraborty S. Role of microRNA in forming breast carcinoma. Life Sci 2020; 259:118256.
16.
go back to reference Zhang, Y., Xu, B., & Zhang, X. P. (2018). Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. Oncotargets and Therapy, 11, 4263–4270.PubMedPubMedCentralCrossRef Zhang, Y., Xu, B., & Zhang, X. P. (2018). Effects of miRNAs on functions of breast cancer stem cells and treatment of breast cancer. Oncotargets and Therapy, 11, 4263–4270.PubMedPubMedCentralCrossRef
17.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.CrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.CrossRef
18.
go back to reference Aarts, M., Linardopoulos, S., & Turner, N. C. (2013). Tumour selective targeting of cell cycle kinases for cancer treatment. Current Opinion in Pharmacology, 13(4), 529–535.PubMedCrossRef Aarts, M., Linardopoulos, S., & Turner, N. C. (2013). Tumour selective targeting of cell cycle kinases for cancer treatment. Current Opinion in Pharmacology, 13(4), 529–535.PubMedCrossRef
19.
go back to reference Diaz-Moralli, S., Tarrado-Castellarnau, M., Miranda, A., & Cascante, M. (2013). Targeting cell cycle regulation in cancer therapy. Pharmacology & Therapeutics, 138(2), 255–271.CrossRef Diaz-Moralli, S., Tarrado-Castellarnau, M., Miranda, A., & Cascante, M. (2013). Targeting cell cycle regulation in cancer therapy. Pharmacology & Therapeutics, 138(2), 255–271.CrossRef
21.
go back to reference Kastl, L., Brown, I., & Schofield, A. C. (2012). miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Research and Treatment, 131(2), 445–454.PubMedCrossRef Kastl, L., Brown, I., & Schofield, A. C. (2012). miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Research and Treatment, 131(2), 445–454.PubMedCrossRef
22.
go back to reference Bao, C., Chen, J., Chen, D., Lu, Y., Lou, W., Ding, B., et al. (2020). MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death & Disease, 11(8), 618.CrossRef Bao, C., Chen, J., Chen, D., Lu, Y., Lou, W., Ding, B., et al. (2020). MiR-93 suppresses tumorigenesis and enhances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death & Disease, 11(8), 618.CrossRef
23.
go back to reference Cataldo, A., Cheung, D. G., Balsari, A., Tagliabue, E., Coppola, V., Iorio, M. V., et al. (2016). miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 7(1), 786–797.PubMedCrossRef Cataldo, A., Cheung, D. G., Balsari, A., Tagliabue, E., Coppola, V., Iorio, M. V., et al. (2016). miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget, 7(1), 786–797.PubMedCrossRef
24.
go back to reference Wang, G., Ma, C., Shi, X., Guo, W., & Niu, J. (2019). miR-107 enhances the sensitivity of breast cancer cells to paclitaxel. Open Med (Wars), 14, 456–466.CrossRef Wang, G., Ma, C., Shi, X., Guo, W., & Niu, J. (2019). miR-107 enhances the sensitivity of breast cancer cells to paclitaxel. Open Med (Wars), 14, 456–466.CrossRef
25.
go back to reference Cittelly, D. M., Das, P. M., Spoelstra, N. S., Edgerton, S. M., Richer, J. K., Thor, A. D., et al. (2010). Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Molecular Cancer, 9, 317.PubMedPubMedCentralCrossRef Cittelly, D. M., Das, P. M., Spoelstra, N. S., Edgerton, S. M., Richer, J. K., Thor, A. D., et al. (2010). Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Molecular Cancer, 9, 317.PubMedPubMedCentralCrossRef
26.
go back to reference Dou, D., Ren, X., Han, M., Xu, X., Ge, X., Gu, Y., et al. (2020). CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis. Cancer Cell International, 20, 454.PubMedPubMedCentralCrossRef Dou, D., Ren, X., Han, M., Xu, X., Ge, X., Gu, Y., et al. (2020). CircUBE2D2 (hsa_circ_0005728) promotes cell proliferation, metastasis and chemoresistance in triple-negative breast cancer by regulating miR-512-3p/CDCA3 axis. Cancer Cell International, 20, 454.PubMedPubMedCentralCrossRef
27.
go back to reference Venturutti, L., Cordo Russo, R. I., Rivas, M. A., Mercogliano, M. F., Izzo, F., Oakley, R. H., et al. (2016). MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene, 35(48), 6189–6202.PubMedPubMedCentralCrossRef Venturutti, L., Cordo Russo, R. I., Rivas, M. A., Mercogliano, M. F., Izzo, F., Oakley, R. H., et al. (2016). MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene, 35(48), 6189–6202.PubMedPubMedCentralCrossRef
28.
go back to reference Yang, W., Gu, J., Wang, X., Wang, Y., Feng, M., Zhou, D., et al. (2019). Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7. Journal of Cellular and Molecular Medicine, 23(5), 3166–3177.PubMedPubMedCentralCrossRef Yang, W., Gu, J., Wang, X., Wang, Y., Feng, M., Zhou, D., et al. (2019). Inhibition of circular RNA CDR1as increases chemosensitivity of 5-FU-resistant BC cells through up-regulating miR-7. Journal of Cellular and Molecular Medicine, 23(5), 3166–3177.PubMedPubMedCentralCrossRef
29.
go back to reference Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G, et al. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One 2012; 7(2):e31422. Ichikawa T, Sato F, Terasawa K, Tsuchiya S, Toi M, Tsujimoto G, et al. Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS One 2012; 7(2):e31422.
30.
go back to reference Tormo, E., Adam-Artigues, A., Ballester, S., Pineda, B., Zazo, S., Gonzalez-Alonso, P., et al. (2017). The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene. Science and Reports, 7, 41309.CrossRef Tormo, E., Adam-Artigues, A., Ballester, S., Pineda, B., Zazo, S., Gonzalez-Alonso, P., et al. (2017). The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene. Science and Reports, 7, 41309.CrossRef
31.
go back to reference Liu, J., Li, X., Wang, M., Xiao, G., Yang, G., Wang, H., et al. (2018). A miR-26a/E2F7 feedback loop contributes to tamoxifen resistance in ER-positive breast cancer. International Journal of Oncology, 53(4), 1601–1612.PubMed Liu, J., Li, X., Wang, M., Xiao, G., Yang, G., Wang, H., et al. (2018). A miR-26a/E2F7 feedback loop contributes to tamoxifen resistance in ER-positive breast cancer. International Journal of Oncology, 53(4), 1601–1612.PubMed
32.
go back to reference Tormo, E., Ballester, S., Adam-Artigues, A., Burgues, O., Alonso, E., Bermejo, B., et al. (2019). The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Science and Reports, 9(1), 5316.CrossRef Tormo, E., Ballester, S., Adam-Artigues, A., Burgues, O., Alonso, E., Bermejo, B., et al. (2019). The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Science and Reports, 9(1), 5316.CrossRef
33.
go back to reference Ward, A., Shukla, K., Balwierz, A., Soons, Z., Konig, R., Sahin, O., et al. (2014). MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. The Journal of Pathology, 233(4), 368–379.PubMedCrossRef Ward, A., Shukla, K., Balwierz, A., Soons, Z., Konig, R., Sahin, O., et al. (2014). MicroRNA-519a is a novel oncomir conferring tamoxifen resistance by targeting a network of tumour-suppressor genes in ER+ breast cancer. The Journal of Pathology, 233(4), 368–379.PubMedCrossRef
34.
go back to reference Wang, B., Li, D., Filkowski, J., Rodriguez-Juarez, R., Storozynsky, Q., Malach, M., et al. (2018). A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis, 7(7), 54.PubMedPubMedCentralCrossRef Wang, B., Li, D., Filkowski, J., Rodriguez-Juarez, R., Storozynsky, Q., Malach, M., et al. (2018). A dual role of miR-22 modulated by RelA/p65 in resensitizing fulvestrant-resistant breast cancer cells to fulvestrant by targeting FOXP1 and HDAC4 and constitutive acetylation of p53 at Lys382. Oncogenesis, 7(7), 54.PubMedPubMedCentralCrossRef
35.
go back to reference Jiang, H., Cheng, L., Hu, P., & Liu, R. (2018). MicroRNA663b mediates TAM resistance in breast cancer by modulating TP73 expression. Molecular Medicine Reports, 18(1), 1120–1126.PubMed Jiang, H., Cheng, L., Hu, P., & Liu, R. (2018). MicroRNA663b mediates TAM resistance in breast cancer by modulating TP73 expression. Molecular Medicine Reports, 18(1), 1120–1126.PubMed
36.
go back to reference Miller, T. E., Ghoshal, K., Ramaswamy, B., Roy, S., Datta, J., Shapiro, C. L., et al. (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. Journal of Biological Chemistry, 283(44), 29897–29903.CrossRef Miller, T. E., Ghoshal, K., Ramaswamy, B., Roy, S., Datta, J., Shapiro, C. L., et al. (2008). MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. Journal of Biological Chemistry, 283(44), 29897–29903.CrossRef
37.
go back to reference Wang, S., Oh, D. Y., Leventaki, V., Drakos, E., Zhang, R., Sahin, A. A., et al. (2019). MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer. Cancer Letters, 465, 12–23.PubMedCrossRef Wang, S., Oh, D. Y., Leventaki, V., Drakos, E., Zhang, R., Sahin, A. A., et al. (2019). MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer. Cancer Letters, 465, 12–23.PubMedCrossRef
38.
go back to reference Zhang, H., Zhao, B., Wang, X., Zhang, F., & Yu, W. (2019). LINC00511 knockdown enhances paclitaxel cytotoxicity in breast cancer via regulating miR-29c/CDK6 axis. Life Sciences, 228, 135–144.PubMedCrossRef Zhang, H., Zhao, B., Wang, X., Zhang, F., & Yu, W. (2019). LINC00511 knockdown enhances paclitaxel cytotoxicity in breast cancer via regulating miR-29c/CDK6 axis. Life Sciences, 228, 135–144.PubMedCrossRef
39.
go back to reference Zhang, W., Jiang, H., Chen, Y., & Ren, F. (2019). Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. Journal of Cellular Biochemistry, 120(9), 16283–16292.PubMedCrossRef Zhang, W., Jiang, H., Chen, Y., & Ren, F. (2019). Resveratrol chemosensitizes adriamycin-resistant breast cancer cells by modulating miR-122-5p. Journal of Cellular Biochemistry, 120(9), 16283–16292.PubMedCrossRef
40.
go back to reference Citron, F., Segatto, I., Vinciguerra, G. L. R., Musco, L., Russo, F., Mungo, G., et al. (2020). Downregulation of miR-223 expression is an early event during mammary transformation and confers resistance to CDK4/6 inhibitors in luminal breast cancer. Cancer Research, 80(5), 1064–1077.PubMedCrossRef Citron, F., Segatto, I., Vinciguerra, G. L. R., Musco, L., Russo, F., Mungo, G., et al. (2020). Downregulation of miR-223 expression is an early event during mammary transformation and confers resistance to CDK4/6 inhibitors in luminal breast cancer. Cancer Research, 80(5), 1064–1077.PubMedCrossRef
41.
go back to reference Goodarzi, A. A., & Jeggo, P. A. (2013). The repair and signaling responses to DNA double-strand breaks. Advances in Genetics, 82, 1–45.PubMedCrossRef Goodarzi, A. A., & Jeggo, P. A. (2013). The repair and signaling responses to DNA double-strand breaks. Advances in Genetics, 82, 1–45.PubMedCrossRef
42.
go back to reference Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434(7033), 605–611.PubMedCrossRef Falck, J., Coates, J., & Jackson, S. P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature, 434(7033), 605–611.PubMedCrossRef
43.
go back to reference Wu, J., Lu, L. Y., & Yu, X. (2010). The role of BRCA1 in DNA damage response. Protein & Cell, 1(2), 117–123.CrossRef Wu, J., Lu, L. Y., & Yu, X. (2010). The role of BRCA1 in DNA damage response. Protein & Cell, 1(2), 117–123.CrossRef
44.
go back to reference Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., et al. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Molecular Cell, 41(2), 210–220.PubMedCrossRef Moskwa, P., Buffa, F. M., Pan, Y., Panchakshari, R., Gottipati, P., Muschel, R. J., et al. (2011). miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Molecular Cell, 41(2), 210–220.PubMedCrossRef
45.
go back to reference He, X., Xiao, X., Dong, L., Wan, N., Zhou, Z., Deng, H., et al. (2015). MiR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1. Tumour Biology, 36(3), 2065–2075.PubMedCrossRef He, X., Xiao, X., Dong, L., Wan, N., Zhou, Z., Deng, H., et al. (2015). MiR-218 regulates cisplatin chemosensitivity in breast cancer by targeting BRCA1. Tumour Biology, 36(3), 2065–2075.PubMedCrossRef
46.
go back to reference Xu, X., Lv, Y. G., Yan, C. Y., Yi, J., & Ling, R. (2016). Enforced expression of hsa-miR-125a-3p in breast cancer cells potentiates docetaxel sensitivity via modulation of BRCA1 signaling. Biochemical and Biophysical Research Communications, 479(4), 893–900.PubMedCrossRef Xu, X., Lv, Y. G., Yan, C. Y., Yi, J., & Ling, R. (2016). Enforced expression of hsa-miR-125a-3p in breast cancer cells potentiates docetaxel sensitivity via modulation of BRCA1 signaling. Biochemical and Biophysical Research Communications, 479(4), 893–900.PubMedCrossRef
47.
go back to reference Chen SM, Chou WC, Hu LY, Hsiung CN, Chu HW, Huang YL, et al. The effect of microRNA-124 overexpression on anti-tumor drug sensitivity. PLoS One 2015; 10(6):e0128472. Chen SM, Chou WC, Hu LY, Hsiung CN, Chu HW, Huang YL, et al. The effect of microRNA-124 overexpression on anti-tumor drug sensitivity. PLoS One 2015; 10(6):e0128472.
48.
go back to reference Bisso, A., Faleschini, M., Zampa, F., Capaci, V., De Santa, J., Santarpia, L., et al. (2013). Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle, 12(11), 1679–1687.PubMedPubMedCentralCrossRef Bisso, A., Faleschini, M., Zampa, F., Capaci, V., De Santa, J., Santarpia, L., et al. (2013). Oncogenic miR-181a/b affect the DNA damage response in aggressive breast cancer. Cell Cycle, 12(11), 1679–1687.PubMedPubMedCentralCrossRef
49.
go back to reference Xu, S., Zhao, C., Jia, Z., Wang, X., Han, Y., & Yang, Z. (2017). Down-regulation of PARP1 by miR-891b sensitizes human breast cancer cells to alkylating chemotherapeutic drugs. Archives of Gynecology and Obstetrics, 296(3), 543–549.PubMedCrossRef Xu, S., Zhao, C., Jia, Z., Wang, X., Han, Y., & Yang, Z. (2017). Down-regulation of PARP1 by miR-891b sensitizes human breast cancer cells to alkylating chemotherapeutic drugs. Archives of Gynecology and Obstetrics, 296(3), 543–549.PubMedCrossRef
50.
go back to reference Mei, Z., Su, T., Ye, J., Yang, C., Zhang, S., & Xie, C. (2015). The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiation Research, 183(2), 196–207.PubMedCrossRef Mei, Z., Su, T., Ye, J., Yang, C., Zhang, S., & Xie, C. (2015). The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiation Research, 183(2), 196–207.PubMedCrossRef
51.
go back to reference Lu, X., Liu, R., Wang, M., Kumar, A. K., Pan, F., He, L., et al. (2020). MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene, 39(1), 234–247.PubMedCrossRef Lu, X., Liu, R., Wang, M., Kumar, A. K., Pan, F., He, L., et al. (2020). MicroRNA-140 impedes DNA repair by targeting FEN1 and enhances chemotherapeutic response in breast cancer. Oncogene, 39(1), 234–247.PubMedCrossRef
52.
go back to reference Lin, S., Yu, L., Song, X., Bi, J., Jiang, L., Wang, Y., et al. (2019). Intrinsic adriamycin resistance in p53-mutated breast cancer is related to the miR-30c/FANCF/REV1-mediated DNA damage response. Cell Death & Disease, 10(9), 666.CrossRef Lin, S., Yu, L., Song, X., Bi, J., Jiang, L., Wang, Y., et al. (2019). Intrinsic adriamycin resistance in p53-mutated breast cancer is related to the miR-30c/FANCF/REV1-mediated DNA damage response. Cell Death & Disease, 10(9), 666.CrossRef
53.
go back to reference Bialik, S., Zalckvar, E., Ber, Y., Rubinstein, A. D., & Kimchi, A. (2010). Systems biology analysis of programmed cell death. Trends in Biochemical Sciences, 35(10), 556–564.PubMedCrossRef Bialik, S., Zalckvar, E., Ber, Y., Rubinstein, A. D., & Kimchi, A. (2010). Systems biology analysis of programmed cell death. Trends in Biochemical Sciences, 35(10), 556–564.PubMedCrossRef
54.
go back to reference Nishida, K., Yamaguchi, O., & Otsu, K. (2008). Crosstalk between autophagy and apoptosis in heart disease. Circulation Research, 103(4), 343–351.PubMedCrossRef Nishida, K., Yamaguchi, O., & Otsu, K. (2008). Crosstalk between autophagy and apoptosis in heart disease. Circulation Research, 103(4), 343–351.PubMedCrossRef
55.
go back to reference Llambi, F., & Green, D. R. (2011). Apoptosis and oncogenesis: Give and take in the BCL-2 family. Current Opinion in Genetics & Development, 21(1), 12–20.CrossRef Llambi, F., & Green, D. R. (2011). Apoptosis and oncogenesis: Give and take in the BCL-2 family. Current Opinion in Genetics & Development, 21(1), 12–20.CrossRef
56.
go back to reference Benchimol, S. (2001). p53-dependent pathways of apoptosis. Cell Death and Differentiation, 8(11), 1049–1051.PubMedCrossRef Benchimol, S. (2001). p53-dependent pathways of apoptosis. Cell Death and Differentiation, 8(11), 1049–1051.PubMedCrossRef
57.
go back to reference Bratton, S. B., Walker, G., Srinivasula, S. M., Sun, X. M., Butterworth, M., Alnemri, E. S., et al. (2001). Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO Journal, 20(5), 998–1009.CrossRef Bratton, S. B., Walker, G., Srinivasula, S. M., Sun, X. M., Butterworth, M., Alnemri, E. S., et al. (2001). Recruitment, activation and retention of caspases-9 and -3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO Journal, 20(5), 998–1009.CrossRef
58.
go back to reference Chen, S., Rehman, S. K., Zhang, W., Wen, A., Yao, L., & Zhang, J. (2010). Autophagy is a therapeutic target in anticancer drug resistance. Biochimica et Biophysica Acta, 1806(2), 220–229.PubMed Chen, S., Rehman, S. K., Zhang, W., Wen, A., Yao, L., & Zhang, J. (2010). Autophagy is a therapeutic target in anticancer drug resistance. Biochimica et Biophysica Acta, 1806(2), 220–229.PubMed
59.
go back to reference Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. Journal of Cell Biology, 181(3), 497–510.CrossRef Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J. L., et al. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. Journal of Cell Biology, 181(3), 497–510.CrossRef
60.
go back to reference Lee, J. T., Jr., & McCubrey, J. A. (2002). Targeting the Raf kinase cascade in cancer therapy–novel molecular targets and therapeutic strategies. Expert Opinion on Therapeutic Targets, 6(6), 659–678.PubMedCrossRef Lee, J. T., Jr., & McCubrey, J. A. (2002). Targeting the Raf kinase cascade in cancer therapy–novel molecular targets and therapeutic strategies. Expert Opinion on Therapeutic Targets, 6(6), 659–678.PubMedCrossRef
61.
go back to reference Ji, Y., Di, W., Yang, Q., Lu, Z., Cai, W., & Wu, J. (2015). Inhibition of autophagy increases proliferation inhibition and apoptosis induced by the PI3K/mTOR inhibitor NVP-BEZ235 in breast cancer cells. Clinical Laboratory, 61(8), 1043–1051.PubMed Ji, Y., Di, W., Yang, Q., Lu, Z., Cai, W., & Wu, J. (2015). Inhibition of autophagy increases proliferation inhibition and apoptosis induced by the PI3K/mTOR inhibitor NVP-BEZ235 in breast cancer cells. Clinical Laboratory, 61(8), 1043–1051.PubMed
63.
go back to reference Kim, Y. S., Morgan, M. J., Choksi, S., & Liu, Z. G. (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Molecular Cell, 26(5), 675–687.PubMedCrossRef Kim, Y. S., Morgan, M. J., Choksi, S., & Liu, Z. G. (2007). TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Molecular Cell, 26(5), 675–687.PubMedCrossRef
64.
go back to reference Strasser, A., & Vaux, D. L. (2020). Cell death in the origin and treatment of cancer. Molecular Cell, 78(6), 1045–1054.PubMedCrossRef Strasser, A., & Vaux, D. L. (2020). Cell death in the origin and treatment of cancer. Molecular Cell, 78(6), 1045–1054.PubMedCrossRef
65.
go back to reference Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., et al. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. Journal of Biological Chemistry, 285(28), 21496–21507.CrossRef Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., et al. (2010). MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. Journal of Biological Chemistry, 285(28), 21496–21507.CrossRef
66.
go back to reference Xiang, F., Fan, Y., Ni, Z., Liu, Q., Zhu, Z., Chen, Z., et al. (2019). Ursolic acid reverses the chemoresistance of breast cancer cells to paclitaxel by targeting MiRNA-149-5p/MyD88. Frontiers in Oncology, 9, 501.PubMedPubMedCentralCrossRef Xiang, F., Fan, Y., Ni, Z., Liu, Q., Zhu, Z., Chen, Z., et al. (2019). Ursolic acid reverses the chemoresistance of breast cancer cells to paclitaxel by targeting MiRNA-149-5p/MyD88. Frontiers in Oncology, 9, 501.PubMedPubMedCentralCrossRef
67.
go back to reference Cittelly, D. M., Das, P. M., Salvo, V. A., Fonseca, J. P., Burow, M. E., & Jones, F. E. (2010). Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis, 31(12), 2049–2057.PubMedPubMedCentralCrossRef Cittelly, D. M., Das, P. M., Salvo, V. A., Fonseca, J. P., Burow, M. E., & Jones, F. E. (2010). Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis, 31(12), 2049–2057.PubMedPubMedCentralCrossRef
68.
go back to reference O’Brien, K., Lowry, M. C., Corcoran, C., Martinez, V. G., Daly, M., Rani, S., et al. (2015). miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget, 6(32), 32774–32789.PubMedPubMedCentralCrossRef O’Brien, K., Lowry, M. C., Corcoran, C., Martinez, V. G., Daly, M., Rani, S., et al. (2015). miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget, 6(32), 32774–32789.PubMedPubMedCentralCrossRef
69.
go back to reference Chen, L., & Bourguignon, L. Y. (2014). Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Molecular Cancer, 13, 52.PubMedPubMedCentralCrossRef Chen, L., & Bourguignon, L. Y. (2014). Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Molecular Cancer, 13, 52.PubMedPubMedCentralCrossRef
70.
go back to reference Korner, C., Keklikoglou, I., Bender, C., Worner, A., Munstermann, E., & Wiemann, S. (2013). MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). Journal of Biological Chemistry, 288(12), 8750–8761.CrossRef Korner, C., Keklikoglou, I., Bender, C., Worner, A., Munstermann, E., & Wiemann, S. (2013). MicroRNA-31 sensitizes human breast cells to apoptosis by direct targeting of protein kinase C epsilon (PKCepsilon). Journal of Biological Chemistry, 288(12), 8750–8761.CrossRef
71.
go back to reference Li, Z. H., Weng, X., Xiong, Q. Y., Tu, J. H., Xiao, A., Qiu, W., et al. (2017). miR-34a expression in human breast cancer is associated with drug resistance. Oncotarget, 8(63), 106270–106282.PubMedPubMedCentralCrossRef Li, Z. H., Weng, X., Xiong, Q. Y., Tu, J. H., Xiao, A., Qiu, W., et al. (2017). miR-34a expression in human breast cancer is associated with drug resistance. Oncotarget, 8(63), 106270–106282.PubMedPubMedCentralCrossRef
72.
go back to reference Xie, X., Hu, Y., Xu, L., Fu, Y., Tu, J., Zhao, H., et al. (2015). The role of miR-125b-mitochondria-caspase-3 pathway in doxorubicin resistance and therapy in human breast cancer. Tumour Biology, 36(9), 7185–7194.PubMedCrossRef Xie, X., Hu, Y., Xu, L., Fu, Y., Tu, J., Zhao, H., et al. (2015). The role of miR-125b-mitochondria-caspase-3 pathway in doxorubicin resistance and therapy in human breast cancer. Tumour Biology, 36(9), 7185–7194.PubMedCrossRef
73.
go back to reference Chen, X., Wang, Y. W., Xing, A. Y., Xiang, S., Shi, D. B., Liu, L., et al. (2016). Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. The Journal of Pathology, 239(4), 459–472.PubMedCrossRef Chen, X., Wang, Y. W., Xing, A. Y., Xiang, S., Shi, D. B., Liu, L., et al. (2016). Suppression of SPIN1-mediated PI3K-Akt pathway by miR-489 increases chemosensitivity in breast cancer. The Journal of Pathology, 239(4), 459–472.PubMedCrossRef
74.
go back to reference Yang, G., Wu, D., Zhu, J., Jiang, O., Shi, Q., Tian, J., et al. (2013). Upregulation of miR-195 increases the sensitivity of breast cancer cells to Adriamycin treatment through inhibition of Raf-1. Oncology Reports, 30(2), 877–889.PubMedCrossRef Yang, G., Wu, D., Zhu, J., Jiang, O., Shi, Q., Tian, J., et al. (2013). Upregulation of miR-195 increases the sensitivity of breast cancer cells to Adriamycin treatment through inhibition of Raf-1. Oncology Reports, 30(2), 877–889.PubMedCrossRef
75.
go back to reference Gu, X., Li, J. Y., Guo, J., Li, P. S., & Zhang, W. H. (2015). Influence of MiR-451 on drug resistances of paclitaxel-resistant breast cancer cell line. Medical Science Monitor, 21, 3291–3297.PubMedPubMedCentralCrossRef Gu, X., Li, J. Y., Guo, J., Li, P. S., & Zhang, W. H. (2015). Influence of MiR-451 on drug resistances of paclitaxel-resistant breast cancer cell line. Medical Science Monitor, 21, 3291–3297.PubMedPubMedCentralCrossRef
76.
go back to reference Hong, T., Ding, J., & Li, W. (2019). miR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 and BCL2. Oncotargets and Therapy, 12, 11097–11105.PubMedPubMedCentralCrossRef Hong, T., Ding, J., & Li, W. (2019). miR-7 reverses breast cancer resistance to chemotherapy by targeting MRP1 and BCL2. Oncotargets and Therapy, 12, 11097–11105.PubMedPubMedCentralCrossRef
77.
go back to reference You, F., Luan, H., Sun, D., Cui, T., Ding, P., Tang, H., et al. (2019). miRNA-106a promotes breast cancer cell proliferation, clonogenicity, migration, and invasion through inhibiting apoptosis and chemosensitivity. DNA and Cell Biology, 38(2), 198–207.PubMedCrossRef You, F., Luan, H., Sun, D., Cui, T., Ding, P., Tang, H., et al. (2019). miRNA-106a promotes breast cancer cell proliferation, clonogenicity, migration, and invasion through inhibiting apoptosis and chemosensitivity. DNA and Cell Biology, 38(2), 198–207.PubMedCrossRef
78.
go back to reference Manvati, S., Mangalhara, K. C., Kalaiarasan, P., Srivastava, N., & Bamezai, R. N. (2015). miR-24-2 regulates genes in survival pathway and demonstrates potential in reducing cellular viability in combination with docetaxel. Gene, 567(2), 217–224.PubMedCrossRef Manvati, S., Mangalhara, K. C., Kalaiarasan, P., Srivastava, N., & Bamezai, R. N. (2015). miR-24-2 regulates genes in survival pathway and demonstrates potential in reducing cellular viability in combination with docetaxel. Gene, 567(2), 217–224.PubMedCrossRef
79.
go back to reference Long J, Ji Z, Jiang K, Wang Z, Meng G. miR-193b modulates resistance to doxorubicin in human breast cancer cells by downregulating MCL-1. Biomed Res Int 2015; 2015:373574. Long J, Ji Z, Jiang K, Wang Z, Meng G. miR-193b modulates resistance to doxorubicin in human breast cancer cells by downregulating MCL-1. Biomed Res Int 2015; 2015:373574.
80.
go back to reference Xie, Q., Wang, S., Zhao, Y., Zhang, Z., Qin, C., & Yang, X. (2017). MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1. Oncotarget, 8(13), 22003–22013.PubMedPubMedCentralCrossRef Xie, Q., Wang, S., Zhao, Y., Zhang, Z., Qin, C., & Yang, X. (2017). MiR-519d impedes cisplatin-resistance in breast cancer stem cells by down-regulating the expression of MCL-1. Oncotarget, 8(13), 22003–22013.PubMedPubMedCentralCrossRef
81.
go back to reference Aakko, S., Straume, A. H., Birkeland, E. E., Chen, P., Qiao, X., Lonning, P. E., et al. (2019). MYC-induced miR-203b-3p and miR-203a-3p control Bcl-xL expression and paclitaxel sensitivity in tumor cells. Transl Oncol, 12(1), 170–179.PubMedCrossRef Aakko, S., Straume, A. H., Birkeland, E. E., Chen, P., Qiao, X., Lonning, P. E., et al. (2019). MYC-induced miR-203b-3p and miR-203a-3p control Bcl-xL expression and paclitaxel sensitivity in tumor cells. Transl Oncol, 12(1), 170–179.PubMedCrossRef
82.
go back to reference Yue J, Lopez JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 2020; 21(7). Yue J, Lopez JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci 2020; 21(7).
83.
go back to reference Mi, H., Wang, X., Wang, F., Li, L., Zhu, M., Wang, N., et al. (2018). miR-381 induces sensitivity of breast cancer cells to doxorubicin by inactivation of MAPK signaling via FYN. European Journal of Pharmacology, 839, 66–75.PubMedCrossRef Mi, H., Wang, X., Wang, F., Li, L., Zhu, M., Wang, N., et al. (2018). miR-381 induces sensitivity of breast cancer cells to doxorubicin by inactivation of MAPK signaling via FYN. European Journal of Pharmacology, 839, 66–75.PubMedCrossRef
84.
go back to reference Fang, Y., Shen, H., Cao, Y., Li, H., Qin, R., Chen, Q., et al. (2014). Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Brazilian Journal of Medical and Biological Research, 47(1), 60–69.PubMedPubMedCentralCrossRef Fang, Y., Shen, H., Cao, Y., Li, H., Qin, R., Chen, Q., et al. (2014). Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Brazilian Journal of Medical and Biological Research, 47(1), 60–69.PubMedPubMedCentralCrossRef
85.
go back to reference Han, X., Li, Q., Liu, C., Wang, C., & Li, Y. (2019). Overexpression miR-24-3p repressed Bim expression to confer tamoxifen resistance in breast cancer. Journal of Cellular Biochemistry, 120(8), 12966–12976.PubMedCrossRef Han, X., Li, Q., Liu, C., Wang, C., & Li, Y. (2019). Overexpression miR-24-3p repressed Bim expression to confer tamoxifen resistance in breast cancer. Journal of Cellular Biochemistry, 120(8), 12966–12976.PubMedCrossRef
86.
go back to reference Ye, Z., Hao, R., Cai, Y., Wang, X., & Huang, G. (2016). Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biology, 37(4), 4509–4515.PubMedCrossRef Ye, Z., Hao, R., Cai, Y., Wang, X., & Huang, G. (2016). Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumour Biology, 37(4), 4509–4515.PubMedCrossRef
87.
go back to reference Dai H, Xu LY, Qian Q, Zhu QW, Chen WX. MicroRNA-222 promotes drug resistance to doxorubicin in breast cancer via regulation of miR-222/bim pathway. Biosci Rep 2019; 39(7). Dai H, Xu LY, Qian Q, Zhu QW, Chen WX. MicroRNA-222 promotes drug resistance to doxorubicin in breast cancer via regulation of miR-222/bim pathway. Biosci Rep 2019; 39(7).
88.
go back to reference Zheng, Y., Lv, X., Wang, X., Wang, B., Shao, X., Huang, Y., et al. (2016). MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncology Reports, 35(2), 683–690.PubMedCrossRef Zheng, Y., Lv, X., Wang, X., Wang, B., Shao, X., Huang, Y., et al. (2016). MiR-181b promotes chemoresistance in breast cancer by regulating Bim expression. Oncology Reports, 35(2), 683–690.PubMedCrossRef
89.
go back to reference Zhang, Y., He, Y., Lu, L. L., Zhou, Z. Y., Wan, N. B., Li, G. P., et al. (2019). miRNA-192-5p impacts the sensitivity of breast cancer cells to doxorubicin via targeting peptidylprolyl isomerase A. Kaohsiung Journal of Medical Sciences, 35(1), 17–23.CrossRef Zhang, Y., He, Y., Lu, L. L., Zhou, Z. Y., Wan, N. B., Li, G. P., et al. (2019). miRNA-192-5p impacts the sensitivity of breast cancer cells to doxorubicin via targeting peptidylprolyl isomerase A. Kaohsiung Journal of Medical Sciences, 35(1), 17–23.CrossRef
90.
go back to reference Wang, X., & Zhu, J. (2018). Mir-1307 regulates cisplatin resistance by targeting Mdm4 in breast cancer expressing wild type P53. Thorac Cancer, 9(6), 676–683.PubMedPubMedCentralCrossRef Wang, X., & Zhu, J. (2018). Mir-1307 regulates cisplatin resistance by targeting Mdm4 in breast cancer expressing wild type P53. Thorac Cancer, 9(6), 676–683.PubMedPubMedCentralCrossRef
91.
go back to reference Sharma, S., Nagpal, N., Ghosh, P. C., & Kulshreshtha, R. (2017). P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA, 23(8), 1237–1246.PubMedPubMedCentralCrossRef Sharma, S., Nagpal, N., Ghosh, P. C., & Kulshreshtha, R. (2017). P53-miR-191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA, 23(8), 1237–1246.PubMedPubMedCentralCrossRef
92.
go back to reference Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One 2012; 7(11):e50469. Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One 2012; 7(11):e50469.
93.
go back to reference Zhu, Y., Yu, F., Jiao, Y., Feng, J., Tang, W., Yao, H., et al. (2011). Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clinical Cancer Research, 17(22), 7105–7115.PubMedCrossRef Zhu, Y., Yu, F., Jiao, Y., Feng, J., Tang, W., Yao, H., et al. (2011). Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clinical Cancer Research, 17(22), 7105–7115.PubMedCrossRef
94.
go back to reference Wu, G., Zhou, W., Pan, X., Sun, Y., Xu, H., Shi, P., et al. (2018). miR-100 reverses cisplatin resistance in breast cancer by suppressing HAX-1. Cellular Physiology and Biochemistry, 47(5), 2077–2087.PubMedCrossRef Wu, G., Zhou, W., Pan, X., Sun, Y., Xu, H., Shi, P., et al. (2018). miR-100 reverses cisplatin resistance in breast cancer by suppressing HAX-1. Cellular Physiology and Biochemistry, 47(5), 2077–2087.PubMedCrossRef
95.
go back to reference He, H., Tian, W., Chen, H., & Jiang, K. (2016). MiR-944 functions as a novel oncogene and regulates the chemoresistance in breast cancer. Tumour Biology, 37(2), 1599–1607.PubMedCrossRef He, H., Tian, W., Chen, H., & Jiang, K. (2016). MiR-944 functions as a novel oncogene and regulates the chemoresistance in breast cancer. Tumour Biology, 37(2), 1599–1607.PubMedCrossRef
96.
go back to reference Zhang D, Shi Z, Li M, Mi J. Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Dis 2014; 5:e1301. Zhang D, Shi Z, Li M, Mi J. Hypoxia-induced miR-424 decreases tumor sensitivity to chemotherapy by inhibiting apoptosis. Cell Death Dis 2014; 5:e1301.
97.
go back to reference Tao, L., Wu, Y. Q., & Zhang, S. P. (2019). MiR-21-5p enhances the progression and paclitaxel resistance in drug-resistant breast cancer cell lines by targeting PDCD4. Neoplasma, 66(5), 746–755.PubMedCrossRef Tao, L., Wu, Y. Q., & Zhang, S. P. (2019). MiR-21-5p enhances the progression and paclitaxel resistance in drug-resistant breast cancer cell lines by targeting PDCD4. Neoplasma, 66(5), 746–755.PubMedCrossRef
98.
go back to reference Deng, Y. W., Hao, W. J., Li, Y. W., Li, Y. X., Zhao, B. C., & Lu, D. (2018). Hsa-miRNA-143-3p reverses multidrug resistance of triple-negative breast cancer by inhibiting the expression of its target protein cytokine-induced apoptosis inhibitor 1 in vivo. Journal of Breast Cancer, 21(3), 251–258.PubMedPubMedCentralCrossRef Deng, Y. W., Hao, W. J., Li, Y. W., Li, Y. X., Zhao, B. C., & Lu, D. (2018). Hsa-miRNA-143-3p reverses multidrug resistance of triple-negative breast cancer by inhibiting the expression of its target protein cytokine-induced apoptosis inhibitor 1 in vivo. Journal of Breast Cancer, 21(3), 251–258.PubMedPubMedCentralCrossRef
99.
go back to reference Duan, W. J., Bi, P. D., Ma, Y., Liu, N. Q., & Zhen, X. (2020). MiR-512-3p regulates malignant tumor behavior and multi-drug resistance in breast cancer cells via targeting Livin. Neoplasma, 67(1), 102–110.PubMedCrossRef Duan, W. J., Bi, P. D., Ma, Y., Liu, N. Q., & Zhen, X. (2020). MiR-512-3p regulates malignant tumor behavior and multi-drug resistance in breast cancer cells via targeting Livin. Neoplasma, 67(1), 102–110.PubMedCrossRef
100.
go back to reference Zheng, S., Li, M., Miao, K., & Xu, H. (2020). lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. Journal of Cellular Biochemistry, 121(3), 2225–2235.PubMedCrossRef Zheng, S., Li, M., Miao, K., & Xu, H. (2020). lncRNA GAS5-promoted apoptosis in triple-negative breast cancer by targeting miR-378a-5p/SUFU signaling. Journal of Cellular Biochemistry, 121(3), 2225–2235.PubMedCrossRef
101.
go back to reference Yu, X., Luo, A., Liu, Y., Wang, S., Li, Y., Shi, W., et al. (2015). MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Molecular Cancer, 14, 208.PubMedPubMedCentralCrossRef Yu, X., Luo, A., Liu, Y., Wang, S., Li, Y., Shi, W., et al. (2015). MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Molecular Cancer, 14, 208.PubMedPubMedCentralCrossRef
102.
go back to reference Liu, Z. R., Song, Y., Wan, L. H., Zhang, Y. Y., & Zhou, L. M. (2016). Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3zeta, estrogen receptor alpha, and autophagy. Life Sciences, 149, 104–113.PubMedCrossRef Liu, Z. R., Song, Y., Wan, L. H., Zhang, Y. Y., & Zhou, L. M. (2016). Over-expression of miR-451a can enhance the sensitivity of breast cancer cells to tamoxifen by regulating 14-3-3zeta, estrogen receptor alpha, and autophagy. Life Sciences, 149, 104–113.PubMedCrossRef
103.
go back to reference Lu, M., Ding, K., Zhang, G., Yin, M., Yao, G., Tian, H., et al. (2015). MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRgamma. Science and Reports, 5, 8735.CrossRef Lu, M., Ding, K., Zhang, G., Yin, M., Yao, G., Tian, H., et al. (2015). MicroRNA-320a sensitizes tamoxifen-resistant breast cancer cells to tamoxifen by targeting ARPP-19 and ERRgamma. Science and Reports, 5, 8735.CrossRef
104.
go back to reference Ueda, S., Takanashi, M., Sudo, K., Kanekura, K., & Kuroda, M. (2020). miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. Laboratory Investigation, 100(6), 863–873.PubMedCrossRef Ueda, S., Takanashi, M., Sudo, K., Kanekura, K., & Kuroda, M. (2020). miR-27a ameliorates chemoresistance of breast cancer cells by disruption of reactive oxygen species homeostasis and impairment of autophagy. Laboratory Investigation, 100(6), 863–873.PubMedCrossRef
105.
go back to reference Han, M., Hu, J., Lu, P., Cao, H., Yu, C., Li, X., et al. (2020). Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death & Disease, 11(1), 43.CrossRef Han, M., Hu, J., Lu, P., Cao, H., Yu, C., Li, X., et al. (2020). Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer. Cell Death & Disease, 11(1), 43.CrossRef
106.
go back to reference Shi Y, Gong W, Lu L, Wang Y, Ren J. Upregulation of miR-129–5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz J Med Biol Res 2019; 52(11):e8657. Shi Y, Gong W, Lu L, Wang Y, Ren J. Upregulation of miR-129–5p increases the sensitivity to Taxol through inhibiting HMGB1-mediated cell autophagy in breast cancer MCF-7 cells. Braz J Med Biol Res 2019; 52(11):e8657.
107.
go back to reference Hsu, J. L., & Hung, M. C. (2016). The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer and Metastasis Reviews, 35(4), 575–588.PubMedCrossRef Hsu, J. L., & Hung, M. C. (2016). The role of HER2, EGFR, and other receptor tyrosine kinases in breast cancer. Cancer and Metastasis Reviews, 35(4), 575–588.PubMedCrossRef
108.
go back to reference Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2), 127–137.PubMedCrossRef Yarden, Y., & Sliwkowski, M. X. (2001). Untangling the ErbB signalling network. Nature Reviews Molecular Cell Biology, 2(2), 127–137.PubMedCrossRef
109.
go back to reference Sergina, N. V., & Moasser, M. M. (2007). The HER family and cancer: Emerging molecular mechanisms and therapeutic targets. Trends in Molecular Medicine, 13(12), 527–534.PubMedPubMedCentralCrossRef Sergina, N. V., & Moasser, M. M. (2007). The HER family and cancer: Emerging molecular mechanisms and therapeutic targets. Trends in Molecular Medicine, 13(12), 527–534.PubMedPubMedCentralCrossRef
110.
go back to reference Gomez, G. G., Wykosky, J., Zanca, C., Furnari, F. B., & Cavenee, W. K. (2013). Therapeutic resistance in cancer: MicroRNA regulation of EGFR signaling networks. Cancer Biology & Medicine, 10(4), 192–205. Gomez, G. G., Wykosky, J., Zanca, C., Furnari, F. B., & Cavenee, W. K. (2013). Therapeutic resistance in cancer: MicroRNA regulation of EGFR signaling networks. Cancer Biology & Medicine, 10(4), 192–205.
112.
go back to reference Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345.PubMedCrossRef Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G. N., & Ueno, N. T. (2012). Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment, 136(2), 331–345.PubMedCrossRef
113.
go back to reference Huang, Q., Wu, Y. Y., Xing, S. J., & Yu, Z. W. (2019). Effect of miR-7 on resistance of breast cancer cells to adriamycin via regulating EGFR/PI3K signaling pathway. European Review for Medical and Pharmacological Sciences, 23(12), 5285–5292.PubMed Huang, Q., Wu, Y. Y., Xing, S. J., & Yu, Z. W. (2019). Effect of miR-7 on resistance of breast cancer cells to adriamycin via regulating EGFR/PI3K signaling pathway. European Review for Medical and Pharmacological Sciences, 23(12), 5285–5292.PubMed
114.
go back to reference Li, M., Yang, J., Zhang, L., Tu, S., Zhou, X., Tan, Z., et al. (2019). A low-molecular-weight compound exerts anticancer activity against breast and lung cancers by disrupting EGFR/Eps8 complex formation. Journal of Experimental & Clinical Cancer Research, 38(1), 211.CrossRef Li, M., Yang, J., Zhang, L., Tu, S., Zhou, X., Tan, Z., et al. (2019). A low-molecular-weight compound exerts anticancer activity against breast and lung cancers by disrupting EGFR/Eps8 complex formation. Journal of Experimental & Clinical Cancer Research, 38(1), 211.CrossRef
115.
go back to reference Ma, Y., Bu, D., Long, J., Chai, W., & Dong, J. (2019). LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. Journal of Cellular Physiology, 234(3), 2880–2894.PubMedCrossRef Ma, Y., Bu, D., Long, J., Chai, W., & Dong, J. (2019). LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. Journal of Cellular Physiology, 234(3), 2880–2894.PubMedCrossRef
116.
go back to reference He, M., Jin, Q., Chen, C., Liu, Y., Ye, X., Jiang, Y., et al. (2019). The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene, 38(28), 5551–5565.PubMedCrossRef He, M., Jin, Q., Chen, C., Liu, Y., Ye, X., Jiang, Y., et al. (2019). The miR-186-3p/EREG axis orchestrates tamoxifen resistance and aerobic glycolysis in breast cancer cells. Oncogene, 38(28), 5551–5565.PubMedCrossRef
117.
go back to reference Corcoran, C., Rani, S., Breslin, S., Gogarty, M., Ghobrial, I. M., Crown, J., et al. (2014). miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Molecular Cancer, 13, 71.PubMedPubMedCentralCrossRef Corcoran, C., Rani, S., Breslin, S., Gogarty, M., Ghobrial, I. M., Crown, J., et al. (2014). miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Molecular Cancer, 13, 71.PubMedPubMedCentralCrossRef
118.
go back to reference Ye, X. M., Zhu, H. Y., Bai, W. D., Wang, T., Wang, L., Chen, Y., et al. (2014). Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer, 14, 134.PubMedPubMedCentralCrossRef Ye, X. M., Zhu, H. Y., Bai, W. D., Wang, T., Wang, L., Chen, Y., et al. (2014). Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting IGF1R. BMC Cancer, 14, 134.PubMedPubMedCentralCrossRef
119.
go back to reference Zhang H, Zheng XD, Zeng XH, Li L, Zhou Q. MiR-520b inhibits IGF-1R to increase doxorubicin sensitivity and promote cell apoptosis in breast cancer. Yakugaku Zasshi 2020. Zhang H, Zheng XD, Zeng XH, Li L, Zhou Q. MiR-520b inhibits IGF-1R to increase doxorubicin sensitivity and promote cell apoptosis in breast cancer. Yakugaku Zasshi 2020.
120.
go back to reference Oksvold, M. P., Huitfeldt, H. S., & Langdon, W. Y. (2004). Identification of 14-3-3zeta as an EGF receptor interacting protein. FEBS Letters, 569(1–3), 207–210.PubMedCrossRef Oksvold, M. P., Huitfeldt, H. S., & Langdon, W. Y. (2004). Identification of 14-3-3zeta as an EGF receptor interacting protein. FEBS Letters, 569(1–3), 207–210.PubMedCrossRef
121.
go back to reference Frasor, J., Chang, E. C., Komm, B., Lin, C. Y., Vega, V. B., Liu, E. T., et al. (2006). Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Research, 66(14), 7334–7340.PubMedCrossRef Frasor, J., Chang, E. C., Komm, B., Lin, C. Y., Vega, V. B., Liu, E. T., et al. (2006). Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Research, 66(14), 7334–7340.PubMedCrossRef
122.
go back to reference Bergamaschi, A., & Katzenellenbogen, B. S. (2012). Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene, 31(1), 39–47.PubMedCrossRef Bergamaschi, A., & Katzenellenbogen, B. S. (2012). Tamoxifen downregulation of miR-451 increases 14-3-3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene, 31(1), 39–47.PubMedCrossRef
123.
go back to reference Cooke, T., Reeves, J., Lanigan, A., & Stanton, P. (2001). HER2 as a prognostic and predictive marker for breast cancer. Annals of Oncology, 12(Suppl 1), S23-28.PubMedCrossRef Cooke, T., Reeves, J., Lanigan, A., & Stanton, P. (2001). HER2 as a prognostic and predictive marker for breast cancer. Annals of Oncology, 12(Suppl 1), S23-28.PubMedCrossRef
124.
go back to reference Pernas, S., & Tolaney, S. M. (2019). HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol, 11, 1758835919833519.PubMedPubMedCentralCrossRef Pernas, S., & Tolaney, S. M. (2019). HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol, 11, 1758835919833519.PubMedPubMedCentralCrossRef
125.
go back to reference Tan, S., Ding, K., Chong, Q. Y., Zhao, J., Liu, Y., Shao, Y., et al. (2017). Post-transcriptional regulation of ERBB2 by miR26a/b and HuR confers resistance to tamoxifen in estrogen receptor-positive breast cancer cells. Journal of Biological Chemistry, 292(33), 13551–13564.CrossRef Tan, S., Ding, K., Chong, Q. Y., Zhao, J., Liu, Y., Shao, Y., et al. (2017). Post-transcriptional regulation of ERBB2 by miR26a/b and HuR confers resistance to tamoxifen in estrogen receptor-positive breast cancer cells. Journal of Biological Chemistry, 292(33), 13551–13564.CrossRef
126.
go back to reference Fang, C., Zhao, Y., & Guo, B. (2013). MiR-199b-5p targets HER2 in breast cancer cells. Journal of Cellular Biochemistry, 114(7), 1457–1463.PubMedCrossRef Fang, C., Zhao, Y., & Guo, B. (2013). MiR-199b-5p targets HER2 in breast cancer cells. Journal of Cellular Biochemistry, 114(7), 1457–1463.PubMedCrossRef
127.
go back to reference Sajadimajd, S., Yazdanparast, R., & Akram, S. (2016). Involvement of Numb-mediated HIF-1alpha inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells. Tumour Biology, 37(4), 5413–5426.PubMedCrossRef Sajadimajd, S., Yazdanparast, R., & Akram, S. (2016). Involvement of Numb-mediated HIF-1alpha inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells. Tumour Biology, 37(4), 5413–5426.PubMedCrossRef
128.
go back to reference Bai, W. D., Ye, X. M., Zhang, M. Y., Zhu, H. Y., Xi, W. J., Huang, X., et al. (2014). MiR-200c suppresses TGF-beta signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. International Journal of Cancer, 135(6), 1356–1368.PubMedCrossRef Bai, W. D., Ye, X. M., Zhang, M. Y., Zhu, H. Y., Xi, W. J., Huang, X., et al. (2014). MiR-200c suppresses TGF-beta signaling and counteracts trastuzumab resistance and metastasis by targeting ZNF217 and ZEB1 in breast cancer. International Journal of Cancer, 135(6), 1356–1368.PubMedCrossRef
129.
go back to reference Mitra, D., Brumlik, M. J., Okamgba, S. U., Zhu, Y., Duplessis, T. T., Parvani, J. G., et al. (2009). An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Molecular Cancer Therapeutics, 8(8), 2152–2162.PubMedCrossRef Mitra, D., Brumlik, M. J., Okamgba, S. U., Zhu, Y., Duplessis, T. T., Parvani, J. G., et al. (2009). An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Molecular Cancer Therapeutics, 8(8), 2152–2162.PubMedCrossRef
130.
go back to reference Huynh FC, Jones FE. MicroRNA-7 inhibits multiple oncogenic pathways to suppress HER2Delta16 mediated breast tumorigenesis and reverse trastuzumab resistance. PLoS One 2014; 9(12):e114419. Huynh FC, Jones FE. MicroRNA-7 inhibits multiple oncogenic pathways to suppress HER2Delta16 mediated breast tumorigenesis and reverse trastuzumab resistance. PLoS One 2014; 9(12):e114419.
131.
go back to reference Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nature Reviews Cancer, 9(7), 463–475.PubMedCrossRef Baselga, J., & Swain, S. M. (2009). Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nature Reviews Cancer, 9(7), 463–475.PubMedCrossRef
132.
go back to reference Bieche, I., Onody, P., Tozlu, S., Driouch, K., Vidaud, M., & Lidereau, R. (2003). Prognostic value of ERBB family mRNA expression in breast carcinomas. International Journal of Cancer, 106(5), 758–765.PubMedCrossRef Bieche, I., Onody, P., Tozlu, S., Driouch, K., Vidaud, M., & Lidereau, R. (2003). Prognostic value of ERBB family mRNA expression in breast carcinomas. International Journal of Cancer, 106(5), 758–765.PubMedCrossRef
133.
go back to reference Wu, H., Zhu, S., & Mo, Y. Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Research, 19(4), 439–448.PubMedCrossRef Wu, H., Zhu, S., & Mo, Y. Y. (2009). Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Research, 19(4), 439–448.PubMedCrossRef
134.
go back to reference Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMedCrossRef Iorio, M. V., Casalini, P., Piovan, C., Di Leva, G., Merlo, A., Triulzi, T., et al. (2009). microRNA-205 regulates HER3 in human breast cancer. Cancer Research, 69(6), 2195–2200.PubMedCrossRef
135.
go back to reference Cataldo, A., Piovan, C., Plantamura, I., D’Ippolito, E., Camelliti, S., Casalini, P., et al. (2018). MiR-205 as predictive biomarker and adjuvant therapeutic tool in combination with trastuzumab. Oncotarget, 9(46), 27920–27928.PubMedPubMedCentralCrossRef Cataldo, A., Piovan, C., Plantamura, I., D’Ippolito, E., Camelliti, S., Casalini, P., et al. (2018). MiR-205 as predictive biomarker and adjuvant therapeutic tool in combination with trastuzumab. Oncotarget, 9(46), 27920–27928.PubMedPubMedCentralCrossRef
136.
go back to reference Cai, Y., Yan, X., Zhang, G., Zhao, W., & Jiao, S. (2016). MicroRNA-205 increases the sensitivity of docetaxel in breast cancer. Oncology Letters, 11(2), 1105–1109.PubMedCrossRef Cai, Y., Yan, X., Zhang, G., Zhao, W., & Jiao, S. (2016). MicroRNA-205 increases the sensitivity of docetaxel in breast cancer. Oncology Letters, 11(2), 1105–1109.PubMedCrossRef
137.
go back to reference Lyu, H., Huang, J., He, Z., & Liu, B. (2018). Targeting of HER3 with functional cooperative miRNAs enhances therapeutic activity in HER2-overexpressing breast cancer cells. Biol Proced Online, 20, 16.PubMedPubMedCentralCrossRef Lyu, H., Huang, J., He, Z., & Liu, B. (2018). Targeting of HER3 with functional cooperative miRNAs enhances therapeutic activity in HER2-overexpressing breast cancer cells. Biol Proced Online, 20, 16.PubMedPubMedCentralCrossRef
138.
go back to reference De Cola A, Volpe S, Budani MC, Ferracin M, Lattanzio R, Turdo A, et al. miR-205–5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death Dis 2015; 6:e1823. De Cola A, Volpe S, Budani MC, Ferracin M, Lattanzio R, Turdo A, et al. miR-205–5p-mediated downregulation of ErbB/HER receptors in breast cancer stem cells results in targeted therapy resistance. Cell Death Dis 2015; 6:e1823.
139.
go back to reference De Cola, A., Lamolinara, A., Lanuti, P., Rossi, C., Iezzi, M., Marchisio, M., et al. (2018). MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells. Cell Death & Disease, 9(8), 821.CrossRef De Cola, A., Lamolinara, A., Lanuti, P., Rossi, C., Iezzi, M., Marchisio, M., et al. (2018). MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells. Cell Death & Disease, 9(8), 821.CrossRef
140.
go back to reference Zhao, Z., Li, R., Sha, S., Wang, Q., Mao, W., & Liu, T. (2014). Targeting HER3 with miR-450b-3p suppresses breast cancer cells proliferation. Cancer Biology & Therapy, 15(10), 1404–1412.CrossRef Zhao, Z., Li, R., Sha, S., Wang, Q., Mao, W., & Liu, T. (2014). Targeting HER3 with miR-450b-3p suppresses breast cancer cells proliferation. Cancer Biology & Therapy, 15(10), 1404–1412.CrossRef
141.
go back to reference Han G, Qiu N, Luo K, Liang H, Li H. Downregulation of miroRNA-141 mediates acquired resistance to trastuzumab and is associated with poor outcome in breast cancer by upregulating the expression of ERBB4. J Cell Biochem 2019. Han G, Qiu N, Luo K, Liang H, Li H. Downregulation of miroRNA-141 mediates acquired resistance to trastuzumab and is associated with poor outcome in breast cancer by upregulating the expression of ERBB4. J Cell Biochem 2019.
143.
go back to reference Musgrove, E. A., & Sutherland, R. L. (2009). Biological determinants of endocrine resistance in breast cancer. Nature Reviews Cancer, 9(9), 631–643.PubMedCrossRef Musgrove, E. A., & Sutherland, R. L. (2009). Biological determinants of endocrine resistance in breast cancer. Nature Reviews Cancer, 9(9), 631–643.PubMedCrossRef
144.
go back to reference Miller TW. Endocrine resistance: What do we know? Am Soc Clin Oncol Educ Book 2013. Miller TW. Endocrine resistance: What do we know? Am Soc Clin Oncol Educ Book 2013.
145.
go back to reference Yamashita, H., Yando, Y., Nishio, M., Zhang, Z., Hamaguchi, M., Mita, K., et al. (2006). Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer, 13(1), 74–83.PubMedCrossRef Yamashita, H., Yando, Y., Nishio, M., Zhang, Z., Hamaguchi, M., Mita, K., et al. (2006). Immunohistochemical evaluation of hormone receptor status for predicting response to endocrine therapy in metastatic breast cancer. Breast Cancer, 13(1), 74–83.PubMedCrossRef
146.
go back to reference Egeland, N. G., Lunde, S., Jonsdottir, K., Lende, T. H., Cronin-Fenton, D., Gilje, B., et al. (2015). The role of microRNAs as predictors of response to tamoxifen treatment in breast cancer patients. International Journal of Molecular Sciences, 16(10), 24243–24275.PubMedPubMedCentralCrossRef Egeland, N. G., Lunde, S., Jonsdottir, K., Lende, T. H., Cronin-Fenton, D., Gilje, B., et al. (2015). The role of microRNAs as predictors of response to tamoxifen treatment in breast cancer patients. International Journal of Molecular Sciences, 16(10), 24243–24275.PubMedPubMedCentralCrossRef
147.
go back to reference Ahmad, A., Ginnebaugh, K. R., Yin, S., Bollig-Fischer, A., Reddy, K. B., & Sarkar, F. H. (2015). Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer, 15, 540.PubMedPubMedCentralCrossRef Ahmad, A., Ginnebaugh, K. R., Yin, S., Bollig-Fischer, A., Reddy, K. B., & Sarkar, F. H. (2015). Functional role of miR-10b in tamoxifen resistance of ER-positive breast cancer cells through down-regulation of HDAC4. BMC Cancer, 15, 540.PubMedPubMedCentralCrossRef
148.
go back to reference Leong, H., Sloan, J. R., Nash, P. D., & Greene, G. L. (2005). Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha. Molecular Endocrinology, 19(12), 2930–2942.PubMedCrossRef Leong, H., Sloan, J. R., Nash, P. D., & Greene, G. L. (2005). Recruitment of histone deacetylase 4 to the N-terminal region of estrogen receptor alpha. Molecular Endocrinology, 19(12), 2930–2942.PubMedCrossRef
149.
go back to reference Liu, S. S., Li, Y., Zhang, H., Zhang, D., Zhang, X. B., Wang, X., et al. (2020). The ERalpha-miR-575-p27 feedback loop regulates tamoxifen sensitivity in ER-positive Breast Cancer. Theranostics, 10(23), 10729–10742.PubMedPubMedCentralCrossRef Liu, S. S., Li, Y., Zhang, H., Zhang, D., Zhang, X. B., Wang, X., et al. (2020). The ERalpha-miR-575-p27 feedback loop regulates tamoxifen sensitivity in ER-positive Breast Cancer. Theranostics, 10(23), 10729–10742.PubMedPubMedCentralCrossRef
150.
go back to reference Manavalan, T. T., Teng, Y., Appana, S. N., Datta, S., Kalbfleisch, T. S., Li, Y., et al. (2011). Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Letters, 313(1), 26–43.PubMedPubMedCentralCrossRef Manavalan, T. T., Teng, Y., Appana, S. N., Datta, S., Kalbfleisch, T. S., Li, Y., et al. (2011). Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Letters, 313(1), 26–43.PubMedPubMedCentralCrossRef
151.
go back to reference Wei, Y., Lai, X., Yu, S., Chen, S., Ma, Y., Zhang, Y., et al. (2014). Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Research and Treatment, 147(2), 423–431.PubMedCrossRef Wei, Y., Lai, X., Yu, S., Chen, S., Ma, Y., Zhang, Y., et al. (2014). Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Research and Treatment, 147(2), 423–431.PubMedCrossRef
152.
go back to reference Martin, E. C., Conger, A. K., Yan, T. J., Hoang, V. T., Miller, D. F., Buechlein, A., et al. (2017). MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Letters, 591(2), 382–392.PubMedPubMedCentralCrossRef Martin, E. C., Conger, A. K., Yan, T. J., Hoang, V. T., Miller, D. F., Buechlein, A., et al. (2017). MicroRNA-335-5p and -3p synergize to inhibit estrogen receptor alpha expression and promote tamoxifen resistance. FEBS Letters, 591(2), 382–392.PubMedPubMedCentralCrossRef
153.
go back to reference He, Y. J., Wu, J. Z., Ji, M. H., Ma, T., Qiao, E. Q., Ma, R., et al. (2013). miR-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer. Experimental and Therapeutic Medicine, 5(3), 813–818.PubMedPubMedCentralCrossRef He, Y. J., Wu, J. Z., Ji, M. H., Ma, T., Qiao, E. Q., Ma, R., et al. (2013). miR-342 is associated with estrogen receptor-alpha expression and response to tamoxifen in breast cancer. Experimental and Therapeutic Medicine, 5(3), 813–818.PubMedPubMedCentralCrossRef
154.
go back to reference Ljepoja, B., Garcia-Roman, J., Sommer, A. K., Wagner, E., & Roidl, A. (2019). MiRNA-27a sensitizes breast cancer cells to treatment with selective estrogen receptor modulators. Breast, 43, 31–38.PubMedCrossRef Ljepoja, B., Garcia-Roman, J., Sommer, A. K., Wagner, E., & Roidl, A. (2019). MiRNA-27a sensitizes breast cancer cells to treatment with selective estrogen receptor modulators. Breast, 43, 31–38.PubMedCrossRef
155.
go back to reference Li, X., Mertens-Talcott, S. U., Zhang, S., Kim, K., Ball, J., & Safe, S. (2010). MicroRNA-27a indirectly regulates estrogen receptor alpha expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology, 151(6), 2462–2473.PubMedPubMedCentralCrossRef Li, X., Mertens-Talcott, S. U., Zhang, S., Kim, K., Ball, J., & Safe, S. (2010). MicroRNA-27a indirectly regulates estrogen receptor alpha expression and hormone responsiveness in MCF-7 breast cancer cells. Endocrinology, 151(6), 2462–2473.PubMedPubMedCentralCrossRef
156.
go back to reference Li, Y., Zhou, Y., Mao, F., Shen, S., Zhao, B., Xu, Y., et al. (2020). miR-452 reverses abnormal glycosylation modification of ERalpha and estrogen resistance in TNBC (triple-negative breast cancer) through targeting UGT1A1. Frontiers in Oncology, 10, 1509.PubMedPubMedCentralCrossRef Li, Y., Zhou, Y., Mao, F., Shen, S., Zhao, B., Xu, Y., et al. (2020). miR-452 reverses abnormal glycosylation modification of ERalpha and estrogen resistance in TNBC (triple-negative breast cancer) through targeting UGT1A1. Frontiers in Oncology, 10, 1509.PubMedPubMedCentralCrossRef
157.
go back to reference Sarkar S, Ghosh A, Banerjee S, Maity G, Das A, Larson MA, et al. CCN5/WISP-2 restores ER- proportional, variant in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen. Oncogenesis 2017; 6(5):e340. Sarkar S, Ghosh A, Banerjee S, Maity G, Das A, Larson MA, et al. CCN5/WISP-2 restores ER- proportional, variant in normal and neoplastic breast cells and sensitizes triple negative breast cancer cells to tamoxifen. Oncogenesis 2017; 6(5):e340.
158.
go back to reference Zhang W, Wu M, Chong QY, Zhang M, Zhang X, Hu L, et al. Loss of estrogen-regulated MIR135A1 at 3p21.1 promotes tamoxifen resistance in breast cancer. Cancer Res 2018; 78(17):4915–4928. Zhang W, Wu M, Chong QY, Zhang M, Zhang X, Hu L, et al. Loss of estrogen-regulated MIR135A1 at 3p21.1 promotes tamoxifen resistance in breast cancer. Cancer Res 2018; 78(17):4915–4928.
159.
go back to reference Osborne, C. K., Bardou, V., Hopp, T. A., Chamness, G. C., Hilsenbeck, S. G., Fuqua, S. A., et al. (2003). Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. Journal of the National Cancer Institute, 95(5), 353–361.PubMedCrossRef Osborne, C. K., Bardou, V., Hopp, T. A., Chamness, G. C., Hilsenbeck, S. G., Fuqua, S. A., et al. (2003). Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. Journal of the National Cancer Institute, 95(5), 353–361.PubMedCrossRef
160.
go back to reference Eedunuri, V. K., Rajapakshe, K., Fiskus, W., Geng, C., Chew, S. A., Foley, C., et al. (2015). miR-137 targets p160 steroid receptor coactivators SRC1, SRC2, and SRC3 and inhibits cell proliferation. Molecular Endocrinology, 29(8), 1170–1183.PubMedPubMedCentralCrossRef Eedunuri, V. K., Rajapakshe, K., Fiskus, W., Geng, C., Chew, S. A., Foley, C., et al. (2015). miR-137 targets p160 steroid receptor coactivators SRC1, SRC2, and SRC3 and inhibits cell proliferation. Molecular Endocrinology, 29(8), 1170–1183.PubMedPubMedCentralCrossRef
161.
go back to reference Cui, J., Yang, Y., Li, H., Leng, Y., Qian, K., Huang, Q., et al. (2015). MiR-873 regulates ERalpha transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene, 34(30), 3895–3907.PubMedCrossRef Cui, J., Yang, Y., Li, H., Leng, Y., Qian, K., Huang, Q., et al. (2015). MiR-873 regulates ERalpha transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene, 34(30), 3895–3907.PubMedCrossRef
162.
go back to reference Zhang X, Zhang B, Zhang P, Lian L, Li L, Qiu Z, et al. Norcantharidin regulates ERalpha signaling and tamoxifen resistance via targeting miR-873/CDK3 in breast cancer cells. PLoS One 2019; 14(5):e0217181. Zhang X, Zhang B, Zhang P, Lian L, Li L, Qiu Z, et al. Norcantharidin regulates ERalpha signaling and tamoxifen resistance via targeting miR-873/CDK3 in breast cancer cells. PLoS One 2019; 14(5):e0217181.
163.
go back to reference Miricescu D, Totan A, Stanescu S, II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci 2020; 22(1). Miricescu D, Totan A, Stanescu S, II, Badoiu SC, Stefani C, Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int J Mol Sci 2020; 22(1).
164.
go back to reference Alvarez-Garcia, V., Tawil, Y., Wise, H. M., & Leslie, N. R. (2019). Mechanisms of PTEN loss in cancer: It’s all about diversity. Seminars in Cancer Biology, 59, 66–79.PubMedCrossRef Alvarez-Garcia, V., Tawil, Y., Wise, H. M., & Leslie, N. R. (2019). Mechanisms of PTEN loss in cancer: It’s all about diversity. Seminars in Cancer Biology, 59, 66–79.PubMedCrossRef
165.
go back to reference Liang, Z., Li, Y., Huang, K., Wagar, N., & Shim, H. (2011). Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharmaceutical Research, 28(12), 3091–3100.PubMedPubMedCentralCrossRef Liang, Z., Li, Y., Huang, K., Wagar, N., & Shim, H. (2011). Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharmaceutical Research, 28(12), 3091–3100.PubMedPubMedCentralCrossRef
166.
go back to reference Wang, Z. X., Lu, B. B., Wang, H., Cheng, Z. X., & Yin, Y. M. (2011). MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Archives of Medical Research, 42(4), 281–290.PubMedCrossRef Wang, Z. X., Lu, B. B., Wang, H., Cheng, Z. X., & Yin, Y. M. (2011). MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Archives of Medical Research, 42(4), 281–290.PubMedCrossRef
167.
go back to reference Gong, C., Yao, Y., Wang, Y., Liu, B., Wu, W., Chen, J., et al. (2011). Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. Journal of Biological Chemistry, 286(21), 19127–19137.CrossRef Gong, C., Yao, Y., Wang, Y., Liu, B., Wu, W., Chen, J., et al. (2011). Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. Journal of Biological Chemistry, 286(21), 19127–19137.CrossRef
168.
go back to reference Yu, X., Li, R., Shi, W., Jiang, T., Wang, Y., Li, C., et al. (2016). Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomedicine & Pharmacotherapy, 77, 37–44.CrossRef Yu, X., Li, R., Shi, W., Jiang, T., Wang, Y., Li, C., et al. (2016). Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomedicine & Pharmacotherapy, 77, 37–44.CrossRef
169.
go back to reference Wu, Z. H., Tao, Z. H., Zhang, J., Li, T., Ni, C., Xie, J., et al. (2016). MiRNA-21 induces epithelial to mesenchymal transition and gemcitabine resistance via the PTEN/AKT pathway in breast cancer. Tumour Biology, 37(6), 7245–7254.PubMedCrossRef Wu, Z. H., Tao, Z. H., Zhang, J., Li, T., Ni, C., Xie, J., et al. (2016). MiRNA-21 induces epithelial to mesenchymal transition and gemcitabine resistance via the PTEN/AKT pathway in breast cancer. Tumour Biology, 37(6), 7245–7254.PubMedCrossRef
170.
go back to reference Yu, L., Yang, Y., Hou, J., Zhai, C., Song, Y., Zhang, Z., et al. (2015). MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncology Reports, 34(4), 1845–1852.PubMedCrossRef Yu, L., Yang, Y., Hou, J., Zhai, C., Song, Y., Zhang, Z., et al. (2015). MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncology Reports, 34(4), 1845–1852.PubMedCrossRef
171.
go back to reference Liu, T., Guo, J., & Zhang, X. (2019). MiR-202-5p/PTEN mediates doxorubicin-resistance of breast cancer cells via PI3K/Akt signaling pathway. Cancer Biology & Therapy, 20(7), 989–998.CrossRef Liu, T., Guo, J., & Zhang, X. (2019). MiR-202-5p/PTEN mediates doxorubicin-resistance of breast cancer cells via PI3K/Akt signaling pathway. Cancer Biology & Therapy, 20(7), 989–998.CrossRef
172.
go back to reference Gao, X., Qin, T., Mao, J., Zhang, J., Fan, S., Lu, Y., et al. (2019). PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. Journal of Experimental & Clinical Cancer Research, 38(1), 256.CrossRef Gao, X., Qin, T., Mao, J., Zhang, J., Fan, S., Lu, Y., et al. (2019). PTENP1/miR-20a/PTEN axis contributes to breast cancer progression by regulating PTEN via PI3K/AKT pathway. Journal of Experimental & Clinical Cancer Research, 38(1), 256.CrossRef
173.
go back to reference Zhong, S., Li, W., Chen, Z., Xu, J., & Zhao, J. (2013). MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene, 531(1), 8–14.PubMedCrossRef Zhong, S., Li, W., Chen, Z., Xu, J., & Zhao, J. (2013). MiR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene, 531(1), 8–14.PubMedCrossRef
174.
go back to reference Chen, Y., Sun, Y., Chen, L., Xu, X., Zhang, X., Wang, B., et al. (2013). miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Molecular Medicine Reports, 7(5), 1579–1584.PubMedCrossRef Chen, Y., Sun, Y., Chen, L., Xu, X., Zhang, X., Wang, B., et al. (2013). miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Molecular Medicine Reports, 7(5), 1579–1584.PubMedCrossRef
175.
go back to reference Shen, H., Wang, D., Li, L., Yang, S., Chen, X., Zhou, S., et al. (2017). MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene, 596, 110–118.PubMedCrossRef Shen, H., Wang, D., Li, L., Yang, S., Chen, X., Zhou, S., et al. (2017). MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene, 596, 110–118.PubMedCrossRef
176.
go back to reference Gu, J., Wang, Y., Wang, X., Zhou, D., Shao, C., Zhou, M., et al. (2018). Downregulation of lncRNA GAS5 confers tamoxifen resistance by activating miR-222 in breast cancer. Cancer Letters, 434, 1–10.PubMedCrossRef Gu, J., Wang, Y., Wang, X., Zhou, D., Shao, C., Zhou, M., et al. (2018). Downregulation of lncRNA GAS5 confers tamoxifen resistance by activating miR-222 in breast cancer. Cancer Letters, 434, 1–10.PubMedCrossRef
177.
go back to reference Geng, W., Song, H., Zhao, Q., Dong, K., Pu, Q., Gao, H., et al. (2020). miR-520h stimulates drug resistance to paclitaxel by targeting the OTUD3-PTEN axis in breast cancer. BioMed Research International, 2020, 9512793.PubMedPubMedCentralCrossRef Geng, W., Song, H., Zhao, Q., Dong, K., Pu, Q., Gao, H., et al. (2020). miR-520h stimulates drug resistance to paclitaxel by targeting the OTUD3-PTEN axis in breast cancer. BioMed Research International, 2020, 9512793.PubMedPubMedCentralCrossRef
178.
go back to reference Sachdeva, M., Wu, H., Ru, P., Hwang, L., Trieu, V., & Mo, Y. Y. (2011). MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene, 30(7), 822–831.PubMedCrossRef Sachdeva, M., Wu, H., Ru, P., Hwang, L., Trieu, V., & Mo, Y. Y. (2011). MicroRNA-101-mediated Akt activation and estrogen-independent growth. Oncogene, 30(7), 822–831.PubMedCrossRef
179.
go back to reference Haga, C. L., Velagapudi, S. P., Strivelli, J. R., Yang, W. Y., Disney, M. D., & Phinney, D. G. (2015). Small molecule inhibition of miR-544 biogenesis disrupts adaptive responses to hypoxia by modulating ATM-mTOR signaling. ACS Chemical Biology, 10(10), 2267–2276.PubMedPubMedCentralCrossRef Haga, C. L., Velagapudi, S. P., Strivelli, J. R., Yang, W. Y., Disney, M. D., & Phinney, D. G. (2015). Small molecule inhibition of miR-544 biogenesis disrupts adaptive responses to hypoxia by modulating ATM-mTOR signaling. ACS Chemical Biology, 10(10), 2267–2276.PubMedPubMedCentralCrossRef
180.
go back to reference Zhang, B., Zhao, R., He, Y., Fu, X., Fu, L., Zhu, Z., et al. (2016). MicroRNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget, 7(5), 5702–5714.PubMedCrossRef Zhang, B., Zhao, R., He, Y., Fu, X., Fu, L., Zhu, Z., et al. (2016). MicroRNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget, 7(5), 5702–5714.PubMedCrossRef
181.
go back to reference Ma, T., Yang, L., & Zhang, J. (2015). MiRNA5423p downregulation promotes trastuzumab resistance in breast cancer cells via AKT activation. Oncology Reports, 33(3), 1215–1220.PubMedCrossRef Ma, T., Yang, L., & Zhang, J. (2015). MiRNA5423p downregulation promotes trastuzumab resistance in breast cancer cells via AKT activation. Oncology Reports, 33(3), 1215–1220.PubMedCrossRef
182.
go back to reference Fu, R., & Tong, J. S. (2020). miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. Journal of Cellular and Molecular Medicine, 24(13), 7600–7608.PubMedPubMedCentralCrossRef Fu, R., & Tong, J. S. (2020). miR-126 reduces trastuzumab resistance by targeting PIK3R2 and regulating AKT/mTOR pathway in breast cancer cells. Journal of Cellular and Molecular Medicine, 24(13), 7600–7608.PubMedPubMedCentralCrossRef
183.
go back to reference Pan, X., Hong, X., Lai, J., Cheng, L., Cheng, Y., Yao, M., et al. (2020). Exosomal microRNA-221-3p confers adriamycin resistance in breast cancer cells by targeting PIK3R1. Frontiers in Oncology, 10, 441.PubMedPubMedCentralCrossRef Pan, X., Hong, X., Lai, J., Cheng, L., Cheng, Y., Yao, M., et al. (2020). Exosomal microRNA-221-3p confers adriamycin resistance in breast cancer cells by targeting PIK3R1. Frontiers in Oncology, 10, 441.PubMedPubMedCentralCrossRef
184.
go back to reference Vilquin, P., Donini, C. F., Villedieu, M., Grisard, E., Corbo, L., Bachelot, T., et al. (2015). MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Research, 17, 13.PubMedPubMedCentralCrossRef Vilquin, P., Donini, C. F., Villedieu, M., Grisard, E., Corbo, L., Bachelot, T., et al. (2015). MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Research, 17, 13.PubMedPubMedCentralCrossRef
185.
go back to reference Dave, B., Mittal, V., Tan, N. M., & Chang, J. C. (2012). Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Research, 14(1), 202.PubMedPubMedCentralCrossRef Dave, B., Mittal, V., Tan, N. M., & Chang, J. C. (2012). Epithelial-mesenchymal transition, cancer stem cells and treatment resistance. Breast Cancer Research, 14(1), 202.PubMedPubMedCentralCrossRef
186.
go back to reference Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews. Clinical Oncology, 14(10), 611–629.PubMedPubMedCentralCrossRef Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews. Clinical Oncology, 14(10), 611–629.PubMedPubMedCentralCrossRef
187.
go back to reference Smalley, M., Piggott, L., & Clarkson, R. (2013). Breast cancer stem cells: Obstacles to therapy. Cancer Letters, 338(1), 57–62.PubMedCrossRef Smalley, M., Piggott, L., & Clarkson, R. (2013). Breast cancer stem cells: Obstacles to therapy. Cancer Letters, 338(1), 57–62.PubMedCrossRef
188.
go back to reference Mallini, P., Lennard, T., Kirby, J., & Meeson, A. (2014). Epithelial-to-mesenchymal transition: What is the impact on breast cancer stem cells and drug resistance. Cancer Treatment Reviews, 40(3), 341–348.PubMedCrossRef Mallini, P., Lennard, T., Kirby, J., & Meeson, A. (2014). Epithelial-to-mesenchymal transition: What is the impact on breast cancer stem cells and drug resistance. Cancer Treatment Reviews, 40(3), 341–348.PubMedCrossRef
189.
go back to reference Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMedCrossRef Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., et al. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine, 7(9), 1028–1034.PubMedCrossRef
190.
go back to reference Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.PubMedCrossRef Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nature Reviews Cancer, 5(4), 275–284.PubMedCrossRef
191.
go back to reference Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100(9), 672–679.PubMedCrossRef Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100(9), 672–679.PubMedCrossRef
192.
go back to reference Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedPubMedCentralCrossRef Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.PubMedPubMedCentralCrossRef
193.
go back to reference Pinto, C. A., Widodo, E., Waltham, M., & Thompson, E. W. (2013). Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance. Cancer Letters, 341(1), 56–62.PubMedCrossRef Pinto, C. A., Widodo, E., Waltham, M., & Thompson, E. W. (2013). Breast cancer stem cells and epithelial mesenchymal plasticity - Implications for chemoresistance. Cancer Letters, 341(1), 56–62.PubMedCrossRef
194.
195.
go back to reference De Craene, B., & Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer, 13(2), 97–110.PubMedCrossRef De Craene, B., & Berx, G. (2013). Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer, 13(2), 97–110.PubMedCrossRef
196.
go back to reference Brabletz, S., Bajdak, K., Meidhof, S., Burk, U., Niedermann, G., Firat, E., et al. (2011). The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO Journal, 30(4), 770–782.CrossRef Brabletz, S., Bajdak, K., Meidhof, S., Burk, U., Niedermann, G., Firat, E., et al. (2011). The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. EMBO Journal, 30(4), 770–782.CrossRef
197.
go back to reference Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMedPubMedCentralCrossRef Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.PubMedPubMedCentralCrossRef
198.
go back to reference Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRef Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.PubMedCrossRef
199.
go back to reference Hurteau, G. J., Carlson, J. A., Roos, E., & Brock, G. J. (2009). Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression. Cell Cycle, 8(13), 2064–2069.PubMedCrossRef Hurteau, G. J., Carlson, J. A., Roos, E., & Brock, G. J. (2009). Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression. Cell Cycle, 8(13), 2064–2069.PubMedCrossRef
200.
go back to reference Cochrane, D. R., Spoelstra, N. S., Howe, E. N., Nordeen, S. K., & Richer, J. K. (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Molecular Cancer Therapeutics, 8(5), 1055–1066.PubMedPubMedCentralCrossRef Cochrane, D. R., Spoelstra, N. S., Howe, E. N., Nordeen, S. K., & Richer, J. K. (2009). MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Molecular Cancer Therapeutics, 8(5), 1055–1066.PubMedPubMedCentralCrossRef
201.
go back to reference Yang, X., Hu, Q., Hu, L. X., Lin, X. R., Liu, J. Q., Lin, X., et al. (2017). miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Discovery Medicine, 24(131), 75–85.PubMed Yang, X., Hu, Q., Hu, L. X., Lin, X. R., Liu, J. Q., Lin, X., et al. (2017). miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1. Discovery Medicine, 24(131), 75–85.PubMed
202.
go back to reference Knezevic, J., Pfefferle, A. D., Petrovic, I., Greene, S. B., Perou, C. M., & Rosen, J. M. (2015). Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene, 34(49), 5997–6006.PubMedPubMedCentralCrossRef Knezevic, J., Pfefferle, A. D., Petrovic, I., Greene, S. B., Perou, C. M., & Rosen, J. M. (2015). Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene, 34(49), 5997–6006.PubMedPubMedCentralCrossRef
203.
go back to reference Li, C. Y., Miao, K. L., Chen, Y., Liu, L. Y., Zhao, G. B., Lin, M. H., et al. (2018). Jagged2 promotes cancer stem cell properties of triple negative breast cancer cells and paclitaxel resistance via regulating microRNA-200. European Review for Medical and Pharmacological Sciences, 22(18), 6008–6014.PubMed Li, C. Y., Miao, K. L., Chen, Y., Liu, L. Y., Zhao, G. B., Lin, M. H., et al. (2018). Jagged2 promotes cancer stem cell properties of triple negative breast cancer cells and paclitaxel resistance via regulating microRNA-200. European Review for Medical and Pharmacological Sciences, 22(18), 6008–6014.PubMed
204.
go back to reference Chen, J., Tian, W., He, H., Chen, F., Huang, J., Wang, X., et al. (2018). Downregulation of miR200c3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2. Oncology Reports, 40(6), 3821–3829.PubMed Chen, J., Tian, W., He, H., Chen, F., Huang, J., Wang, X., et al. (2018). Downregulation of miR200c3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2. Oncology Reports, 40(6), 3821–3829.PubMed
205.
go back to reference Soung YH, Chung H, Yan C, Ju J, Chung J. Arrestin domain containing 3 reverses epithelial to mesenchymal transition and chemo-resistance of TNBC cells by up-regulating expression of miR-200b. Cells 2019; 8(7). Soung YH, Chung H, Yan C, Ju J, Chung J. Arrestin domain containing 3 reverses epithelial to mesenchymal transition and chemo-resistance of TNBC cells by up-regulating expression of miR-200b. Cells 2019; 8(7).
206.
go back to reference Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM. Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 2013; 8(4):e62334. Manavalan TT, Teng Y, Litchfield LM, Muluhngwi P, Al-Rayyan N, Klinge CM. Reduced expression of miR-200 family members contributes to antiestrogen resistance in LY2 human breast cancer cells. PLoS One 2013; 8(4):e62334.
207.
go back to reference Gao, Y., Zhang, W., Liu, C., & Li, G. (2019). miR-200 affects tamoxifen resistance in breast cancer cells through regulation of MYB. Science and Reports, 9(1), 18844.CrossRef Gao, Y., Zhang, W., Liu, C., & Li, G. (2019). miR-200 affects tamoxifen resistance in breast cancer cells through regulation of MYB. Science and Reports, 9(1), 18844.CrossRef
208.
go back to reference Tang, H., Song, C., Ye, F., Gao, G., Ou, X., Zhang, L., et al. (2019). miR-200c suppresses stemness and increases cellular sensitivity to trastuzumab in HER2+ breast cancer. Journal of Cellular and Molecular Medicine, 23(12), 8114–8127.PubMedPubMedCentralCrossRef Tang, H., Song, C., Ye, F., Gao, G., Ou, X., Zhang, L., et al. (2019). miR-200c suppresses stemness and increases cellular sensitivity to trastuzumab in HER2+ breast cancer. Journal of Cellular and Molecular Medicine, 23(12), 8114–8127.PubMedPubMedCentralCrossRef
209.
go back to reference Song, W., Wu, S., Wu, Q., Zhou, L., Yu, L., Zhu, B., et al. (2019). The microRNA-141-3p/ CDK8 pathway regulates the chemosensitivity of breast cancer cells to trastuzumab. Journal of Cellular Biochemistry, 120(8), 14095–14106.PubMedCrossRef Song, W., Wu, S., Wu, Q., Zhou, L., Yu, L., Zhu, B., et al. (2019). The microRNA-141-3p/ CDK8 pathway regulates the chemosensitivity of breast cancer cells to trastuzumab. Journal of Cellular Biochemistry, 120(8), 14095–14106.PubMedCrossRef
210.
go back to reference Chen, J., Tian, W., Cai, H., He, H., & Deng, Y. (2012). Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Medical Oncology, 29(4), 2527–2534.PubMedCrossRef Chen, J., Tian, W., Cai, H., He, H., & Deng, Y. (2012). Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Medical Oncology, 29(4), 2527–2534.PubMedCrossRef
211.
go back to reference Lee, J. W., Guan, W., Han, S., Hong, D. K., Kim, L. S., & Kim, H. (2018). MicroRNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Science, 109(5), 1404–1413.PubMedPubMedCentralCrossRef Lee, J. W., Guan, W., Han, S., Hong, D. K., Kim, L. S., & Kim, H. (2018). MicroRNA-708-3p mediates metastasis and chemoresistance through inhibition of epithelial-to-mesenchymal transition in breast cancer. Cancer Science, 109(5), 1404–1413.PubMedPubMedCentralCrossRef
212.
go back to reference Wang, G., Dong, Y., Liu, H., Ji, N., Cao, J., Liu, A., et al. (2019). Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1. Oncology Letters, 18(4), 3837–3844.PubMedPubMedCentral Wang, G., Dong, Y., Liu, H., Ji, N., Cao, J., Liu, A., et al. (2019). Loss of miR-873 contributes to gemcitabine resistance in triple-negative breast cancer via targeting ZEB1. Oncology Letters, 18(4), 3837–3844.PubMedPubMedCentral
213.
go back to reference Gao, L., Guo, Q., Li, X., Yang, X., Ni, H., Wang, T., et al. (2019). MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. eBioMedicine, 41, 395–407.PubMedPubMedCentralCrossRef Gao, L., Guo, Q., Li, X., Yang, X., Ni, H., Wang, T., et al. (2019). MiR-873/PD-L1 axis regulates the stemness of breast cancer cells. eBioMedicine, 41, 395–407.PubMedPubMedCentralCrossRef
214.
go back to reference Bockhorn, J., Dalton, R., Nwachukwu, C., Huang, S., Prat, A., Yee, K., et al. (2013). MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nature Communications, 4, 1393.PubMedCrossRef Bockhorn, J., Dalton, R., Nwachukwu, C., Huang, S., Prat, A., Yee, K., et al. (2013). MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nature Communications, 4, 1393.PubMedCrossRef
215.
go back to reference Guan, X., Gu, S., Yuan, M., Zheng, X., & Wu, J. (2019). MicroRNA-33a-5p overexpression sensitizes triple-negative breast cancer to doxorubicin by inhibiting eIF5A2 and epithelial-mesenchymal transition. Oncology Letters, 18(6), 5986–5994.PubMedPubMedCentral Guan, X., Gu, S., Yuan, M., Zheng, X., & Wu, J. (2019). MicroRNA-33a-5p overexpression sensitizes triple-negative breast cancer to doxorubicin by inhibiting eIF5A2 and epithelial-mesenchymal transition. Oncology Letters, 18(6), 5986–5994.PubMedPubMedCentral
216.
go back to reference Luan, Q. X., Zhang, B. G., Li, X. J., & Guo, M. Y. (2016). MiR-129-5p is downregulated in breast cancer cells partly due to promoter H3K27m3 modification and regulates epithelial-mesenchymal transition and multi-drug resistance. European Review for Medical and Pharmacological Sciences, 20(20), 4257–4265.PubMed Luan, Q. X., Zhang, B. G., Li, X. J., & Guo, M. Y. (2016). MiR-129-5p is downregulated in breast cancer cells partly due to promoter H3K27m3 modification and regulates epithelial-mesenchymal transition and multi-drug resistance. European Review for Medical and Pharmacological Sciences, 20(20), 4257–4265.PubMed
217.
go back to reference Yao, N., Fu, Y., Chen, L., Liu, Z., He, J., Zhu, Y., et al. (2019). Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene, 38(47), 7216–7233.PubMedCrossRef Yao, N., Fu, Y., Chen, L., Liu, Z., He, J., Zhu, Y., et al. (2019). Long non-coding RNA NONHSAT101069 promotes epirubicin resistance, migration, and invasion of breast cancer cells through NONHSAT101069/miR-129-5p/Twist1 axis. Oncogene, 38(47), 7216–7233.PubMedCrossRef
218.
go back to reference Du, F., Yu, L., Wu, Y., Wang, S., Yao, J., Zheng, X., et al. (2019). miR-137 alleviates doxorubicin resistance in breast cancer through inhibition of epithelial-mesenchymal transition by targeting DUSP4. Cell Death & Disease, 10(12), 922.CrossRef Du, F., Yu, L., Wu, Y., Wang, S., Yao, J., Zheng, X., et al. (2019). miR-137 alleviates doxorubicin resistance in breast cancer through inhibition of epithelial-mesenchymal transition by targeting DUSP4. Cell Death & Disease, 10(12), 922.CrossRef
219.
go back to reference Yan, L., Yang, S., Yue, C. X., Wei, X. Y., Peng, W., Dong, Z. Y., et al. (2020). Long noncoding RNA H19 acts as a miR-340-3p sponge to promote epithelial-mesenchymal transition by regulating YWHAZ expression in paclitaxel-resistant breast cancer cells. Environmental Toxicology, 35(9), 1015–1028.PubMedCrossRef Yan, L., Yang, S., Yue, C. X., Wei, X. Y., Peng, W., Dong, Z. Y., et al. (2020). Long noncoding RNA H19 acts as a miR-340-3p sponge to promote epithelial-mesenchymal transition by regulating YWHAZ expression in paclitaxel-resistant breast cancer cells. Environmental Toxicology, 35(9), 1015–1028.PubMedCrossRef
220.
go back to reference Shi, S., Chen, X., Liu, H., Yu, K., Bao, Y., Chai, J., et al. (2019). LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/beta-catenin pathway. Gene, 683, 47–53.PubMedCrossRef Shi, S., Chen, X., Liu, H., Yu, K., Bao, Y., Chai, J., et al. (2019). LGR5 acts as a target of miR-340-5p in the suppression of cell progression and drug resistance in breast cancer via Wnt/beta-catenin pathway. Gene, 683, 47–53.PubMedCrossRef
221.
go back to reference Jiang, L., He, D., Yang, D., Chen, Z., Pan, Q., Mao, A., et al. (2014). MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Letters, 588(11), 2009–2015.PubMedCrossRef Jiang, L., He, D., Yang, D., Chen, Z., Pan, Q., Mao, A., et al. (2014). MiR-489 regulates chemoresistance in breast cancer via epithelial mesenchymal transition pathway. FEBS Letters, 588(11), 2009–2015.PubMedCrossRef
222.
go back to reference Dong, H., Hu, J., Zou, K., Ye, M., Chen, Y., Wu, C., et al. (2019). Activation of LncRNA TINCR by H3K27 acetylation promotes trastuzumab resistance and epithelial-mesenchymal transition by targeting microRNA-125b in breast cancer. Molecular Cancer, 18(1), 3.PubMedPubMedCentralCrossRef Dong, H., Hu, J., Zou, K., Ye, M., Chen, Y., Wu, C., et al. (2019). Activation of LncRNA TINCR by H3K27 acetylation promotes trastuzumab resistance and epithelial-mesenchymal transition by targeting microRNA-125b in breast cancer. Molecular Cancer, 18(1), 3.PubMedPubMedCentralCrossRef
223.
go back to reference Hu, S. H., Wang, C. H., Huang, Z. J., Liu, F., Xu, C. W., Li, X. L., et al. (2016). miR-760 mediates chemoresistance through inhibition of epithelial mesenchymal transition in breast cancer cells. European Review for Medical and Pharmacological Sciences, 20(23), 5002–5008.PubMed Hu, S. H., Wang, C. H., Huang, Z. J., Liu, F., Xu, C. W., Li, X. L., et al. (2016). miR-760 mediates chemoresistance through inhibition of epithelial mesenchymal transition in breast cancer cells. European Review for Medical and Pharmacological Sciences, 20(23), 5002–5008.PubMed
224.
go back to reference Fu, H., Fu, L., Xie, C., Zuo, W. S., Liu, Y. S., Zheng, M. Z., et al. (2017). miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer. Oncology Reports, 37(2), 1093–1099.PubMedCrossRef Fu, H., Fu, L., Xie, C., Zuo, W. S., Liu, Y. S., Zheng, M. Z., et al. (2017). miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer. Oncology Reports, 37(2), 1093–1099.PubMedCrossRef
225.
go back to reference Ward, A., Balwierz, A., Zhang, J. D., Kublbeck, M., Pawitan, Y., Hielscher, T., et al. (2013). Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 32(9), 1173–1182.PubMedCrossRef Ward, A., Balwierz, A., Zhang, J. D., Kublbeck, M., Pawitan, Y., Hielscher, T., et al. (2013). Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene, 32(9), 1173–1182.PubMedCrossRef
226.
go back to reference Zhang, H. D., Sun, D. W., Mao, L., Zhang, J., Jiang, L. H., Li, J., et al. (2015). MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochemical and Biophysical Research Communications, 465(4), 702–713.PubMedCrossRef Zhang, H. D., Sun, D. W., Mao, L., Zhang, J., Jiang, L. H., Li, J., et al. (2015). MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochemical and Biophysical Research Communications, 465(4), 702–713.PubMedCrossRef
227.
go back to reference Li, X. J., Ji, M. H., Zhong, S. L., Zha, Q. B., Xu, J. J., Zhao, J. H., et al. (2012). MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Archives of Medical Research, 43(7), 514–521.PubMedCrossRef Li, X. J., Ji, M. H., Zhong, S. L., Zha, Q. B., Xu, J. J., Zhao, J. H., et al. (2012). MicroRNA-34a modulates chemosensitivity of breast cancer cells to adriamycin by targeting Notch1. Archives of Medical Research, 43(7), 514–521.PubMedCrossRef
228.
go back to reference Kang, L., Mao, J., Tao, Y., Song, B., Ma, W., Lu, Y., et al. (2015). MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Science, 106(6), 700–708.PubMedPubMedCentralCrossRef Kang, L., Mao, J., Tao, Y., Song, B., Ma, W., Lu, Y., et al. (2015). MicroRNA-34a suppresses the breast cancer stem cell-like characteristics by downregulating Notch1 pathway. Cancer Science, 106(6), 700–708.PubMedPubMedCentralCrossRef
229.
go back to reference Gong, L. G., Shi, J. C., Shang, J., Hao, J. G., & Du, X. (2019). Effect of miR-34a on resistance to sunitinib in breast cancer by regulating the Wnt/beta-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 23(3), 1151–1157.PubMed Gong, L. G., Shi, J. C., Shang, J., Hao, J. G., & Du, X. (2019). Effect of miR-34a on resistance to sunitinib in breast cancer by regulating the Wnt/beta-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 23(3), 1151–1157.PubMed
230.
go back to reference Palyi-Krekk, Z., Barok, M., Isola, J., Tammi, M., Szollosi, J., & Nagy, P. (2007). Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. European Journal of Cancer, 43(16), 2423–2433.PubMedCrossRef Palyi-Krekk, Z., Barok, M., Isola, J., Tammi, M., Szollosi, J., & Nagy, P. (2007). Hyaluronan-induced masking of ErbB2 and CD44-enhanced trastuzumab internalisation in trastuzumab resistant breast cancer. European Journal of Cancer, 43(16), 2423–2433.PubMedCrossRef
231.
go back to reference Boulbes, D. R., Chauhan, G. B., Jin, Q., Bartholomeusz, C., & Esteva, F. J. (2015). CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells. Breast Cancer Research and Treatment, 151(3), 501–513.PubMedCrossRef Boulbes, D. R., Chauhan, G. B., Jin, Q., Bartholomeusz, C., & Esteva, F. J. (2015). CD44 expression contributes to trastuzumab resistance in HER2-positive breast cancer cells. Breast Cancer Research and Treatment, 151(3), 501–513.PubMedCrossRef
232.
go back to reference Liu, C., Xing, H., Guo, C., Yang, Z., Wang, Y., & Wang, Y. (2019). MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle, 18(18), 2215–2227.PubMedPubMedCentralCrossRef Liu, C., Xing, H., Guo, C., Yang, Z., Wang, Y., & Wang, Y. (2019). MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle, 18(18), 2215–2227.PubMedPubMedCentralCrossRef
233.
go back to reference Tan, W., Tang, H., Jiang, X., Ye, F., Huang, L., Shi, D., et al. (2019). Metformin mediates induction of miR-708 to inhibit self-renewal and chemoresistance of breast cancer stem cells through targeting CD47. Journal of Cellular and Molecular Medicine, 23(9), 5994–6004.PubMedPubMedCentralCrossRef Tan, W., Tang, H., Jiang, X., Ye, F., Huang, L., Shi, D., et al. (2019). Metformin mediates induction of miR-708 to inhibit self-renewal and chemoresistance of breast cancer stem cells through targeting CD47. Journal of Cellular and Molecular Medicine, 23(9), 5994–6004.PubMedPubMedCentralCrossRef
234.
go back to reference Zhou, Y., Hu, Y., Yang, M., Jat, P., Li, K., Lombardo, Y., et al. (2014). The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300. Cell Death and Differentiation, 21(3), 462–474.PubMedCrossRef Zhou, Y., Hu, Y., Yang, M., Jat, P., Li, K., Lombardo, Y., et al. (2014). The miR-106b~25 cluster promotes bypass of doxorubicin-induced senescence and increase in motility and invasion by targeting the E-cadherin transcriptional activator EP300. Cell Death and Differentiation, 21(3), 462–474.PubMedCrossRef
235.
go back to reference Hu, Y., Li, K., Asaduzzaman, M., Cuella, R., Shi, H., Raguz, S., et al. (2016). MiR-106b~25 cluster regulates multidrug resistance in an ABC transporter-independent manner via downregulation of EP300. Oncology Reports, 35(2), 1170–1178.PubMedCrossRef Hu, Y., Li, K., Asaduzzaman, M., Cuella, R., Shi, H., Raguz, S., et al. (2016). MiR-106b~25 cluster regulates multidrug resistance in an ABC transporter-independent manner via downregulation of EP300. Oncology Reports, 35(2), 1170–1178.PubMedCrossRef
236.
go back to reference Guarnieri, A. L., Towers, C. G., Drasin, D. J., Oliphant, M. U. J., Andrysik, Z., Hotz, T. J., et al. (2018). The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene, 37(28), 3879–3893.PubMedPubMedCentralCrossRef Guarnieri, A. L., Towers, C. G., Drasin, D. J., Oliphant, M. U. J., Andrysik, Z., Hotz, T. J., et al. (2018). The miR-106b-25 cluster mediates breast tumor initiation through activation of NOTCH1 via direct repression of NEDD4L. Oncogene, 37(28), 3879–3893.PubMedPubMedCentralCrossRef
237.
go back to reference Li, H. Y., Liang, J. L., Kuo, Y. L., Lee, H. H., Calkins, M. J., Chang, H. T., et al. (2017). miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Research, 19(1), 133.PubMedPubMedCentralCrossRef Li, H. Y., Liang, J. L., Kuo, Y. L., Lee, H. H., Calkins, M. J., Chang, H. T., et al. (2017). miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Research, 19(1), 133.PubMedPubMedCentralCrossRef
238.
go back to reference Chen, Z., Pan, T., Jiang, D., Jin, L., Geng, Y., Feng, X., et al. (2020). The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/beta-catenin signaling pathway. Mol Ther Nucleic Acids, 19, 1434–1448.PubMedPubMedCentralCrossRef Chen, Z., Pan, T., Jiang, D., Jin, L., Geng, Y., Feng, X., et al. (2020). The lncRNA-GAS5/miR-221-3p/DKK2 axis modulates ABCB1-mediated adriamycin resistance of breast cancer via the Wnt/beta-catenin signaling pathway. Mol Ther Nucleic Acids, 19, 1434–1448.PubMedPubMedCentralCrossRef
239.
go back to reference Tang, T., Cheng, Y., She, Q., Jiang, Y., Chen, Y., Yang, W., et al. (2018). Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomedicine & Pharmacotherapy, 107, 338–346.CrossRef Tang, T., Cheng, Y., She, Q., Jiang, Y., Chen, Y., Yang, W., et al. (2018). Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomedicine & Pharmacotherapy, 107, 338–346.CrossRef
240.
go back to reference Wu, D., Zhang, J., Lu, Y., Bo, S., Li, L., Wang, L., et al. (2019). miR-140-5p inhibits the proliferation and enhances the efficacy of doxorubicin to breast cancer stem cells by targeting Wnt1. Cancer Gene Therapy, 26(3–4), 74–82.PubMedCrossRef Wu, D., Zhang, J., Lu, Y., Bo, S., Li, L., Wang, L., et al. (2019). miR-140-5p inhibits the proliferation and enhances the efficacy of doxorubicin to breast cancer stem cells by targeting Wnt1. Cancer Gene Therapy, 26(3–4), 74–82.PubMedCrossRef
241.
go back to reference Yu, Y., Yin, W., Yu, Z. H., Zhou, Y. J., Chi, J. R., Ge, J., et al. (2019). miR-190 enhances endocrine therapy sensitivity by regulating SOX9 expression in breast cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 22.CrossRef Yu, Y., Yin, W., Yu, Z. H., Zhou, Y. J., Chi, J. R., Ge, J., et al. (2019). miR-190 enhances endocrine therapy sensitivity by regulating SOX9 expression in breast cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 22.CrossRef
242.
go back to reference Jia, Z., Zhu, H., Sun, H., Hua, Y., Zhang, G., Jiang, J., et al. (2020). Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/beta-catenin signaling. Cancer Manag Res, 12, 8733–8744.PubMedPubMedCentralCrossRef Jia, Z., Zhu, H., Sun, H., Hua, Y., Zhang, G., Jiang, J., et al. (2020). Adipose mesenchymal stem cell-derived exosomal microRNA-1236 reduces resistance of breast cancer cells to cisplatin by suppressing SLC9A1 and the Wnt/beta-catenin signaling. Cancer Manag Res, 12, 8733–8744.PubMedPubMedCentralCrossRef
243.
go back to reference Liang, Y., Song, X., Li, Y., Su, P., Han, D., Ma, T., et al. (2019). circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene, 38(42), 6850–6866.PubMedCrossRef Liang, Y., Song, X., Li, Y., Su, P., Han, D., Ma, T., et al. (2019). circKDM4C suppresses tumor progression and attenuates doxorubicin resistance by regulating miR-548p/PBLD axis in breast cancer. Oncogene, 38(42), 6850–6866.PubMedCrossRef
244.
go back to reference Wang YY, Yan L, Yang S, Xu HN, Chen TT, Dong ZY, et al. Long noncoding RNA AC073284.4 suppresses epithelial-mesenchymal transition by sponging miR-18b-5p in paclitaxel-resistant breast cancer cells. J Cell Physiol 2019; 234(12):23202–23215. Wang YY, Yan L, Yang S, Xu HN, Chen TT, Dong ZY, et al. Long noncoding RNA AC073284.4 suppresses epithelial-mesenchymal transition by sponging miR-18b-5p in paclitaxel-resistant breast cancer cells. J Cell Physiol 2019; 234(12):23202–23215.
245.
go back to reference Santos, J. C., Lima, N. D. S., Sarian, L. O., Matheu, A., Ribeiro, M. L., & Derchain, S. F. M. (2018). Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Science and Reports, 8(1), 829.CrossRef Santos, J. C., Lima, N. D. S., Sarian, L. O., Matheu, A., Ribeiro, M. L., & Derchain, S. F. M. (2018). Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Science and Reports, 8(1), 829.CrossRef
246.
go back to reference Yang, L. W., Wu, X. J., Liang, Y., Ye, G. Q., Che, Y. C., Wu, X. Z., et al. (2020). miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5. Molecular Carcinogenesis, 59(4), 447–461.PubMedCrossRef Yang, L. W., Wu, X. J., Liang, Y., Ye, G. Q., Che, Y. C., Wu, X. Z., et al. (2020). miR-155 increases stemness and decitabine resistance in triple-negative breast cancer cells by inhibiting TSPAN5. Molecular Carcinogenesis, 59(4), 447–461.PubMedCrossRef
247.
go back to reference Chu, S., Liu, G., Xia, P., Chen, G., Shi, F., Yi, T., et al. (2017). miR-93 and PTEN: Key regulators of doxorubicin-resistance and EMT in breast cancer. Oncology Reports, 38(4), 2401–2407.PubMedCrossRef Chu, S., Liu, G., Xia, P., Chen, G., Shi, F., Yi, T., et al. (2017). miR-93 and PTEN: Key regulators of doxorubicin-resistance and EMT in breast cancer. Oncology Reports, 38(4), 2401–2407.PubMedCrossRef
248.
go back to reference Duan, X., Liu, X., Cao, Y., Li, Y., Silayiding, A., Zhang, L., et al. (2021). Effect of microRNA-766 promotes proliferation, chemoresistance, migration, and invasion of breast cancer cells. Clinical Breast Cancer, 21(1), e1–e17.PubMedCrossRef Duan, X., Liu, X., Cao, Y., Li, Y., Silayiding, A., Zhang, L., et al. (2021). Effect of microRNA-766 promotes proliferation, chemoresistance, migration, and invasion of breast cancer cells. Clinical Breast Cancer, 21(1), e1–e17.PubMedCrossRef
249.
go back to reference De Mattos-Arruda, L., Bottai, G., Nuciforo, P. G., Di Tommaso, L., Giovannetti, E., Peg, V., et al. (2015). MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget, 6(35), 37269–37280.PubMedPubMedCentralCrossRef De Mattos-Arruda, L., Bottai, G., Nuciforo, P. G., Di Tommaso, L., Giovannetti, E., Peg, V., et al. (2015). MicroRNA-21 links epithelial-to-mesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget, 6(35), 37269–37280.PubMedPubMedCentralCrossRef
250.
go back to reference Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2(1), 48–58.PubMedCrossRef Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2(1), 48–58.PubMedCrossRef
251.
go back to reference Zhu, X., Li, Y., Shen, H., Li, H., Long, L., Hui, L., et al. (2013). miR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1. Acta Biochimica et Biophysica Sinica (Shanghai), 45(2), 80–86.CrossRef Zhu, X., Li, Y., Shen, H., Li, H., Long, L., Hui, L., et al. (2013). miR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1. Acta Biochimica et Biophysica Sinica (Shanghai), 45(2), 80–86.CrossRef
252.
go back to reference Bao, L., Hazari, S., Mehra, S., Kaushal, D., Moroz, K., & Dash, S. (2012). Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. American Journal of Pathology, 180(6), 2490–2503.CrossRef Bao, L., Hazari, S., Mehra, S., Kaushal, D., Moroz, K., & Dash, S. (2012). Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. American Journal of Pathology, 180(6), 2490–2503.CrossRef
253.
go back to reference Kovalchuk, O., Filkowski, J., Meservy, J., Ilnytskyy, Y., Tryndyak, V. P., Chekhun, V. F., et al. (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular Cancer Therapeutics, 7(7), 2152–2159.PubMedCrossRef Kovalchuk, O., Filkowski, J., Meservy, J., Ilnytskyy, Y., Tryndyak, V. P., Chekhun, V. F., et al. (2008). Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular Cancer Therapeutics, 7(7), 2152–2159.PubMedCrossRef
254.
go back to reference Thorne, J. L., Battaglia, S., Baxter, D. E., Hayes, J. L., Hutchinson, S. A., Jana, S., et al. (2018). MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1861(11), 996–1006.PubMedCrossRef Thorne, J. L., Battaglia, S., Baxter, D. E., Hayes, J. L., Hutchinson, S. A., Jana, S., et al. (2018). MiR-19b non-canonical binding is directed by HuR and confers chemosensitivity through regulation of P-glycoprotein in breast cancer. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1861(11), 996–1006.PubMedCrossRef
255.
go back to reference He, D. X., Gu, X. T., Jiang, L., Jin, J., & Ma, X. (2014). A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Molecular Pharmacology, 86(5), 536–547.PubMedCrossRef He, D. X., Gu, X. T., Jiang, L., Jin, J., & Ma, X. (2014). A methylation-based regulatory network for microRNA 320a in chemoresistant breast cancer. Molecular Pharmacology, 86(5), 536–547.PubMedCrossRef
256.
go back to reference Wang, R., Zhang, T., Yang, Z., Jiang, C., & Seng, J. (2018). Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. Journal of Cellular and Molecular Medicine, 22(9), 4068–4075.PubMedPubMedCentralCrossRef Wang, R., Zhang, T., Yang, Z., Jiang, C., & Seng, J. (2018). Long non-coding RNA FTH1P3 activates paclitaxel resistance in breast cancer through miR-206/ABCB1. Journal of Cellular and Molecular Medicine, 22(9), 4068–4075.PubMedPubMedCentralCrossRef
257.
go back to reference Yi, D., Xu, L., Wang, R., Lu, X., & Sang, J. (2019). miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biology International, 43(1), 12–21.PubMedCrossRef Yi, D., Xu, L., Wang, R., Lu, X., & Sang, J. (2019). miR-381 overcomes cisplatin resistance in breast cancer by targeting MDR1. Cell Biology International, 43(1), 12–21.PubMedCrossRef
258.
go back to reference Chen, X., Wang, Y. W., & Gao, P. (2018). SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. Journal of Experimental & Clinical Cancer Research, 37(1), 100.CrossRef Chen, X., Wang, Y. W., & Gao, P. (2018). SPIN1, negatively regulated by miR-148/152, enhances Adriamycin resistance via upregulating drug metabolizing enzymes and transporter in breast cancer. Journal of Experimental & Clinical Cancer Research, 37(1), 100.CrossRef
259.
go back to reference Moody, H. L., Lind, M. J., & Maher, S. G. (2017). MicroRNA-31 regulates chemosensitivity in malignant pleural mesothelioma. Mol Ther Nucleic Acids, 8, 317–329.PubMedPubMedCentralCrossRef Moody, H. L., Lind, M. J., & Maher, S. G. (2017). MicroRNA-31 regulates chemosensitivity in malignant pleural mesothelioma. Mol Ther Nucleic Acids, 8, 317–329.PubMedPubMedCentralCrossRef
260.
go back to reference Dong, Z., Zhong, Z., Yang, L., Wang, S., & Gong, Z. (2014). MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Letters, 343(2), 249–257.PubMedCrossRef Dong, Z., Zhong, Z., Yang, L., Wang, S., & Gong, Z. (2014). MicroRNA-31 inhibits cisplatin-induced apoptosis in non-small cell lung cancer cells by regulating the drug transporter ABCB9. Cancer Letters, 343(2), 249–257.PubMedCrossRef
261.
go back to reference Gong, J. P., Yang, L., Tang, J. W., Sun, P., Hu, Q., Qin, J. W., et al. (2016). Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncology Letters, 12(5), 3905–3911.PubMedPubMedCentralCrossRef Gong, J. P., Yang, L., Tang, J. W., Sun, P., Hu, Q., Qin, J. W., et al. (2016). Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncology Letters, 12(5), 3905–3911.PubMedPubMedCentralCrossRef
262.
go back to reference Pogribny, I. P., Filkowski, J. N., Tryndyak, V. P., Golubov, A., Shpyleva, S. I., & Kovalchuk, O. (2010). Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. International Journal of Cancer, 127(8), 1785–1794.PubMedCrossRef Pogribny, I. P., Filkowski, J. N., Tryndyak, V. P., Golubov, A., Shpyleva, S. I., & Kovalchuk, O. (2010). Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. International Journal of Cancer, 127(8), 1785–1794.PubMedCrossRef
263.
go back to reference Liang, Z., Wu, H., Xia, J., Li, Y., Zhang, Y., Huang, K., et al. (2010). Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochemical Pharmacology, 79(6), 817–824.PubMedCrossRef Liang, Z., Wu, H., Xia, J., Li, Y., Zhang, Y., Huang, K., et al. (2010). Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochemical Pharmacology, 79(6), 817–824.PubMedCrossRef
264.
go back to reference Lu, L., Ju, F., Zhao, H., & Ma, X. (2015). MicroRNA-134 modulates resistance to doxorubicin in human breast cancer cells by downregulating ABCC1. Biotechnology Letters, 37(12), 2387–2394.PubMedCrossRef Lu, L., Ju, F., Zhao, H., & Ma, X. (2015). MicroRNA-134 modulates resistance to doxorubicin in human breast cancer cells by downregulating ABCC1. Biotechnology Letters, 37(12), 2387–2394.PubMedCrossRef
265.
go back to reference Chang, L., Hu, Z., Zhou, Z., & Zhang, H. (2018). Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cellular Physiology and Biochemistry, 48(1), 16–28.PubMedCrossRef Chang, L., Hu, Z., Zhou, Z., & Zhang, H. (2018). Linc00518 contributes to multidrug resistance through regulating the MiR-199a/MRP1 axis in breast cancer. Cellular Physiology and Biochemistry, 48(1), 16–28.PubMedCrossRef
266.
go back to reference Zeng C, Fan D, Xu Y, Li X, Yuan J, Yang Q, et al. Curcumol enhances the sensitivity of doxorubicin in triple-negative breast cancer via regulating the miR-181b-2–3p-ABCC3 axis. Biochem Pharmacol 2020; 174:113795. Zeng C, Fan D, Xu Y, Li X, Yuan J, Yang Q, et al. Curcumol enhances the sensitivity of doxorubicin in triple-negative breast cancer via regulating the miR-181b-2–3p-ABCC3 axis. Biochem Pharmacol 2020; 174:113795.
267.
go back to reference Russel, F. G., Koenderink, J. B., & Masereeuw, R. (2008). Multidrug resistance protein 4 (MRP4/ABCC4): A versatile efflux transporter for drugs and signalling molecules. Trends in Pharmacological Sciences, 29(4), 200–207.PubMedCrossRef Russel, F. G., Koenderink, J. B., & Masereeuw, R. (2008). Multidrug resistance protein 4 (MRP4/ABCC4): A versatile efflux transporter for drugs and signalling molecules. Trends in Pharmacological Sciences, 29(4), 200–207.PubMedCrossRef
268.
go back to reference Hu, D., Li, M., Su, J., Miao, K., & Qiu, X. (2019). Dual-targeting of miR-124-3p and ABCC4 promotes sensitivity to adriamycin in breast cancer cells. Genetic Testing and Molecular Biomarkers, 23(3), 156–165.PubMedCrossRef Hu, D., Li, M., Su, J., Miao, K., & Qiu, X. (2019). Dual-targeting of miR-124-3p and ABCC4 promotes sensitivity to adriamycin in breast cancer cells. Genetic Testing and Molecular Biomarkers, 23(3), 156–165.PubMedCrossRef
269.
go back to reference Jedlitschky, G., Burchell, B., & Keppler, D. (2000). The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. Journal of Biological Chemistry, 275(39), 30069–30074.CrossRef Jedlitschky, G., Burchell, B., & Keppler, D. (2000). The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. Journal of Biological Chemistry, 275(39), 30069–30074.CrossRef
270.
go back to reference Masri, S., Liu, Z., Phung, S., Wang, E., Yuan, Y. C., & Chen, S. (2010). The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Research and Treatment, 124(1), 89–99.PubMedPubMedCentralCrossRef Masri, S., Liu, Z., Phung, S., Wang, E., Yuan, Y. C., & Chen, S. (2010). The role of microRNA-128a in regulating TGFbeta signaling in letrozole-resistant breast cancer cells. Breast Cancer Research and Treatment, 124(1), 89–99.PubMedPubMedCentralCrossRef
271.
go back to reference Jiao, X., Zhao, L., Ma, M., Bai, X., He, M., Yan, Y., et al. (2013). MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Research and Treatment, 139(3), 717–730.PubMedCrossRef Jiao, X., Zhao, L., Ma, M., Bai, X., He, M., Yan, Y., et al. (2013). MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Research and Treatment, 139(3), 717–730.PubMedCrossRef
272.
go back to reference Pan, Y. Z., Morris, M. E., & Yu, A. M. (2009). MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Molecular Pharmacology, 75(6), 1374–1379.PubMedPubMedCentralCrossRef Pan, Y. Z., Morris, M. E., & Yu, A. M. (2009). MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Molecular Pharmacology, 75(6), 1374–1379.PubMedPubMedCentralCrossRef
273.
go back to reference Ma, M. T., He, M., Wang, Y., Jiao, X. Y., Zhao, L., Bai, X. F., et al. (2013). MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Letters, 339(1), 107–115.PubMedCrossRef Ma, M. T., He, M., Wang, Y., Jiao, X. Y., Zhao, L., Bai, X. F., et al. (2013). MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Letters, 339(1), 107–115.PubMedCrossRef
274.
go back to reference Wang, Y., Zhao, L., Xiao, Q., Jiang, L., He, M., Bai, X., et al. (2016). miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecologic Oncology, 141(3), 592–601.PubMedCrossRef Wang, Y., Zhao, L., Xiao, Q., Jiang, L., He, M., Bai, X., et al. (2016). miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecologic Oncology, 141(3), 592–601.PubMedCrossRef
275.
go back to reference Takahashi, R. U., Miyazaki, H., Takeshita, F., Yamamoto, Y., Minoura, K., Ono, M., et al. (2015). Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nature Communications, 6, 7318.PubMedCrossRef Takahashi, R. U., Miyazaki, H., Takeshita, F., Yamamoto, Y., Minoura, K., Ono, M., et al. (2015). Loss of microRNA-27b contributes to breast cancer stem cell generation by activating ENPP1. Nature Communications, 6, 7318.PubMedCrossRef
276.
go back to reference Pan, X., Yang, X., Zang, J., Zhang, S., Huang, N., Guan, X., et al. (2017). Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins. Oncology Letters, 13(6), 4785–4793.PubMedPubMedCentralCrossRef Pan, X., Yang, X., Zang, J., Zhang, S., Huang, N., Guan, X., et al. (2017). Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins. Oncology Letters, 13(6), 4785–4793.PubMedPubMedCentralCrossRef
277.
go back to reference Smolle, M. A., Calin, H. N., Pichler, M., & Calin, G. A. (2017). Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS Journal, 284(13), 1952–1966.CrossRef Smolle, M. A., Calin, H. N., Pichler, M., & Calin, G. A. (2017). Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS Journal, 284(13), 1952–1966.CrossRef
278.
go back to reference Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222.PubMedCrossRef Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222.PubMedCrossRef
Metadata
Title
MicroRNAs as a clue to overcome breast cancer treatment resistance
Authors
Iris Garrido-Cano
Birlipta Pattanayak
Anna Adam-Artigues
Ana Lameirinhas
Sandra Torres-Ruiz
Eduardo Tormo
Raimundo Cervera
Pilar Eroles
Publication date
01-03-2022
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2022
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-021-09992-0

Other articles of this Issue 1/2022

Cancer and Metastasis Reviews 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine