Skip to main content
Top
Published in: EJNMMI Research 1/2021

Open Access 01-12-2021 | Molecular Imaging | Guideline

EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases

Authors: Erik H. J. G. Aarntzen, Edel Noriega-Álvarez, Vera Artiko, André H. Dias, Olivier Gheysens, Andor W. J. M. Glaudemans, Chiara Lauri, Giorgio Treglia, Tim van den Wyngaert, Fijs W. B. van Leeuwen, Samantha Y. A. Terry

Published in: EJNMMI Research | Issue 1/2021

Login to get access

Abstract

Inflammatory musculoskeletal diseases represent a group of chronic and disabling conditions that evolve from a complex interplay between genetic and environmental factors that cause perturbations in innate and adaptive immune responses. Understanding the pathogenesis of inflammatory musculoskeletal diseases is, to a large extent, derived from preclinical and basic research experiments. In vivo molecular imaging enables us to study molecular targets and to measure biochemical processes non-invasively and longitudinally, providing information on disease processes and potential therapeutic strategies, e.g. efficacy of novel therapeutic interventions, which is of complementary value next to ex vivo (post mortem) histopathological analysis and molecular assays. Remarkably, the large body of preclinical imaging studies in inflammatory musculoskeletal disease is in contrast with the limited reports on molecular imaging in clinical practice and clinical guidelines. Therefore, in this EANM-endorsed position paper, we performed a systematic review of the preclinical studies in inflammatory musculoskeletal diseases that involve radionuclide imaging, with a detailed description of the animal models used. From these reflections, we provide recommendations on what future studies in this field should encompass to facilitate a greater impact of radionuclide imaging techniques on the translation to clinical settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001.PubMedCrossRef Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Primers. 2018;4:18001.PubMedCrossRef
2.
go back to reference Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.PubMedCrossRef Martel-Pelletier J, Barr AJ, Cicuttini FM, Conaghan PG, Cooper C, Goldring MB, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072.PubMedCrossRef
3.
go back to reference Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016;12:605–20.PubMedCrossRef Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016;12:605–20.PubMedCrossRef
4.
go back to reference Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039.PubMedCrossRef Kaul A, Gordon C, Crow MK, Touma Z, Urowitz MB, van Vollenhoven R, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016;2:16039.PubMedCrossRef
5.
go back to reference Arnett HA, Viney JL. Considerations for the sensible use of rodent models of inflammatory disease in predicting efficacy of new biological therapeutics in the clinic. Adv Drug Deliv Rev. 2007;59:1084–92.PubMedCrossRef Arnett HA, Viney JL. Considerations for the sensible use of rodent models of inflammatory disease in predicting efficacy of new biological therapeutics in the clinic. Adv Drug Deliv Rev. 2007;59:1084–92.PubMedCrossRef
6.
go back to reference Benson RA, McInnes IB, Garside P, Brewer JM. Model answers: rational application of murine models in arthritis research. Eur J Immunol. 2018;48:32–8.PubMedCrossRef Benson RA, McInnes IB, Garside P, Brewer JM. Model answers: rational application of murine models in arthritis research. Eur J Immunol. 2018;48:32–8.PubMedCrossRef
7.
go back to reference Caplazi P, Baca M, Barck K, Carano RA, DeVoss J, Lee WP, et al. Mouse models of rheumatoid arthritis. Vet Pathol. 2015;52:819–26.PubMedCrossRef Caplazi P, Baca M, Barck K, Carano RA, DeVoss J, Lee WP, et al. Mouse models of rheumatoid arthritis. Vet Pathol. 2015;52:819–26.PubMedCrossRef
8.
go back to reference Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacol Immunotoxicol. 2018;40:193–200.PubMedCrossRef Choudhary N, Bhatt LK, Prabhavalkar KS. Experimental animal models for rheumatoid arthritis. Immunopharmacol Immunotoxicol. 2018;40:193–200.PubMedCrossRef
9.
11.
go back to reference Morin F, Kavian N, Batteux F. Animal models of systemic sclerosis. Curr Pharm Des. 2015;21:2365–79.PubMedCrossRef Morin F, Kavian N, Batteux F. Animal models of systemic sclerosis. Curr Pharm Des. 2015;21:2365–79.PubMedCrossRef
12.
go back to reference Tsujino K, Sheppard D. Critical appraisal of the utility and limitations of animal models of scleroderma. Curr Rheumatol Rep. 2016;18:4.PubMedCrossRef Tsujino K, Sheppard D. Critical appraisal of the utility and limitations of animal models of scleroderma. Curr Rheumatol Rep. 2016;18:4.PubMedCrossRef
13.
go back to reference McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015;52:803–18.PubMedCrossRef McCoy AM. Animal models of osteoarthritis: comparisons and key considerations. Vet Pathol. 2015;52:803–18.PubMedCrossRef
14.
go back to reference Gregersen JW, Holmes S, Fugger L. Humanized animal models for autoimmune diseases. Tissue Antigens. 2004;63:383–94.PubMedCrossRef Gregersen JW, Holmes S, Fugger L. Humanized animal models for autoimmune diseases. Tissue Antigens. 2004;63:383–94.PubMedCrossRef
15.
go back to reference Kollias G, Papadaki P, Apparailly F, Vervoordeldonk MJ, Holmdahl R, Baumans V, et al. Animal models for arthritis: innovative tools for prevention and treatment. Ann Rheum Dis. 2011;70:1357–62.PubMedCrossRef Kollias G, Papadaki P, Apparailly F, Vervoordeldonk MJ, Holmdahl R, Baumans V, et al. Animal models for arthritis: innovative tools for prevention and treatment. Ann Rheum Dis. 2011;70:1357–62.PubMedCrossRef
17.
go back to reference Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.PubMedCrossRef Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.PubMedCrossRef
18.
go back to reference Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87:811–22.PubMedCrossRef Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87:811–22.PubMedCrossRef
19.
go back to reference Li P, Schwarz EM. The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol. 2003;25:19–33.PubMedCrossRef Li P, Schwarz EM. The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol. 2003;25:19–33.PubMedCrossRef
20.
go back to reference Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med. 2000;191:313–20.PubMedPubMedCentralCrossRef Horai R, Saijo S, Tanioka H, Nakae S, Sudo K, Okahara A, et al. Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice. J Exp Med. 2000;191:313–20.PubMedPubMedCentralCrossRef
21.
go back to reference Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev. 1999;169:209–23.PubMedCrossRef Taurog JD, Maika SD, Satumtira N, Dorris ML, McLean IL, Yanagisawa H, et al. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev. 1999;169:209–23.PubMedCrossRef
22.
go back to reference Yang CY, Park SA, Oh KJ, Yang YS. The assessment of bee venom responses in an experimental model of mono-arthritis using Tc-99m DPD bone scintigraphy. Ann Nucl Med. 2010;24:455–60.PubMedCrossRef Yang CY, Park SA, Oh KJ, Yang YS. The assessment of bee venom responses in an experimental model of mono-arthritis using Tc-99m DPD bone scintigraphy. Ann Nucl Med. 2010;24:455–60.PubMedCrossRef
23.
go back to reference Piscaer TM, Muller C, Mindt TL, Lubberts E, Verhaar JA, Krenning EP, et al. Imaging of activated macrophages in experimental osteoarthritis using folate-targeted animal single-photon-emission computed tomography/computed tomography. Arthritis Rheum. 2011;63:1898–907.PubMedCrossRef Piscaer TM, Muller C, Mindt TL, Lubberts E, Verhaar JA, Krenning EP, et al. Imaging of activated macrophages in experimental osteoarthritis using folate-targeted animal single-photon-emission computed tomography/computed tomography. Arthritis Rheum. 2011;63:1898–907.PubMedCrossRef
24.
go back to reference Siebelt M, Waarsing JH, Groen HC, Muller C, Koelewijn SJ, de Blois E, et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone. 2014;66:163–70.PubMedCrossRef Siebelt M, Waarsing JH, Groen HC, Muller C, Koelewijn SJ, de Blois E, et al. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression. Bone. 2014;66:163–70.PubMedCrossRef
25.
go back to reference Siebelt M, van der Windt AE, Groen HC, Sandker M, Waarsing JH, Muller C, et al. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation. Osteoarthritis Cartilage. 2014;22:591–600.PubMedCrossRef Siebelt M, van der Windt AE, Groen HC, Sandker M, Waarsing JH, Muller C, et al. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation. Osteoarthritis Cartilage. 2014;22:591–600.PubMedCrossRef
26.
go back to reference Siebelt M, Korthagen N, Wei W, Groen H, Bastiaansen-Jenniskens Y, Muller C, et al. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo. Arthritis Res Ther. 2015;17:352.PubMedPubMedCentralCrossRef Siebelt M, Korthagen N, Wei W, Groen H, Bastiaansen-Jenniskens Y, Muller C, et al. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo. Arthritis Res Ther. 2015;17:352.PubMedPubMedCentralCrossRef
27.
go back to reference Siebelt M, Groen HC, Koelewijn SJ, de Blois E, Sandker M, Waarsing JH, et al. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage. Arthritis Res Ther. 2014;16:R32.PubMedPubMedCentralCrossRef Siebelt M, Groen HC, Koelewijn SJ, de Blois E, Sandker M, Waarsing JH, et al. Increased physical activity severely induces osteoarthritic changes in knee joints with papain induced sulfate-glycosaminoglycan depleted cartilage. Arthritis Res Ther. 2014;16:R32.PubMedPubMedCentralCrossRef
29.
go back to reference Colman K. Impact of the genetics and source of preclinical safety animal models on study design, results, and interpretation. Toxicol Pathol. 2017;45:94–106.PubMedCrossRef Colman K. Impact of the genetics and source of preclinical safety animal models on study design, results, and interpretation. Toxicol Pathol. 2017;45:94–106.PubMedCrossRef
30.
go back to reference van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245.PubMedPubMedCentralCrossRef van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:e1000245.PubMedPubMedCentralCrossRef
32.
go back to reference Signore A, Artiko V, Conserva M, Ferro-Flores G, Welling MM, Jain SK, et al. Imaging bacteria with radiolabelled probes: is it feasible? J Clin Med. 2020;9:2372.PubMedCentralCrossRef Signore A, Artiko V, Conserva M, Ferro-Flores G, Welling MM, Jain SK, et al. Imaging bacteria with radiolabelled probes: is it feasible? J Clin Med. 2020;9:2372.PubMedCentralCrossRef
33.
go back to reference Dias IR, Viegas CA, Carvalho PP. Large animal models for osteochondral regeneration. Adv Exp Med Biol. 2018;1059:441–501.PubMedCrossRef Dias IR, Viegas CA, Carvalho PP. Large animal models for osteochondral regeneration. Adv Exp Med Biol. 2018;1059:441–501.PubMedCrossRef
34.
go back to reference Vierboom MP, Jonker M, Tak PP, Hart BA. Preclinical models of arthritic disease in non-human primates. Drug Discov Today. 2007;12:327–35.PubMedCrossRef Vierboom MP, Jonker M, Tak PP, Hart BA. Preclinical models of arthritic disease in non-human primates. Drug Discov Today. 2007;12:327–35.PubMedCrossRef
35.
go back to reference Nature Editorial. Rewarding negative results keeps science on track. Nature. 2017;551:414.CrossRef Nature Editorial. Rewarding negative results keeps science on track. Nature. 2017;551:414.CrossRef
36.
go back to reference Funato S, Matsunaga A, Oh K, Miyamoto Y, Yoshimura K, Tanaka J, et al. Effects of antibody to receptor activator of nuclear factor kappa-B ligand on inflammation and cartilage degradation in collagen antibody-induced arthritis in mice. J Negat Results Biomed. 2014;13:18.PubMedPubMedCentralCrossRef Funato S, Matsunaga A, Oh K, Miyamoto Y, Yoshimura K, Tanaka J, et al. Effects of antibody to receptor activator of nuclear factor kappa-B ligand on inflammation and cartilage degradation in collagen antibody-induced arthritis in mice. J Negat Results Biomed. 2014;13:18.PubMedPubMedCentralCrossRef
37.
go back to reference Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.PubMedCrossRef Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36.PubMedCrossRef
38.
go back to reference Walkin L, Herrick SE, Summers A, Brenchley PE, Hoff CM, Korstanje R, et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis Tissue Repair. 2013;6:18.PubMedPubMedCentralCrossRef Walkin L, Herrick SE, Summers A, Brenchley PE, Hoff CM, Korstanje R, et al. The role of mouse strain differences in the susceptibility to fibrosis: a systematic review. Fibrogenesis Tissue Repair. 2013;6:18.PubMedPubMedCentralCrossRef
39.
go back to reference Marques SM, Campos PP, Castro PR, Cardoso CC, Ferreira MA, Andrade SP. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res. 2011;82:246–52.PubMedCrossRef Marques SM, Campos PP, Castro PR, Cardoso CC, Ferreira MA, Andrade SP. Genetic background determines mouse strain differences in inflammatory angiogenesis. Microvasc Res. 2011;82:246–52.PubMedCrossRef
40.
go back to reference Kwon OC, Lee EJ, Chang EJ, Youn J, Ghang B, Hong S, et al. IL-17A(+)GM-CSF(+) neutrophils are the major infiltrating cells in interstitial lung disease in an autoimmune arthritis model. Front Immunol. 2018;9:1544.PubMedPubMedCentralCrossRef Kwon OC, Lee EJ, Chang EJ, Youn J, Ghang B, Hong S, et al. IL-17A(+)GM-CSF(+) neutrophils are the major infiltrating cells in interstitial lung disease in an autoimmune arthritis model. Front Immunol. 2018;9:1544.PubMedPubMedCentralCrossRef
41.
go back to reference Zheng F, Put S, Bouwens L, Lahoutte T, Matthys P, Muyldermans S, et al. Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med. 2014;55:824–9.PubMedCrossRef Zheng F, Put S, Bouwens L, Lahoutte T, Matthys P, Muyldermans S, et al. Molecular imaging with macrophage CRIg-targeting nanobodies for early and preclinical diagnosis in a mouse model of rheumatoid arthritis. J Nucl Med. 2014;55:824–9.PubMedCrossRef
42.
go back to reference Zheng F, Perlman H, Matthys P, Wen Y, Lahoutte T, Muyldermans S, et al. Specificity evaluation and disease monitoring in arthritis imaging with complement receptor of the ig superfamily targeting nanobodies. Sci Rep. 2016;6:35966.PubMedPubMedCentralCrossRef Zheng F, Perlman H, Matthys P, Wen Y, Lahoutte T, Muyldermans S, et al. Specificity evaluation and disease monitoring in arthritis imaging with complement receptor of the ig superfamily targeting nanobodies. Sci Rep. 2016;6:35966.PubMedPubMedCentralCrossRef
43.
go back to reference Botz B, Bolcskei K, Kereskai L, Kovacs M, Nemeth T, Szigeti K, et al. Differential regulatory role of pituitary adenylate cyclase-activating polypeptide in the serum-transfer arthritis model. Arthritis Rheumatol. 2014;66:2739–50.PubMedPubMedCentralCrossRef Botz B, Bolcskei K, Kereskai L, Kovacs M, Nemeth T, Szigeti K, et al. Differential regulatory role of pituitary adenylate cyclase-activating polypeptide in the serum-transfer arthritis model. Arthritis Rheumatol. 2014;66:2739–50.PubMedPubMedCentralCrossRef
44.
go back to reference Beckford-Vera DR, Gonzalez-Junca A, Janneck JS, Huynh TL, Blecha JE, Seo Y, et al. PET/CT imaging of human tnfalpha using [(89)Zr]certolizumab pegol in a transgenic preclinical model of rheumatoid arthritis. Mol Imaging Biol; 2019. Beckford-Vera DR, Gonzalez-Junca A, Janneck JS, Huynh TL, Blecha JE, Seo Y, et al. PET/CT imaging of human tnfalpha using [(89)Zr]certolizumab pegol in a transgenic preclinical model of rheumatoid arthritis. Mol Imaging Biol; 2019.
45.
go back to reference Shao X, Wang X, English SJ, Desmond T, Sherman PS, Quesada CA, et al. Imaging of carrageenan-induced local inflammation and adjuvant-induced systemic arthritis with [(11)C]PBR28 PET. Nucl Med Biol. 2013;40:906–11.PubMedPubMedCentralCrossRef Shao X, Wang X, English SJ, Desmond T, Sherman PS, Quesada CA, et al. Imaging of carrageenan-induced local inflammation and adjuvant-induced systemic arthritis with [(11)C]PBR28 PET. Nucl Med Biol. 2013;40:906–11.PubMedPubMedCentralCrossRef
46.
go back to reference Felix KM, Tahsin S, Wu HJ. Host-microbiota interplay in mediating immune disorders. Ann N Y Acad Sci. 2018;1417:57–70.PubMedCrossRef Felix KM, Tahsin S, Wu HJ. Host-microbiota interplay in mediating immune disorders. Ann N Y Acad Sci. 2018;1417:57–70.PubMedCrossRef
47.
go back to reference Harbuz MS, Richards LJ, Chover-Gonzalez AJ, Marti-Sistac O, Jessop DS. Stress in autoimmune disease models. Ann N Y Acad Sci. 2006;1069:51–61.PubMedCrossRef Harbuz MS, Richards LJ, Chover-Gonzalez AJ, Marti-Sistac O, Jessop DS. Stress in autoimmune disease models. Ann N Y Acad Sci. 2006;1069:51–61.PubMedCrossRef
48.
go back to reference Fuchs K, Kukuk D, Reischl G, Foller M, Eichner M, Reutershan J, et al. Oxygen breathing affects 3’-deoxy-3’-18F-fluorothymidine uptake in mouse models of arthritis and cancer. J Nucl Med. 2012;53:823–30.PubMedCrossRef Fuchs K, Kukuk D, Reischl G, Foller M, Eichner M, Reutershan J, et al. Oxygen breathing affects 3’-deoxy-3’-18F-fluorothymidine uptake in mouse models of arthritis and cancer. J Nucl Med. 2012;53:823–30.PubMedCrossRef
49.
go back to reference Chung SJ, Yoon HJ, Youn H, Kim MJ, Lee YS, Jeong JM, et al. (18)F-FEDAC as a targeting agent for activated macrophages in DBA/1 mice with collagen-induced arthritis: comparison with (18)F-FDG. J Nucl Med. 2018;59:839–45.PubMedCrossRef Chung SJ, Yoon HJ, Youn H, Kim MJ, Lee YS, Jeong JM, et al. (18)F-FEDAC as a targeting agent for activated macrophages in DBA/1 mice with collagen-induced arthritis: comparison with (18)F-FDG. J Nucl Med. 2018;59:839–45.PubMedCrossRef
50.
go back to reference Chung SJ, Youn H, Jeong EJ, Park CR, Kim MJ, Kang KW, et al. In vivo imaging of activated macrophages by (18)F-FEDAC, a TSPO targeting PET ligand, in the use of biologic disease-modifying anti-rheumatic drugs (bDMARDs). Biochem Biophys Res Commun. 2018;506:216–22.PubMedCrossRef Chung SJ, Youn H, Jeong EJ, Park CR, Kim MJ, Kang KW, et al. In vivo imaging of activated macrophages by (18)F-FEDAC, a TSPO targeting PET ligand, in the use of biologic disease-modifying anti-rheumatic drugs (bDMARDs). Biochem Biophys Res Commun. 2018;506:216–22.PubMedCrossRef
51.
go back to reference Fuchs K, Kuehn A, Mahling M, Guenthoer P, Hector A, Schwenck J, et al. In vivo hypoxia PET imaging quantifies the severity of arthritic joint inflammation in line with overexpression of hypoxia-inducible factor and enhanced reactive oxygen species generation. J Nucl Med. 2017;58:853–60.PubMedCrossRef Fuchs K, Kuehn A, Mahling M, Guenthoer P, Hector A, Schwenck J, et al. In vivo hypoxia PET imaging quantifies the severity of arthritic joint inflammation in line with overexpression of hypoxia-inducible factor and enhanced reactive oxygen species generation. J Nucl Med. 2017;58:853–60.PubMedCrossRef
52.
go back to reference Terry SY, Koenders MI, Franssen GM, Nayak TK, Freimoser-Grundschober A, Klein C, et al. Monitoring therapy response of experimental arthritis with radiolabeled tracers targeting fibroblasts, macrophages, or Integrin alphavbeta3. J Nucl Med. 2016;57:467–72.PubMedCrossRef Terry SY, Koenders MI, Franssen GM, Nayak TK, Freimoser-Grundschober A, Klein C, et al. Monitoring therapy response of experimental arthritis with radiolabeled tracers targeting fibroblasts, macrophages, or Integrin alphavbeta3. J Nucl Med. 2016;57:467–72.PubMedCrossRef
53.
go back to reference Laverman P, van der Geest T, Terry SY, Gerrits D, Walgreen B, Helsen MM, et al. Immuno-PET and immuno-SPECT of rheumatoid arthritis with radiolabeled anti-fibroblast activation protein antibody correlates with severity of arthritis. J Nucl Med. 2015;56:778–83.PubMedCrossRef Laverman P, van der Geest T, Terry SY, Gerrits D, Walgreen B, Helsen MM, et al. Immuno-PET and immuno-SPECT of rheumatoid arthritis with radiolabeled anti-fibroblast activation protein antibody correlates with severity of arthritis. J Nucl Med. 2015;56:778–83.PubMedCrossRef
54.
go back to reference Khairnar A, Marchand F, Vidal A, Etienne M, Miladi I, Auzeloux P, et al. 99mTc-NTP 15–5 imaging for cartilage involvement in experimental rheumatoid arthritis: comparison with routinely used molecular imaging methods and sensitivity to chronic nonsteroidal antiinflammatory drug treatment. J Nucl Med. 2015;56:798–804.PubMedCrossRef Khairnar A, Marchand F, Vidal A, Etienne M, Miladi I, Auzeloux P, et al. 99mTc-NTP 15–5 imaging for cartilage involvement in experimental rheumatoid arthritis: comparison with routinely used molecular imaging methods and sensitivity to chronic nonsteroidal antiinflammatory drug treatment. J Nucl Med. 2015;56:798–804.PubMedCrossRef
55.
go back to reference Hayer S, Zeilinger M, Weiss V, Dumanic M, Seibt M, Niederreiter B, et al. Multimodal [(18) F]FDG PET/CT is a direct readout for inflammatory bone repair: a longitudinal study in TNFalpha transgenic mice. J Bone Miner Res. 2019;34:1632–45.PubMedCrossRef Hayer S, Zeilinger M, Weiss V, Dumanic M, Seibt M, Niederreiter B, et al. Multimodal [(18) F]FDG PET/CT is a direct readout for inflammatory bone repair: a longitudinal study in TNFalpha transgenic mice. J Bone Miner Res. 2019;34:1632–45.PubMedCrossRef
56.
go back to reference Wang Q, Onuma K, Liu C, Wong H, Bloom MS, Elliott EE, et al. Dysregulated integrin alphaVbeta3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight. 2019;4:18. Wang Q, Onuma K, Liu C, Wong H, Bloom MS, Elliott EE, et al. Dysregulated integrin alphaVbeta3 and CD47 signaling promotes joint inflammation, cartilage breakdown, and progression of osteoarthritis. JCI Insight. 2019;4:18.
57.
go back to reference de Visser HM, Korthagen NM, Muller C, Ramakers RM, Krijger GC, Lafeber F, et al. Imaging of folate receptor expressing macrophages in the rat groove model of osteoarthritis: using a new DOTA-folate conjugate. Cartilage. 2018;9:183–91.PubMedCrossRef de Visser HM, Korthagen NM, Muller C, Ramakers RM, Krijger GC, Lafeber F, et al. Imaging of folate receptor expressing macrophages in the rat groove model of osteoarthritis: using a new DOTA-folate conjugate. Cartilage. 2018;9:183–91.PubMedCrossRef
58.
go back to reference Nozaki S, Ozaki N, Suzuki S, Goto M, Mawatari A, Nakatani Y, et al. Development of diagnostic techniques for early rheumatoid arthritis using positron emission tomography with [(11)C]PK11195 and [(11)C]ketoprofen tracers. Mol Imaging Biol. 2017;19:746–53.PubMedCrossRef Nozaki S, Ozaki N, Suzuki S, Goto M, Mawatari A, Nakatani Y, et al. Development of diagnostic techniques for early rheumatoid arthritis using positron emission tomography with [(11)C]PK11195 and [(11)C]ketoprofen tracers. Mol Imaging Biol. 2017;19:746–53.PubMedCrossRef
59.
go back to reference Chandrupatla DM, Weijers K, Gent YY, de Greeuw I, Lammertsma AA, Jansen G, et al. Sustained macrophage infiltration upon multiple intra-articular injections: an improved rat model of rheumatoid arthritis for PET guided therapy evaluation. Biomed Res Int. 2015;2015:509295.PubMedPubMedCentralCrossRef Chandrupatla DM, Weijers K, Gent YY, de Greeuw I, Lammertsma AA, Jansen G, et al. Sustained macrophage infiltration upon multiple intra-articular injections: an improved rat model of rheumatoid arthritis for PET guided therapy evaluation. Biomed Res Int. 2015;2015:509295.PubMedPubMedCentralCrossRef
60.
go back to reference Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Kassiou M, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis. Arthritis Res Ther. 2014;16:R70.PubMedPubMedCentralCrossRef Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Kassiou M, et al. Promising potential of new generation translocator protein tracers providing enhanced contrast of arthritis imaging by positron emission tomography in a rat model of arthritis. Arthritis Res Ther. 2014;16:R70.PubMedPubMedCentralCrossRef
61.
go back to reference Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Smith DE, et al. Evaluation of the novel folate receptor ligand [18F]fluoro-PEG-folate for macrophage targeting in a rat model of arthritis. Arthritis Res Ther. 2013;15:R37.PubMedPubMedCentralCrossRef Gent YY, Weijers K, Molthoff CF, Windhorst AD, Huisman MC, Smith DE, et al. Evaluation of the novel folate receptor ligand [18F]fluoro-PEG-folate for macrophage targeting in a rat model of arthritis. Arthritis Res Ther. 2013;15:R37.PubMedPubMedCentralCrossRef
62.
go back to reference Imberti C, Terry SY, Cullinane C, Clarke F, Cornish GH, Ramakrishnan NK, et al. Enhancing PET signal at target tissue in vivo: dendritic and multimeric tris(hydroxypyridinone) conjugates for molecular imaging of alphavbeta3 integrin expression with gallium-68. Bioconjug Chem. 2017;28:481–95.PubMedCrossRef Imberti C, Terry SY, Cullinane C, Clarke F, Cornish GH, Ramakrishnan NK, et al. Enhancing PET signal at target tissue in vivo: dendritic and multimeric tris(hydroxypyridinone) conjugates for molecular imaging of alphavbeta3 integrin expression with gallium-68. Bioconjug Chem. 2017;28:481–95.PubMedCrossRef
63.
go back to reference Zheleznyak A, Wadas TJ, Sherman CD, Wilson JM, Kostenuik PJ, Weilbaecher KN, et al. Integrin alpha(v)beta(3) as a PET imaging biomarker for osteoclast number in mouse models of negative and positive osteoclast regulation. Mol Imaging Biol. 2012;14:500–8.PubMedPubMedCentralCrossRef Zheleznyak A, Wadas TJ, Sherman CD, Wilson JM, Kostenuik PJ, Weilbaecher KN, et al. Integrin alpha(v)beta(3) as a PET imaging biomarker for osteoclast number in mouse models of negative and positive osteoclast regulation. Mol Imaging Biol. 2012;14:500–8.PubMedPubMedCentralCrossRef
64.
go back to reference Notni J, Gassert FT, Steiger K, Sommer P, Weichert W, Rummeny EJ, et al. In vivo imaging of early stages of rheumatoid arthritis by alpha5beta1-integrin-targeted positron emission tomography. EJNMMI Res. 2019;9:87.PubMedPubMedCentralCrossRef Notni J, Gassert FT, Steiger K, Sommer P, Weichert W, Rummeny EJ, et al. In vivo imaging of early stages of rheumatoid arthritis by alpha5beta1-integrin-targeted positron emission tomography. EJNMMI Res. 2019;9:87.PubMedPubMedCentralCrossRef
65.
go back to reference Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13:125–38.PubMedCrossRef Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater. 2014;13:125–38.PubMedCrossRef
66.
69.
go back to reference O’Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.PubMedCrossRef O’Connor JP, Aboagye EO, Adams JE, Aerts HJ, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.PubMedCrossRef
70.
go back to reference Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.PubMedPubMedCentralCrossRef Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3:160018.PubMedPubMedCentralCrossRef
Metadata
Title
EANM recommendations based on systematic analysis of small animal radionuclide imaging in inflammatory musculoskeletal diseases
Authors
Erik H. J. G. Aarntzen
Edel Noriega-Álvarez
Vera Artiko
André H. Dias
Olivier Gheysens
Andor W. J. M. Glaudemans
Chiara Lauri
Giorgio Treglia
Tim van den Wyngaert
Fijs W. B. van Leeuwen
Samantha Y. A. Terry
Publication date
01-12-2021
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2021
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-021-00820-8

Other articles of this Issue 1/2021

EJNMMI Research 1/2021 Go to the issue