Skip to main content
Top
Published in: EJNMMI Research 1/2017

Open Access 01-12-2017 | Original research

3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer

Authors: Sarah Lindgren Belal, May Sadik, Reza Kaboteh, Nezar Hasani, Olof Enqvist, Linus Svärm, Fredrik Kahl, Jane Simonsen, Mads H. Poulsen, Mattias Ohlsson, Poul F. Høilund-Carlsen, Lars Edenbrandt, Elin Trägårdh

Published in: EJNMMI Research | Issue 1/2017

Login to get access

Abstract

Background

Sodium fluoride (NaF) positron emission tomography combined with computer tomography (PET/CT) has shown to be more sensitive than the whole-body bone scan in the detection of skeletal uptake due to metastases in prostate cancer. We aimed to calculate a 3D index for NaF PET/CT and investigate its correlation to the bone scan index (BSI) and overall survival (OS) in a group of patients with prostate cancer.

Methods

NaF PET/CT and bone scans were studied in 48 patients with prostate cancer. Automated segmentation of the thoracic and lumbar spines, sacrum, pelvis, ribs, scapulae, clavicles, and sternum were made in the CT images. Hotspots in the PET images were selected using both a manual and an automated method. The volume of each hotspot localized in the skeleton in the corresponding CT image was calculated. Two PET/CT indices, based on manual (manual PET index) and automatic segmenting using a threshold of SUV 15 (automated PET15 index), were calculated by dividing the sum of all hotspot volumes with the volume of all segmented bones. BSI values were obtained using a software for automated calculations.

Results

BSI, manual PET index, and automated PET15 index were all significantly associated with OS and concordance indices were 0.68, 0.69, and 0.70, respectively. The median BSI was 0.39 and patients with a BSI >0.39 had a significantly shorter median survival time than patients with a BSI <0.39 (2.3 years vs not reached after 5 years of follow-up [p = 0.01]). The median manual PET index was 0.53 and patients with a manual PET index >0.53 had a significantly shorter median survival time than patients with a manual PET index <0.53 (2.5 years vs not reached after 5 years of follow-up [p < 0.001]). The median automated PET15 index was 0.11 and patients with an automated PET15 index >0.11 had a significantly shorter median survival time than patients with an automated PET15 index <0.11 (2.3 years vs not reached after 5 years of follow-up [p < 0.001]).

Conclusions

PET/CT indices based on NaF PET/CT are correlated to BSI and significantly associated with overall survival in patients with prostate cancer.
Literature
1.
go back to reference Ulmert D, Solnes L, Thorek DLJ. Contemporary approaches for imaging skeletal metastasis. Bone Res. 2015;3:15024.CrossRef Ulmert D, Solnes L, Thorek DLJ. Contemporary approaches for imaging skeletal metastasis. Bone Res. 2015;3:15024.CrossRef
2.
go back to reference Anand A, Morris MJ, Kaboteh R, Bath L, Sadik M, Gjertsson P, et al. Analytic validation of the automated bone scan index as an imaging biomarker to standardize quantitative changes in bone scans of patients with metastatic prostate cancer. J Nucl Med. 2016;57(1):41–5.CrossRef Anand A, Morris MJ, Kaboteh R, Bath L, Sadik M, Gjertsson P, et al. Analytic validation of the automated bone scan index as an imaging biomarker to standardize quantitative changes in bone scans of patients with metastatic prostate cancer. J Nucl Med. 2016;57(1):41–5.CrossRef
3.
go back to reference Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol. 2012;62(1):78–84.CrossRef Ulmert D, Kaboteh R, Fox JJ, Savage C, Evans MJ, Lilja H, et al. A novel automated platform for quantifying the extent of skeletal tumour involvement in prostate cancer patients using the Bone Scan Index. Eur Urol. 2012;62(1):78–84.CrossRef
4.
go back to reference Reza M, Bjartell A, Ohlsson M, Kaboteh R, Wollmer P, Edenbrandt L, et al. Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res. 2014;4:58.CrossRef Reza M, Bjartell A, Ohlsson M, Kaboteh R, Wollmer P, Edenbrandt L, et al. Bone Scan Index as a prognostic imaging biomarker during androgen deprivation therapy. EJNMMI Res. 2014;4:58.CrossRef
5.
go back to reference Kaboteh R, Gjertsson P, Leek H, Lomsky M, Ohlsson M, Sjöstrand K, et al. Progression of bone metastases in patients with prostate cancer—automated detection of new lesions and calculation of bone scan index. EJNMMI Res. 2013;3:64.CrossRef Kaboteh R, Gjertsson P, Leek H, Lomsky M, Ohlsson M, Sjöstrand K, et al. Progression of bone metastases in patients with prostate cancer—automated detection of new lesions and calculation of bone scan index. EJNMMI Res. 2013;3:64.CrossRef
6.
go back to reference Reza M, Ohlsson M, Kaboteh R, Anand A, Franck-Lissbrant I, Damber J-E, et al. Bone scan index as an imaging biomarker in metastatic castration-resistant prostate cancer: a multicenter study based on patients treated with abiraterone acetate (Zytiga) in clinical practice. Eur Urol Focus. 2016; doi:10.1016/j.euf.2016.02.013.CrossRef Reza M, Ohlsson M, Kaboteh R, Anand A, Franck-Lissbrant I, Damber J-E, et al. Bone scan index as an imaging biomarker in metastatic castration-resistant prostate cancer: a multicenter study based on patients treated with abiraterone acetate (Zytiga) in clinical practice. Eur Urol Focus. 2016; doi:10.​1016/​j.​euf.​2016.​02.​013.CrossRef
7.
go back to reference Uemura K, Miyoshi Y, Kawahara T, Yoneyama S, Hattori Y, Teranishi J-i, et al. Prognostic value of a computer-aided diagnosis system involving bone scans among men treated with docetaxel for metastatic castration-resistant prostate cancer. BMC Cancer. 2016;16(1):109.CrossRef Uemura K, Miyoshi Y, Kawahara T, Yoneyama S, Hattori Y, Teranishi J-i, et al. Prognostic value of a computer-aided diagnosis system involving bone scans among men treated with docetaxel for metastatic castration-resistant prostate cancer. BMC Cancer. 2016;16(1):109.CrossRef
8.
go back to reference Even-Sapir E, Mishani E, Flusser G, Metser U. 18 F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med. 2007;37(6):462–9.CrossRef Even-Sapir E, Mishani E, Flusser G, Metser U. 18 F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med. 2007;37(6):462–9.CrossRef
9.
go back to reference Wondergem M, van der Zant FM, van der Ploeg T, Knol RJ. A literature review of 18 F-fluoride PET/CT and 18 F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013;34(10):935–45.CrossRef Wondergem M, van der Zant FM, van der Ploeg T, Knol RJ. A literature review of 18 F-fluoride PET/CT and 18 F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun. 2013;34(10):935–45.CrossRef
10.
go back to reference Apolo AB, Lindenberg L, Shih JH, Mena E, Kim JW, Park JC, et al. Prospective study evaluating Na18F PET/CT in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57(6):886–92.CrossRef Apolo AB, Lindenberg L, Shih JH, Mena E, Kim JW, Park JC, et al. Prospective study evaluating Na18F PET/CT in predicting clinical outcomes and survival in advanced prostate cancer. J Nucl Med. 2016;57(6):886–92.CrossRef
11.
go back to reference Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, Fizazi K, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol. 2016;34(12):1402–18.CrossRef Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, Fizazi K, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the prostate cancer clinical trials working group 3. J Clin Oncol. 2016;34(12):1402–18.CrossRef
12.
go back to reference Poulsen MH, Petersen H, Hoilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography (PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int. 2014;114(6):818–23.CrossRef Poulsen MH, Petersen H, Hoilund-Carlsen PF, Jakobsen JS, Gerke O, Karstoft J, et al. Spine metastases in prostate cancer: comparison of technetium-99m-MDP whole-body bone scintigraphy, [(18) F]choline positron emission tomography (PET)/computed tomography (CT) and [(18) F]NaF PET/CT. BJU Int. 2014;114(6):818–23.CrossRef
14.
go back to reference Top A, Hamarneh G, Abugharbieh R. Active learning for interactive 3D image segmentation. Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603–10.PubMed Top A, Hamarneh G, Abugharbieh R. Active learning for interactive 3D image segmentation. Med Image Comput Comput Assist Interv. 2011;14(Pt 3):603–10.PubMed
16.
go back to reference Top A, Hamarneh G, Abugharbieh R. Spotlight: automated confidence-based user guidance for increasing efficiency in interactive 3D image segmentation. Med Image Comput Comput Assist Interv. 2010;6533:204–13. Top A, Hamarneh G, Abugharbieh R. Spotlight: automated confidence-based user guidance for increasing efficiency in interactive 3D image segmentation. Med Image Comput Comput Assist Interv. 2010;6533:204–13.
17.
go back to reference Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press; 2016. Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press; 2016.
18.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2016. doi:10.1007/978-3-319-46723-8_49.CrossRef Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2016. doi:10.​1007/​978-3-319-46723-8_​49.CrossRef
20.
go back to reference Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics. 2008;24(19):2200–8.CrossRef Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? Bioinformatics. 2008;24(19):2200–8.CrossRef
22.
go back to reference Sabbatini P, Larson SM, Kremer A, Zhang ZF, Sun M, Yeung H, et al. Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol. 1999;17(3):948–57.CrossRef Sabbatini P, Larson SM, Kremer A, Zhang ZF, Sun M, Yeung H, et al. Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol. 1999;17(3):948–57.CrossRef
23.
go back to reference Bastawrous S, Bhargava P, Behnia F, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34(5):1295–316.CrossRef Bastawrous S, Bhargava P, Behnia F, Haseley DR. Newer PET application with an old tracer: role of 18F-NaF skeletal PET/CT in oncologic practice. Radiographics. 2014;34(5):1295–316.CrossRef
24.
go back to reference Aydin A, Yu JQ, Zhuang H, Alavi A. Detection of bone marrow metastases by FDG-PET and missed by bone scintigraphy in widespread melanoma. Clin Nucl Med. 2005;30(9):606–7.CrossRef Aydin A, Yu JQ, Zhuang H, Alavi A. Detection of bone marrow metastases by FDG-PET and missed by bone scintigraphy in widespread melanoma. Clin Nucl Med. 2005;30(9):606–7.CrossRef
25.
go back to reference Caglar M, Kupik O, Karabulut E, Høilund-Carlsen PF. Detection of bone metastases in breast cancer patients in the PET/CT era: do we still need the bone scan? Nucl Imagen Mol. 2016;35(1):3–11. Caglar M, Kupik O, Karabulut E, Høilund-Carlsen PF. Detection of bone metastases in breast cancer patients in the PET/CT era: do we still need the bone scan? Nucl Imagen Mol. 2016;35(1):3–11.
26.
go back to reference Miyoshi Y, Yoneyama S, Kawahara T, Hattori Y, Teranishi J, Kondo K, et al. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases. BMC Cancer. 2016; doi: 10.1186/s12885-016-2176-6. Miyoshi Y, Yoneyama S, Kawahara T, Hattori Y, Teranishi J, Kondo K, et al. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases. BMC Cancer. 2016; doi: 10.​1186/​s12885-016-2176-6.
27.
go back to reference Wakabayashi H, Nakajima K, Mizokami A, Namiki M, Inaki A, Taki J, et al. Bone scintigraphy as a new imaging biomarker: the relationship between bone scan index and bone metabolic markers in prostate cancer patients with bone metastases. Ann Nucl Med. 2013;27(9):802–7.CrossRef Wakabayashi H, Nakajima K, Mizokami A, Namiki M, Inaki A, Taki J, et al. Bone scintigraphy as a new imaging biomarker: the relationship between bone scan index and bone metabolic markers in prostate cancer patients with bone metastases. Ann Nucl Med. 2013;27(9):802–7.CrossRef
28.
go back to reference Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16(24):6093–9.CrossRef Meirelles GS, Schoder H, Ravizzini GC, Gonen M, Fox JJ, Humm J, et al. Prognostic value of baseline [18F] fluorodeoxyglucose positron emission tomography and 99mTc-MDP bone scan in progressing metastatic prostate cancer. Clin Cancer Res. 2010;16(24):6093–9.CrossRef
29.
go back to reference Anand A, Morris MJ, Larson SM, Minarik D, Josefsson A, Helgstrand JT, et al. Automated Bone Scan Index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide. EJNMMI Res. 2016;6(1):23.CrossRef Anand A, Morris MJ, Larson SM, Minarik D, Josefsson A, Helgstrand JT, et al. Automated Bone Scan Index as a quantitative imaging biomarker in metastatic castration-resistant prostate cancer patients being treated with enzalutamide. EJNMMI Res. 2016;6(1):23.CrossRef
30.
go back to reference Kaboteh R, Damber JE, Gjertsson P, Hoglund P, Lomsky M, Ohlsson M, et al. Bone Scan Index: a prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res. 2013;3(1):9.CrossRef Kaboteh R, Damber JE, Gjertsson P, Hoglund P, Lomsky M, Ohlsson M, et al. Bone Scan Index: a prognostic imaging biomarker for high-risk prostate cancer patients receiving primary hormonal therapy. EJNMMI Res. 2013;3(1):9.CrossRef
Metadata
Title
3D skeletal uptake of 18F sodium fluoride in PET/CT images is associated with overall survival in patients with prostate cancer
Authors
Sarah Lindgren Belal
May Sadik
Reza Kaboteh
Nezar Hasani
Olof Enqvist
Linus Svärm
Fredrik Kahl
Jane Simonsen
Mads H. Poulsen
Mattias Ohlsson
Poul F. Høilund-Carlsen
Lars Edenbrandt
Elin Trägårdh
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2017
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-017-0264-5

Other articles of this Issue 1/2017

EJNMMI Research 1/2017 Go to the issue