Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | NSCLC | Research

A low-molecular-weight compound exerts anticancer activity against breast and lung cancers by disrupting EGFR/Eps8 complex formation

Authors: Meifang Li, Jilong Yang, Lenghe Zhang, Sanfang Tu, Xuan Zhou, Ze Tan, Weijun Zhou, Yanjie He, Yuhua Li

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Epidermal growth factor receptor (EGFR) and epidermal growth factor receptor pathway substrate 8 (Eps8) have been widely reported to be expressed in various tumors. Eps8 is an important active kinase substrate of EGFR that directly binds to the juxtamembrane (JXM) domain of EGFR to form an EGFR/Eps8 complex. The EGFR/Eps8 complex is involved in regulating cancer progression and might be an ideal target for antitumor therapy. This study focused on the screening of small-molecule inhibitors that target the EGFR/Eps8 complex in breast cancer and non-small cell lung cancer (NSCLC).

Methods

In silico virtual screening was used to identify small-molecule EGFR/Eps8 complex inhibitors. These compounds were screened for the inhibition of A549 and BT549 cell viability. The direct interaction between EGFR and Eps8 was measured using coimmunoprecipitation (CoIP) and JXM domain replacement assays. The antitumor effects of the inhibitors were analyzed in cancer cells and xenograft models. An acute toxicity study of EE02 was performed in a mouse model. In addition, the effect of the EE02 inhibitor on the protein expression of elements downstream of the EGFR/Eps8 complex was determined by western blotting and protein chip assays.

Results

In this study of nearly 390,000 compounds screened by virtual database screening, the top 29 compounds were identified as candidate small-molecule EGFR/Eps8 complex inhibitors and evaluated by using cell-based assays. The compound EE02 was identified as the best match to our selection criteria. Further investigation demonstrated that EE02 directly bound to the JXM domain of EGFR and disrupted EGFR/Eps8 complex formation. EE02 selectively suppressed growth and induced apoptosis in EGFR-positive and Eps8-positive breast cancer and NSCLC cells. More importantly, the PI3K/Akt/mTOR and MAPK/Erk pathways downstream of the EGFR/Eps8 complex were suppressed by EE02. In addition, the suppressive effect of EE02 on tumor growth in vivo was comparable to that of erlotinib at the same dose.

Conclusions

We identified EE02 as an EGFR/Eps8 complex inhibitor that demonstrated promising antitumor effects in breast cancer and NSCLC. Our data suggest that the EGFR/Eps8 complex offers a novel cancer drug target.
Literature
1.
go back to reference Peela N, Truong D, Saini H, Chu H, Mashaghi S, Ham SL, et al. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. BIOMATERIALS. 2017;133:176–207.CrossRef Peela N, Truong D, Saini H, Chu H, Mashaghi S, Ham SL, et al. Advanced biomaterials and microengineering technologies to recapitulate the stepwise process of cancer metastasis. BIOMATERIALS. 2017;133:176–207.CrossRef
2.
go back to reference Xie X, Zhou W, Hu Y, Chen Y, Zhang H, Li Y. A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. CELL DEATH DIS. 2018;9(3). Xie X, Zhou W, Hu Y, Chen Y, Zhang H, Li Y. A dual-function epidermal growth factor receptor pathway substrate 8 (Eps8)-derived peptide exhibits a potent cytotoxic T lymphocyte-activating effect and a specific inhibitory activity. CELL DEATH DIS. 2018;9(3).
3.
go back to reference Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002 2002-01-10;346(2):92–8. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002 2002-01-10;346(2):92–8.
4.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016 2016-01-01;66(1):7–30. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016 2016-01-01;66(1):7–30.
5.
go back to reference McCracken M, Olsen M, Chen MJ, Jemal A, Thun M, Cokkinides V, et al. Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA. Cancer J Clin. 2007;57(4):190–205.CrossRef McCracken M, Olsen M, Chen MJ, Jemal A, Thun M, Cokkinides V, et al. Cancer incidence, mortality, and associated risk factors among Asian Americans of Chinese, Filipino, Vietnamese, Korean, and Japanese ethnicities. CA. Cancer J Clin. 2007;57(4):190–205.CrossRef
6.
go back to reference Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA. Cancer J Clin. 2006;56(2):106–30.CrossRef Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, et al. Cancer statistics, 2006. CA. Cancer J Clin. 2006;56(2):106–30.CrossRef
7.
go back to reference Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol (Camb). 2011;3(1):17–30.CrossRef Tian T, Olson S, Whitacre JM, Harding A. The origins of cancer robustness and evolvability. Integr Biol (Camb). 2011;3(1):17–30.CrossRef
8.
go back to reference Roskoski R. ErbB/HER protein-tyrosine kinases: structures and small molecule inhibitors. Pharmacol Res. 2014;87:42–59.CrossRef Roskoski R. ErbB/HER protein-tyrosine kinases: structures and small molecule inhibitors. Pharmacol Res. 2014;87:42–59.CrossRef
9.
go back to reference Hubbard SR. The Juxtamembrane Region of EGFR Takes Center Stage. CELL. 2009;137(7):1181–3.CrossRef Hubbard SR. The Juxtamembrane Region of EGFR Takes Center Stage. CELL. 2009;137(7):1181–3.CrossRef
10.
go back to reference Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.CrossRef Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.CrossRef
11.
go back to reference Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. CELL. 2002;110(6):669–72.CrossRef Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. CELL. 2002;110(6):669–72.CrossRef
12.
go back to reference Sergina NV, Moasser MM. The HER family and cancer: emerging molecular mechanisms and therapeutic targets. TRENDS MOL MED. 2007;13(12):527–34.CrossRef Sergina NV, Moasser MM. The HER family and cancer: emerging molecular mechanisms and therapeutic targets. TRENDS MOL MED. 2007;13(12):527–34.CrossRef
13.
go back to reference Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, et al. The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. MOL CELL. 2009;34(6):641–51.CrossRef Red Brewer M, Choi SH, Alvarado D, Moravcevic K, Pozzi A, Lemmon MA, et al. The Juxtamembrane Region of the EGF Receptor Functions as an Activation Domain. MOL CELL. 2009;34(6):641–51.CrossRef
14.
go back to reference Boran ADW. The regulatory role of the juxtamembrane region in the activity of the epidermal growth factor receptor. BIOCHEM SOC T. 2012;40(1):195–9.CrossRef Boran ADW. The regulatory role of the juxtamembrane region in the activity of the epidermal growth factor receptor. BIOCHEM SOC T. 2012;40(1):195–9.CrossRef
15.
go back to reference Thiel KW, Carpenter G. Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. Proceedings of the National Academy of Sciences, 2007. 104(49):19238. Thiel KW, Carpenter G. Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. Proceedings of the National Academy of Sciences, 2007. 104(49):19238.
16.
go back to reference Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. CELL. 2009;137(7):1293–307.CrossRef Jura N, Endres NF, Engel K, Deindl S, Das R, Lamers MH, et al. Mechanism for activation of the EGF receptor catalytic domain by the juxtamembrane segment. CELL. 2009;137(7):1293–307.CrossRef
17.
go back to reference Choowongkomon K, Carlin CR, Sonnichsen FD. A structural model for the membrane-bound form of the juxtamembrane domain of the epidermal growth factor receptor. J BIOL CHEM. 2005;280(25):24043–52.CrossRef Choowongkomon K, Carlin CR, Sonnichsen FD. A structural model for the membrane-bound form of the juxtamembrane domain of the epidermal growth factor receptor. J BIOL CHEM. 2005;280(25):24043–52.CrossRef
18.
go back to reference Aifa S, Aydin J, Nordvall G, Lundstrom I, Svensson SP, Hermanson O. A basic peptide within the juxtamembrane region is required for EGF receptor dimerization. EXP CELL RES. 2005;302(1):108–14.CrossRef Aifa S, Aydin J, Nordvall G, Lundstrom I, Svensson SP, Hermanson O. A basic peptide within the juxtamembrane region is required for EGF receptor dimerization. EXP CELL RES. 2005;302(1):108–14.CrossRef
19.
go back to reference Sinclair JKL, Schepartz A. Influence of Macrocyclization on Allosteric, Juxtamembrane-Derived, Stapled Peptide Inhibitors of the Epidermal Growth Factor Receptor (EGFR). ORG LETT. 2014;16(18):4916–9.CrossRef Sinclair JKL, Schepartz A. Influence of Macrocyclization on Allosteric, Juxtamembrane-Derived, Stapled Peptide Inhibitors of the Epidermal Growth Factor Receptor (EGFR). ORG LETT. 2014;16(18):4916–9.CrossRef
20.
go back to reference Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. The EMBO Journal. 1993;12(10):3799–808.CrossRef Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. The EMBO Journal. 1993;12(10):3799–808.CrossRef
21.
go back to reference Di Fiore PP, Scita G. Eps8 in the midst of GTPases. Int J Biochem Cell Biol. 2002;34(10):1178–83.CrossRef Di Fiore PP, Scita G. Eps8 in the midst of GTPases. Int J Biochem Cell Biol. 2002;34(10):1178–83.CrossRef
22.
go back to reference Chen Y, Xie X, Wu A, Wang L, Hu Y, Zhang H, et al. A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J EXP CLIN CANC RES. 2018;37(1). Chen Y, Xie X, Wu A, Wang L, Hu Y, Zhang H, et al. A synthetic cell-penetrating peptide derived from nuclear localization signal of EPS8 exerts anticancer activity against acute myeloid leukemia. J EXP CLIN CANC RES. 2018;37(1).
23.
go back to reference Cattaneo MG, Cappellini E, Vicentini LM. Silencing of Eps8 blocks migration and invasion in human glioblastoma cell lines. EXP CELL RES. 2012;318(15):1901–12.CrossRef Cattaneo MG, Cappellini E, Vicentini LM. Silencing of Eps8 blocks migration and invasion in human glioblastoma cell lines. EXP CELL RES. 2012;318(15):1901–12.CrossRef
24.
go back to reference Ding X, Zhou F, Wang F, Yang Z, Zhou C, Zhou J, et al. Eps8 promotes cellular growth of human malignant gliomas. ONCOL REP. 2013;29(2):697–703.CrossRef Ding X, Zhou F, Wang F, Yang Z, Zhou C, Zhou J, et al. Eps8 promotes cellular growth of human malignant gliomas. ONCOL REP. 2013;29(2):697–703.CrossRef
25.
go back to reference Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. CANCER LETT. 2007;255(2):205–18.CrossRef Welsch T, Endlich K, Giese T, Buchler MW, Schmidt J. Eps8 is increased in pancreatic cancer and required for dynamic actin-based cell protrusions and intercellular cytoskeletal organization. CANCER LETT. 2007;255(2):205–18.CrossRef
26.
go back to reference Cappellini E, Vanetti C, Vicentini LM, Cattaneo MG. Silencing of Eps8 inhibits in vitro angiogenesis. LIFE SCI. 2015;131:30–6.CrossRef Cappellini E, Vanetti C, Vicentini LM, Cattaneo MG. Silencing of Eps8 inhibits in vitro angiogenesis. LIFE SCI. 2015;131:30–6.CrossRef
27.
go back to reference Castagnino P, Biesova Z, Wong WT, Fazioli F, Gill GN, Di Fiore PP. Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. ONCOGENE. 1995;10(4):723.PubMed Castagnino P, Biesova Z, Wong WT, Fazioli F, Gill GN, Di Fiore PP. Direct binding of eps8 to the juxtamembrane domain of EGFR is phosphotyrosine- and SH2-independent. ONCOGENE. 1995;10(4):723.PubMed
28.
go back to reference Chen C, Liang Z, Huang W, Li X, Zhou F, Hu X, et al. Eps8 regulates cellular proliferation and migration of breast cancer. INT J ONCOL. 2015;46(1):205–14.CrossRef Chen C, Liang Z, Huang W, Li X, Zhou F, Hu X, et al. Eps8 regulates cellular proliferation and migration of breast cancer. INT J ONCOL. 2015;46(1):205–14.CrossRef
30.
go back to reference Song H, Wang R, Wang S, Lin J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A. 2005;102(13):4700–5.CrossRef Song H, Wang R, Wang S, Lin J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci U S A. 2005;102(13):4700–5.CrossRef
32.
go back to reference He L, Hristova K. SCI REP-UK. 2012;2(1):Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence. He L, Hristova K. SCI REP-UK. 2012;2(1):Consequences of replacing EGFR juxtamembrane domain with an unstructured sequence.
33.
go back to reference Park D, Magis AT, Li R, Owonikoko TK, Sica GL, Sun SY, et al. Novel small-molecule inhibitors of Bcl-XL to treat lung cancer. CANCER RES. 2013;73(17):5485–96.CrossRef Park D, Magis AT, Li R, Owonikoko TK, Sica GL, Sun SY, et al. Novel small-molecule inhibitors of Bcl-XL to treat lung cancer. CANCER RES. 2013;73(17):5485–96.CrossRef
34.
go back to reference Matsumoto M, Seike M, Noro R, Soeno C, Sugano T, Takeuchi S, et al. Control of the MYC-eIF4E axis plus mTOR inhibitor treatment in small cell lung cancer. BMC CANCER. 2015;15:241.CrossRef Matsumoto M, Seike M, Noro R, Soeno C, Sugano T, Takeuchi S, et al. Control of the MYC-eIF4E axis plus mTOR inhibitor treatment in small cell lung cancer. BMC CANCER. 2015;15:241.CrossRef
35.
go back to reference Cui Y, Xie S, Luan J, Zhou X, Han J. Identification of the receptor tyrosinekinases (RTKs)-oriented functional targets of miR-206 by an antibody-basedprotein array. FEBS Lett. 2015;589(16):2131–5.CrossRef Cui Y, Xie S, Luan J, Zhou X, Han J. Identification of the receptor tyrosinekinases (RTKs)-oriented functional targets of miR-206 by an antibody-basedprotein array. FEBS Lett. 2015;589(16):2131–5.CrossRef
36.
go back to reference Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. CELL REP. 2013;4(1):87–98.CrossRef Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. CELL REP. 2013;4(1):87–98.CrossRef
37.
go back to reference Song J, Ma Z, Hua Y, Xu J, Li N, Ju C, et al. Functional role of RRS1 in breast cancer cell proliferation. J CELL MOL MED. 2018. Song J, Ma Z, Hua Y, Xu J, Li N, Ju C, et al. Functional role of RRS1 in breast cancer cell proliferation. J CELL MOL MED. 2018.
38.
go back to reference Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PRD, Lima APD, et al. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomed Pharmacother. 2018;107:1082–92.CrossRef Mello-Andrade F, Cardoso CG, Silva CRE, Chen-Chen L, Melo-Reis PRD, Lima APD, et al. Acute toxic effects of ruthenium (II)/amino acid/diphosphine complexes on Swiss mice and zebrafish embryos. Biomed Pharmacother. 2018;107:1082–92.CrossRef
39.
go back to reference Zhang C, Yi Y, Chen J, Xin R, Yang Z, Guo Z, et al. In Vivo Efficacy and Toxicity Studies of a Novel Antibacterial Agent: 14-O-[(2-Amino-1,3,4-thiadiazol-5-yl)Thioacetyl] Mutilin. MOLECULES. 2015;20(4):5299–312.CrossRef Zhang C, Yi Y, Chen J, Xin R, Yang Z, Guo Z, et al. In Vivo Efficacy and Toxicity Studies of a Novel Antibacterial Agent: 14-O-[(2-Amino-1,3,4-thiadiazol-5-yl)Thioacetyl] Mutilin. MOLECULES. 2015;20(4):5299–312.CrossRef
40.
go back to reference Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong HW, Luo HR, et al. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. BLOOD. 2013;121(8):1413–21.CrossRef Gao C, Dimitrov T, Yong KJ, Tatetsu H, Jeong HW, Luo HR, et al. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. BLOOD. 2013;121(8):1413–21.CrossRef
41.
go back to reference Jang S, Kim YT, Chung HW, Lee KR, Lim JB, Lee K. Identification of novel immunogenic human leukocyte antigen-A 2402-binding epitopes of human papillomavirus type 16 E7 for immunotherapy against human cervical cancer. CANCER-AM CANCER SOC. 2012;118(8):2173–83. Jang S, Kim YT, Chung HW, Lee KR, Lim JB, Lee K. Identification of novel immunogenic human leukocyte antigen-A 2402-binding epitopes of human papillomavirus type 16 E7 for immunotherapy against human cervical cancer. CANCER-AM CANCER SOC. 2012;118(8):2173–83.
42.
go back to reference Sher YP, Lin SI, Chen IH, Liu HY, Lin CY, Chiang IP, et al. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model. ONCOTARGET. 2016;7(1):671–83.CrossRef Sher YP, Lin SI, Chen IH, Liu HY, Lin CY, Chiang IP, et al. A HLA-A2-restricted CTL epitope induces anti-tumor effects against human lung cancer in mouse xenograft model. ONCOTARGET. 2016;7(1):671–83.CrossRef
43.
go back to reference Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehei K, Wierman ME. Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: role in proliferation and survival. ENDOCRINOLOGY. 2009;150(5):2064–71.CrossRef Xu M, Shorts-Cary L, Knox AJ, Kleinsmidt-DeMasters B, Lillehei K, Wierman ME. Epidermal growth factor receptor pathway substrate 8 is overexpressed in human pituitary tumors: role in proliferation and survival. ENDOCRINOLOGY. 2009;150(5):2064–71.CrossRef
44.
go back to reference Console S, Marty C, García-Echeverría C, Schwendener R, Ballmer-Hofer K. Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem. 2003 Sep 12;278(37):35109–14.CrossRef Console S, Marty C, García-Echeverría C, Schwendener R, Ballmer-Hofer K. Antennapedia and HIV transactivator of transcription (TAT) "protein transduction domains" promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem. 2003 Sep 12;278(37):35109–14.CrossRef
45.
go back to reference Boran AD, Seco J, Jayaraman V, Jayaraman G, Zhao S, Reddy S, et al. A potential peptide therapeutic derived from the juxtamembrane domain of the epidermal growth factor receptor. PLoS One. 2012;7(11):e49702.CrossRef Boran AD, Seco J, Jayaraman V, Jayaraman G, Zhao S, Reddy S, et al. A potential peptide therapeutic derived from the juxtamembrane domain of the epidermal growth factor receptor. PLoS One. 2012;7(11):e49702.CrossRef
46.
go back to reference Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 tat peptide. Drug Discov Today. 2015 Jan;20(1):76–85.CrossRef Rizzuti M, Nizzardo M, Zanetta C, Ramirez A, Corti S. Therapeutic applications of the cell-penetrating HIV-1 tat peptide. Drug Discov Today. 2015 Jan;20(1):76–85.CrossRef
47.
go back to reference Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014 Feb;15(2):213–22.CrossRef Wu YL, Zhou C, Hu CP, Feng J, Lu S, Huang Y, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014 Feb;15(2):213–22.CrossRef
48.
go back to reference Lurje G, Lenz H. EGFR signaling and drug discovery. Oncology. 2009;77(6):400–10.CrossRef Lurje G, Lenz H. EGFR signaling and drug discovery. Oncology. 2009;77(6):400–10.CrossRef
49.
go back to reference Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. The New England Journal of Medicine. 2010;362(25):2380–8.CrossRef Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, et al. Gefitinib or Chemotherapy for Non–Small-Cell Lung Cancer with Mutated EGFR. The New England Journal of Medicine. 2010;362(25):2380–8.CrossRef
50.
go back to reference Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients With Metastatic Lung Adenocarcinoma With EGFR Mutations. J CLIN ONCOL. 2013;31(27):3327–34.CrossRef Sequist LV, Yang JC, Yamamoto N, O'Byrne K, Hirsh V, Mok T, et al. Phase III Study of Afatinib or Cisplatin Plus Pemetrexed in Patients With Metastatic Lung Adenocarcinoma With EGFR Mutations. J CLIN ONCOL. 2013;31(27):3327–34.CrossRef
51.
go back to reference Press MF, Lenz HJ. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs. 2007;67(14):2045–75.CrossRef Press MF, Lenz HJ. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs. 2007;67(14):2045–75.CrossRef
52.
go back to reference Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;7(Suppl 4):2–8.CrossRef Baselga J. Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist. 2002;7(Suppl 4):2–8.CrossRef
53.
go back to reference Song H, Jung KS, Yoo KH, Cho J, Lee JY, Lim SH, et al. Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR inhibitor (HM61713) in non–small cell lung Cancer. J Thorac Oncol. 2016;11(4):e45–7.CrossRef Song H, Jung KS, Yoo KH, Cho J, Lee JY, Lim SH, et al. Acquired C797S mutation upon treatment with a T790M-specific third-generation EGFR inhibitor (HM61713) in non–small cell lung Cancer. J Thorac Oncol. 2016;11(4):e45–7.CrossRef
54.
go back to reference Yu HA, Tian SK, Drilon AE, Borsu L, Riely GJ, Arcila ME, et al. Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. JAMA ONCOL. 2015;1(7):982–4.CrossRef Yu HA, Tian SK, Drilon AE, Borsu L, Riely GJ, Arcila ME, et al. Acquired Resistance of EGFR-Mutant Lung Cancer to a T790M-Specific EGFR Inhibitor: Emergence of a Third Mutation (C797S) in the EGFR Tyrosine Kinase Domain. JAMA ONCOL. 2015;1(7):982–4.CrossRef
55.
go back to reference Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005 Feb 24;352(8):786–92.CrossRef Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005 Feb 24;352(8):786–92.CrossRef
56.
go back to reference Mok TS, Wu Y, Thongprasert S, Yang J, Yang C, Chu D, et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. The New England Journal of Medicine. 2009;361(10):947–57.CrossRef Mok TS, Wu Y, Thongprasert S, Yang J, Yang C, Chu D, et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. The New England Journal of Medicine. 2009;361(10):947–57.CrossRef
57.
go back to reference Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, et al. Irreversible Inhibitors of the EGF Receptor May Circumvent Acquired Resistance to Gefitinib. P NATL ACAD SCI USA. 2005;102(21):7665–70.CrossRef Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW, et al. Irreversible Inhibitors of the EGF Receptor May Circumvent Acquired Resistance to Gefitinib. P NATL ACAD SCI USA. 2005;102(21):7665–70.CrossRef
58.
go back to reference Wu S, Shih J. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. MOL CANCER. 2018;17(1). Wu S, Shih J. Management of acquired resistance to EGFR TKI–targeted therapy in advanced non-small cell lung cancer. MOL CANCER. 2018;17(1).
59.
go back to reference Niederst MJ, Hu H, Mulvey HE, Lockerman EL, Garcia AR, Piotrowska Z, et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. CLIN CANCER RES. 2015;21(17):3924–33.CrossRef Niederst MJ, Hu H, Mulvey HE, Lockerman EL, Garcia AR, Piotrowska Z, et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies. CLIN CANCER RES. 2015;21(17):3924–33.CrossRef
Metadata
Title
A low-molecular-weight compound exerts anticancer activity against breast and lung cancers by disrupting EGFR/Eps8 complex formation
Authors
Meifang Li
Jilong Yang
Lenghe Zhang
Sanfang Tu
Xuan Zhou
Ze Tan
Weijun Zhou
Yanjie He
Yuhua Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1207-y

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine