Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Artificial Intelligence | Original research

Post-reconstruction enhancement of [18F]FDG PET images with a convolutional neural network

Authors: John Ly, David Minarik, Jonas Jögi, Per Wollmer, Elin Trägårdh

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Background

The aim of the study was to develop and test an artificial intelligence (AI)-based method to improve the quality of [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) images.

Methods

A convolutional neural network (CNN) was trained by using pairs of excellent (acquisition time of 6 min/bed position) and standard (acquisition time of 1.5 min/bed position) or sub-standard (acquisition time of 1 min/bed position) images from 72 patients. A test group of 25 patients was used to validate the CNN qualitatively and quantitatively with 5 different image sets per patient: 4 min/bed position, 1.5 min/bed position with and without CNN, and 1 min/bed position with and without CNN.

Results

Difference in hotspot maximum or peak standardized uptake value between the standard 1.5 min and 1.5 min CNN images fell short of significance. Coefficient of variation, the noise level, was lower in the CNN-enhanced images compared with standard 1 min and 1.5 min images. Physicians ranked the 1.5 min CNN and the 4 min images highest regarding image quality (noise and contrast) and the standard 1 min images lowest.

Conclusions

AI can enhance [18F]FDG-PET images to reduce noise and increase contrast compared with standard images whilst keeping SUVmax/peak stability. There were significant differences in scoring between the 1.5 min and 1.5 min CNN image sets in all comparisons, the latter had higher scores in noise and contrast. Furthermore, difference in SUVmax and SUVpeak fell short of significance for that pair. The improved image quality can potentially be used either to provide better images to the nuclear medicine physicians or to reduce acquisition time/administered activity.
Literature
1.
go back to reference de Pierro AR, Beleza Yamagishi ME. Fast EM-like methods for maximum “a posteriori” estimates in emission tomography. IEEE Trans Med Imaging. 2001;20(4):280–8.CrossRef de Pierro AR, Beleza Yamagishi ME. Fast EM-like methods for maximum “a posteriori” estimates in emission tomography. IEEE Trans Med Imaging. 2001;20(4):280–8.CrossRef
2.
go back to reference Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56(9):1447–52.CrossRef Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56(9):1447–52.CrossRef
3.
go back to reference Ross S: Q.Clear, GE Healthcare. White paper 2014. Ross S: Q.Clear, GE Healthcare. White paper 2014.
4.
go back to reference Wangerin KA, Ahn S, Wollenweber S, Ross SG, Kinahan PE, Manjeshwar RM. Evaluation of lesion detectability in positron emission tomography when using a convergent penalized likelihood image reconstruction method. J Med Imaging (Bellingham). 2017;4(1):011002.CrossRef Wangerin KA, Ahn S, Wollenweber S, Ross SG, Kinahan PE, Manjeshwar RM. Evaluation of lesion detectability in positron emission tomography when using a convergent penalized likelihood image reconstruction method. J Med Imaging (Bellingham). 2017;4(1):011002.CrossRef
5.
go back to reference Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84(10):1873–8.CrossRef Parvizi N, Franklin JM, McGowan DR, Teoh EJ, Bradley KM, Gleeson FV. Does a novel penalized likelihood reconstruction of 18F-FDG PET-CT improve signal-to-background in colorectal liver metastases? Eur J Radiol. 2015;84(10):1873–8.CrossRef
6.
go back to reference Bjoersdorff M, Oddstig J, Karindotter-Borgendahl N, Almquist H, Zackrisson S, Minarik D, Tragardh E. Impact of penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm for (18)F-fluorocholine PET-CT regarding image quality and interpretation. EJNMMI Phys. 2019;6(1):5.CrossRef Bjoersdorff M, Oddstig J, Karindotter-Borgendahl N, Almquist H, Zackrisson S, Minarik D, Tragardh E. Impact of penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm for (18)F-fluorocholine PET-CT regarding image quality and interpretation. EJNMMI Phys. 2019;6(1):5.CrossRef
7.
go back to reference Tragardh E, Minarik D, Almquist H, Bitzen U, Garpered S, Hvittfelt E, Olsson B, Oddstig J. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for (18)F-FDG. EJNMMI Res. 2019;9(1):64.CrossRef Tragardh E, Minarik D, Almquist H, Bitzen U, Garpered S, Hvittfelt E, Olsson B, Oddstig J. Impact of acquisition time and penalizing factor in a block-sequential regularized expectation maximization reconstruction algorithm on a Si-photomultiplier-based PET-CT system for (18)F-FDG. EJNMMI Res. 2019;9(1):64.CrossRef
8.
go back to reference Lindstrom E, Sundin A, Trampal C, Lindsjo L, Ilan E, Danfors T, Antoni G, Sorensen J, Lubberink M. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT Scanner for (18)F-FDG whole-body examinations. J Nucl Med. 2018;59(7):1152–8.CrossRef Lindstrom E, Sundin A, Trampal C, Lindsjo L, Ilan E, Danfors T, Antoni G, Sorensen J, Lubberink M. Evaluation of penalized-likelihood estimation reconstruction on a digital time-of-flight PET/CT Scanner for (18)F-FDG whole-body examinations. J Nucl Med. 2018;59(7):1152–8.CrossRef
9.
go back to reference Lindstrom E, Velikyan I, Regula N, Alhuseinalkhudhur A, Sundin A, Sorensen J, Lubberink M. Regularized reconstruction of digital time-of-flight (68)Ga-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients. Theranostics. 2019;9(12):3476–84.CrossRef Lindstrom E, Velikyan I, Regula N, Alhuseinalkhudhur A, Sundin A, Sorensen J, Lubberink M. Regularized reconstruction of digital time-of-flight (68)Ga-PSMA-11 PET/CT for the detection of recurrent disease in prostate cancer patients. Theranostics. 2019;9(12):3476–84.CrossRef
10.
go back to reference Forsting M. Machine learning will change medicine. J Nucl Med. 2017;58(3):357–8.CrossRef Forsting M. Machine learning will change medicine. J Nucl Med. 2017;58(3):357–8.CrossRef
11.
go back to reference Minarik D, Enqvist O, Tragardh E. Denoising of scintillation camera images using a deep convolutional neural network: a Monte Carlo simulation approach. J Nucl Med. 2019;61:298–303.CrossRef Minarik D, Enqvist O, Tragardh E. Denoising of scintillation camera images using a deep convolutional neural network: a Monte Carlo simulation approach. J Nucl Med. 2019;61:298–303.CrossRef
12.
go back to reference Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulen J, Poulsen MH, Simonsen J, Hoilund-Carlsen PF, Edenbrandt L, Tragardh E. Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol. 2019;113:89–95.CrossRef Lindgren Belal S, Sadik M, Kaboteh R, Enqvist O, Ulen J, Poulsen MH, Simonsen J, Hoilund-Carlsen PF, Edenbrandt L, Tragardh E. Deep learning for segmentation of 49 selected bones in CT scans: first step in automated PET/CT-based 3D quantification of skeletal metastases. Eur J Radiol. 2019;113:89–95.CrossRef
13.
go back to reference Lindgren Belal S, Sadik M, Kaboteh R, Hasani N, Enqvist O, Svarm L, Kahl F, Simonsen J, Poulsen MH, Ohlsson M, et al. 3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer. EJNMMI Res. 2017;7(1):15.CrossRef Lindgren Belal S, Sadik M, Kaboteh R, Hasani N, Enqvist O, Svarm L, Kahl F, Simonsen J, Poulsen MH, Ohlsson M, et al. 3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer. EJNMMI Res. 2017;7(1):15.CrossRef
14.
go back to reference Sadik M, Lind E, Polymeri E, Enqvist O, Ulen J, Tragardh E. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging. 2019;39(1):78–84.CrossRef Sadik M, Lind E, Polymeri E, Enqvist O, Ulen J, Tragardh E. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging. 2019;39(1):78–84.CrossRef
15.
go back to reference Polymeri E, Sadik M, Kaboteh R, Borrelli P, Enqvist O, Ulen J, Ohlsson M, Tragardh E, Poulsen MH, Simonsen JA, et al. Deep learning-based quantification of PET/CT prostate gland uptake: association with overall survival. Clin Physiol Funct Imaging. 2019;40:106–13.CrossRef Polymeri E, Sadik M, Kaboteh R, Borrelli P, Enqvist O, Ulen J, Ohlsson M, Tragardh E, Poulsen MH, Simonsen JA, et al. Deep learning-based quantification of PET/CT prostate gland uptake: association with overall survival. Clin Physiol Funct Imaging. 2019;40:106–13.CrossRef
16.
go back to reference Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8(2):679–94.CrossRef Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G. Low-dose CT via convolutional neural network. Biomed Opt Express. 2017;8(2):679–94.CrossRef
17.
go back to reference Xiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep Auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.CrossRef Xiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep Auto-context convolutional neural networks for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406–16.CrossRef
18.
go back to reference Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26(7):3142–55.CrossRef Zhang K, Zuo W, Chen Y, Meng D, Zhang L. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process. 2017;26(7):3142–55.CrossRef
19.
go back to reference Caribe P, Koole M, D’Asseler Y, Van Den Broeck B, Vandenberghe S. Noise reduction using a Bayesian penalized-likelihood reconstruction algorithm on a time-of-flight PET-CT scanner. EJNMMI Phys. 2019;6(1):22.CrossRef Caribe P, Koole M, D’Asseler Y, Van Den Broeck B, Vandenberghe S. Noise reduction using a Bayesian penalized-likelihood reconstruction algorithm on a time-of-flight PET-CT scanner. EJNMMI Phys. 2019;6(1):22.CrossRef
20.
go back to reference Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, Akaizawa T, Yamada K, Fukuda H. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28(6):696–703.CrossRef Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, Akaizawa T, Yamada K, Fukuda H. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28(6):696–703.CrossRef
21.
go back to reference Kaalep A, Sera T, Rijnsdorp S, Yaqub M, Talsma A, Lodge MA, Boellaard R. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018;45(8):1344–61.CrossRef Kaalep A, Sera T, Rijnsdorp S, Yaqub M, Talsma A, Lodge MA, Boellaard R. Feasibility of state of the art PET/CT systems performance harmonisation. Eur J Nucl Med Mol Imaging. 2018;45(8):1344–61.CrossRef
22.
go back to reference Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, Liu C. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol. 2019;64(16):165019.CrossRef Lu W, Onofrey JA, Lu Y, Shi L, Ma T, Liu Y, Liu C. An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Phys Med Biol. 2019;64(16):165019.CrossRef
23.
go back to reference Haggstrom I, Schmidtlein CR, Campanella G, Fuchs TJ. DeepPET: a deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.CrossRef Haggstrom I, Schmidtlein CR, Campanella G, Fuchs TJ. DeepPET: a deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253–62.CrossRef
24.
go back to reference Liu CC, Qi J. Higher SNR PET image prediction using a deep learning model and MRI image. Phys Med Biol. 2019;64(11):115004.CrossRef Liu CC, Qi J. Higher SNR PET image prediction using a deep learning model and MRI image. Phys Med Biol. 2019;64(11):115004.CrossRef
25.
go back to reference Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.CrossRef Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59(1):3–12.CrossRef
26.
go back to reference Mehranian A, Reader AJ. Model-based deep learning PET image reconstruction using forward-backward splitting expectation maximisation. IEEE Trans Radiat Plasma Med Sci 2020:1–1. Mehranian A, Reader AJ. Model-based deep learning PET image reconstruction using forward-backward splitting expectation maximisation. IEEE Trans Radiat Plasma Med Sci 2020:1–1.
27.
go back to reference Xu J: 200x Low-dose PET reconstruction using deep learning. arXiv:171204119 [csCV]. 2017. Xu J: 200x Low-dose PET reconstruction using deep learning. arXiv:171204119 [csCV]. 2017.
28.
go back to reference Cui J, Liu X, Wang Y, Liu H. Deep reconstruction model for dynamic PET images. PLoS ONE. 2017;12(9):e0184667.CrossRef Cui J, Liu X, Wang Y, Liu H. Deep reconstruction model for dynamic PET images. PLoS ONE. 2017;12(9):e0184667.CrossRef
29.
go back to reference Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E, et al. Ultra-low-dose (18)F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 2019;290(3):649–56.CrossRef Chen KT, Gong E, de Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E, et al. Ultra-low-dose (18)F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 2019;290(3):649–56.CrossRef
30.
go back to reference Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, Kaufmann PA, Burger IA, Messerli M. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - Initial results. Lung Cancer. 2018;126:170–3.CrossRef Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, Kaufmann PA, Burger IA, Messerli M. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks - Initial results. Lung Cancer. 2018;126:170–3.CrossRef
Metadata
Title
Post-reconstruction enhancement of [18F]FDG PET images with a convolutional neural network
Authors
John Ly
David Minarik
Jonas Jögi
Per Wollmer
Elin Trägårdh
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00788-5

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue