Skip to main content
Top
Published in: Hepatology International 2/2024

20-02-2024 | Artificial Intelligence | Review Article

Artificial intelligence in liver imaging: methods and applications

Authors: Peng Zhang, Chaofei Gao, Yifei Huang, Xiangyi Chen, Zhuoshi Pan, Lan Wang, Di Dong, Shao Li, Xiaolong Qi

Published in: Hepatology International | Issue 2/2024

Login to get access

Abstract

Liver disease is regarded as one of the major health threats to humans. Radiographic assessments hold promise in terms of addressing the current demands for precisely diagnosing and treating liver diseases, and artificial intelligence (AI), which excels at automatically making quantitative assessments of complex medical image characteristics, has made great strides regarding the qualitative interpretation of medical imaging by clinicians. Here, we review the current state of medical-imaging-based AI methodologies and their applications concerning the management of liver diseases. We summarize the representative AI methodologies in liver imaging with focusing on deep learning, and illustrate their promising clinical applications across the spectrum of precise liver disease detection, diagnosis and treatment. We also address the current challenges and future perspectives of AI in liver imaging, with an emphasis on feature interpretability, multimodal data integration and multicenter study. Taken together, it is revealed that AI methodologies, together with the large volume of available medical image data, might impact the future of liver disease care.
Literature
1.
go back to reference Paik JM, Kabbara K, Eberly KE, et al. Global burden of NAFLD and chronic liver disease among adolescents and young adults [J]. Hepatology. 2022;75(5):1204–1217PubMedCrossRef Paik JM, Kabbara K, Eberly KE, et al. Global burden of NAFLD and chronic liver disease among adolescents and young adults [J]. Hepatology. 2022;75(5):1204–1217PubMedCrossRef
2.
go back to reference Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world [J]. J Hepatol. 2019;70(1):151–171PubMedCrossRef Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world [J]. J Hepatol. 2019;70(1):151–171PubMedCrossRef
3.
go back to reference Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma [J]. The Lancet. 2022;400(10360):1345–1362CrossRef Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma [J]. The Lancet. 2022;400(10360):1345–1362CrossRef
4.
go back to reference Hamer OW, Schlottmann K, Sirlin CB, et al. Technology Insight: advances in liver imaging [J]. Nat Clin Pract Gastr. 2007;4(4):215–228 Hamer OW, Schlottmann K, Sirlin CB, et al. Technology Insight: advances in liver imaging [J]. Nat Clin Pract Gastr. 2007;4(4):215–228
7.
go back to reference Shad R, Cunningham JP, Ashley EA, et al. Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging [J]. Nat Mach Intell. 2021;3(11):929–935CrossRef Shad R, Cunningham JP, Ashley EA, et al. Designing clinically translatable artificial intelligence systems for high-dimensional medical imaging [J]. Nat Mach Intell. 2021;3(11):929–935CrossRef
8.
go back to reference Huynh E, Hosny A, Guthier C, et al. Artificial intelligence in radiation oncology [J]. Nat Rev Clin Oncol. 2020;17(12):771–781PubMedCrossRef Huynh E, Hosny A, Guthier C, et al. Artificial intelligence in radiation oncology [J]. Nat Rev Clin Oncol. 2020;17(12):771–781PubMedCrossRef
9.
go back to reference Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proc IEEE. 1998;86(11):2278–2324CrossRef Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proc IEEE. 1998;86(11):2278–2324CrossRef
10.
go back to reference Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: current applications and future directions [J]. PLoS Med. 2018;15(11): e1002707PubMedPubMedCentralCrossRef Yasaka K, Abe O. Deep learning and artificial intelligence in radiology: current applications and future directions [J]. PLoS Med. 2018;15(11): e1002707PubMedPubMedCentralCrossRef
11.
go back to reference Qian XJ, Pei J, Zheng H, et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning [J]. Nat Biomed Eng. 2021;5(6):522PubMedCrossRef Qian XJ, Pei J, Zheng H, et al. Prospective assessment of breast cancer risk from multimodal multiview ultrasound images via clinically applicable deep learning [J]. Nat Biomed Eng. 2021;5(6):522PubMedCrossRef
12.
go back to reference Muse ED, Topol EJ. Digital medicine guiding ultrasound image capture with artificial intelligence [J]. Lancet. 2020;396(10253):749PubMedCrossRef Muse ED, Topol EJ. Digital medicine guiding ultrasound image capture with artificial intelligence [J]. Lancet. 2020;396(10253):749PubMedCrossRef
13.
go back to reference Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology [J]. Nat Rev Clin Oncol. 2019;16(11):703–715PubMedPubMedCentralCrossRef Bera K, Schalper KA, Rimm DL, et al. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology [J]. Nat Rev Clin Oncol. 2019;16(11):703–715PubMedPubMedCentralCrossRef
15.
go back to reference Tschandl P, Rinner C, Apalla Z, et al. Human-computer collaboration for skin cancer recognition [J]. Nat Med. 2020;26(8):1229PubMedCrossRef Tschandl P, Rinner C, Apalla Z, et al. Human-computer collaboration for skin cancer recognition [J]. Nat Med. 2020;26(8):1229PubMedCrossRef
16.
go back to reference Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study [J]. Lancet. 2020;395(10231):1208–1216PubMedCrossRef Hofman MS, Lawrentschuk N, Francis RJ, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study [J]. Lancet. 2020;395(10231):1208–1216PubMedCrossRef
17.
go back to reference Harvey H, Topol EJ. More than meets the AI: refining image acquisition and resolution [J]. Lancet. 2020;396(10261):1479PubMedCrossRef Harvey H, Topol EJ. More than meets the AI: refining image acquisition and resolution [J]. Lancet. 2020;396(10261):1479PubMedCrossRef
22.
go back to reference Berzin TM, Topol EJ. Adding artificial intelligence to gastrointestinal endoscopy [J]. Lancet. 2020;395(10223):485PubMedCrossRef Berzin TM, Topol EJ. Adding artificial intelligence to gastrointestinal endoscopy [J]. Lancet. 2020;395(10223):485PubMedCrossRef
23.
go back to reference Luetkens JA, Nowak S, Mesropyan N, et al. Deep learning supports the differentiation of alcoholic and other-than-alcoholic cirrhosis based on MRI [J]. Sci Rep-Uk. 2022;12(1):8297CrossRef Luetkens JA, Nowak S, Mesropyan N, et al. Deep learning supports the differentiation of alcoholic and other-than-alcoholic cirrhosis based on MRI [J]. Sci Rep-Uk. 2022;12(1):8297CrossRef
24.
go back to reference Wu N, Phang J, Park J, et al. Deep neural networks improve radiologists performance in breast cancer screening [J]. IEEE T Med Imaging. 2020;39(4):1184–1194CrossRef Wu N, Phang J, Park J, et al. Deep neural networks improve radiologists performance in breast cancer screening [J]. IEEE T Med Imaging. 2020;39(4):1184–1194CrossRef
25.
go back to reference Wang Y, Wang N, Xu M, et al. Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound [J]. IEEE T Med Imaging. 2020;39(4):866–876CrossRef Wang Y, Wang N, Xu M, et al. Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound [J]. IEEE T Med Imaging. 2020;39(4):866–876CrossRef
26.
go back to reference Kumar A, Fulham M, Feng DG, et al. Co-learning feature fusion maps from PET-CT images of lung cancer [J]. IEEE T Med Imaging. 2020;39(1):204–217CrossRef Kumar A, Fulham M, Feng DG, et al. Co-learning feature fusion maps from PET-CT images of lung cancer [J]. IEEE T Med Imaging. 2020;39(1):204–217CrossRef
27.
go back to reference Jiang J, Hu YC, Liu CJ, et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images [J]. Ieee T Med Imaging. 2019;38(1):134–144CrossRef Jiang J, Hu YC, Liu CJ, et al. Multiple resolution residually connected feature streams for automatic lung tumor segmentation from CT images [J]. Ieee T Med Imaging. 2019;38(1):134–144CrossRef
28.
go back to reference Trayanova NA, Topol EJ. Deep learning a person’s risk of sudden cardiac death [J]. Lancet. 2022;399(10339):1933PubMedCrossRef Trayanova NA, Topol EJ. Deep learning a person’s risk of sudden cardiac death [J]. Lancet. 2022;399(10339):1933PubMedCrossRef
29.
go back to reference Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides [J]. Hepatology. 2020;72(6):2000–2013PubMedCrossRef Saillard C, Schmauch B, Laifa O, et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides [J]. Hepatology. 2020;72(6):2000–2013PubMedCrossRef
30.
go back to reference Dong D, Fang MJ, Tang L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J]. Ann Oncol. 2020;31(7):912–920PubMedCrossRef Dong D, Fang MJ, Tang L, et al. Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J]. Ann Oncol. 2020;31(7):912–920PubMedCrossRef
31.
go back to reference Dong D, Tang L, Li ZY, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J]. Ann Oncol. 2019;30(3):431–438PubMedPubMedCentralCrossRef Dong D, Tang L, Li ZY, et al. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer [J]. Ann Oncol. 2019;30(3):431–438PubMedPubMedCentralCrossRef
32.
go back to reference Esteva A, Topol E. Digital medicine can skin cancer diagnosis be transformed by AI? [J]. Lancet. 2019;394(10211):1795CrossRef Esteva A, Topol E. Digital medicine can skin cancer diagnosis be transformed by AI? [J]. Lancet. 2019;394(10211):1795CrossRef
33.
go back to reference Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data [J]. Nat Rev Genet. 2010;11(10):733–739PubMedCrossRef Leek JT, Scharpf RB, Bravo HC, et al. Tackling the widespread and critical impact of batch effects in high-throughput data [J]. Nat Rev Genet. 2010;11(10):733–739PubMedCrossRef
34.
go back to reference Lu MY, Chen TY, Williamson DFK, et al. AI-based pathology predicts origins for cancers of unknown primary [J]. Nature. 2021;594(7861):106PubMedCrossRef Lu MY, Chen TY, Williamson DFK, et al. AI-based pathology predicts origins for cancers of unknown primary [J]. Nature. 2021;594(7861):106PubMedCrossRef
36.
go back to reference Yeo CT, Macdonald A, Ungi T, et al. Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery [J]. J Surg Educ. 2018;75(3):792–797PubMedCrossRef Yeo CT, Macdonald A, Ungi T, et al. Utility of 3D reconstruction of 2D liver computed tomography/magnetic resonance images as a surgical planning tool for residents in liver resection surgery [J]. J Surg Educ. 2018;75(3):792–797PubMedCrossRef
37.
go back to reference Bilic P, Christ P F, Vorontsov E, et al. The liver tumor segmentation benchmark (lits) [J]. arXiv preprint arXiv:190104056. 2019. Bilic P, Christ P F, Vorontsov E, et al. The liver tumor segmentation benchmark (lits) [J]. arXiv preprint arXiv:​190104056. 2019.
38.
go back to reference Heimann T, Van Ginneken B, Styner MA, et al. Comparison and evaluation of methods for liver segmentation from CT datasets [J]. IEEE T Med Imaging. 2009;28(8):1251–1265CrossRef Heimann T, Van Ginneken B, Styner MA, et al. Comparison and evaluation of methods for liver segmentation from CT datasets [J]. IEEE T Med Imaging. 2009;28(8):1251–1265CrossRef
39.
go back to reference Kavur AE, Gezer NS, Bariş M, et al. CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation [J]. Med Image Anal. 2021;69: 101950PubMedCrossRef Kavur AE, Gezer NS, Bariş M, et al. CHAOS challenge-combined (CT-MR) healthy abdominal organ segmentation [J]. Med Image Anal. 2021;69: 101950PubMedCrossRef
40.
go back to reference Lu C, Mandal M. Automated segmentation and analysis of the epidermis area in skin histopathological images [J]. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5355–5359PubMed Lu C, Mandal M. Automated segmentation and analysis of the epidermis area in skin histopathological images [J]. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5355–5359PubMed
41.
go back to reference Lindman K, Rose JF, Lindvall M, et al. Annotations, ontologies, and whole slide images–development of an annotated ontology-driven whole slide image library of normal and abnormal human tissue [J]. J Pathol Inform. 2019;10(1):22PubMedPubMedCentralCrossRef Lindman K, Rose JF, Lindvall M, et al. Annotations, ontologies, and whole slide images–development of an annotated ontology-driven whole slide image library of normal and abnormal human tissue [J]. J Pathol Inform. 2019;10(1):22PubMedPubMedCentralCrossRef
42.
go back to reference Padmakala S, Subasini CA, Karuppiah SP, et al. ESVM-SWRF: ensemble SVM-based sample weighted random forests for liver disease classification [J]. Int J Numer Method Biomed Eng. 2021;37(12): e3525PubMedCrossRef Padmakala S, Subasini CA, Karuppiah SP, et al. ESVM-SWRF: ensemble SVM-based sample weighted random forests for liver disease classification [J]. Int J Numer Method Biomed Eng. 2021;37(12): e3525PubMedCrossRef
43.
go back to reference He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770–8. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770–8.
44.
go back to reference Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks [J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261–9 Huang G, Liu Z, Weinberger KQ. Densely connected convolutional networks [J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 2261–9
45.
go back to reference Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data [J]. J Hematol Oncol. 2021;14(1):154PubMedPubMedCentralCrossRef Gao R, Zhao S, Aishanjiang K, et al. Deep learning for differential diagnosis of malignant hepatic tumors based on multi-phase contrast-enhanced CT and clinical data [J]. J Hematol Oncol. 2021;14(1):154PubMedPubMedCentralCrossRef
46.
47.
go back to reference Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale [J]. arXiv preprint arXiv:201011929. 2020. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: transformers for image recognition at scale [J]. arXiv preprint arXiv:​201011929. 2020.
48.
go back to reference Sun C, Xu A, Liu D, et al. Deep learning-based classification of liver cancer histopathology images using only global labels [J]. IEEE J Biomed Health Inform. 2020;24(6):1643–1651PubMedCrossRef Sun C, Xu A, Liu D, et al. Deep learning-based classification of liver cancer histopathology images using only global labels [J]. IEEE J Biomed Health Inform. 2020;24(6):1643–1651PubMedCrossRef
49.
go back to reference Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database; proceedings of the 2009 IEEE conference on computer vision and pattern recognition, F, 2009 [C]. IEEE. Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database; proceedings of the 2009 IEEE conference on computer vision and pattern recognition, F, 2009 [C]. IEEE.
50.
go back to reference Wang X, Yang S, Zhang J, et al. Transpath: Transformer-based self-supervised learning for histopathological image classification; proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, F, 2021 [C]. Springer. Wang X, Yang S, Zhang J, et al. Transpath: Transformer-based self-supervised learning for histopathological image classification; proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, F, 2021 [C]. Springer.
52.
go back to reference Krishan A, Mittal D. Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering [J]. Biomed Eng-Biomed Te. 2020;65(3):301–313CrossRef Krishan A, Mittal D. Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering [J]. Biomed Eng-Biomed Te. 2020;65(3):301–313CrossRef
54.
55.
go back to reference Sandfort V, Yan K, Graffy PM, et al. Use of variational autoencoders with unsupervised learning to detect incorrect organ segmentations at CT [J]. Radiol Artif Intell. 2021;3(4): e200218PubMedPubMedCentralCrossRef Sandfort V, Yan K, Graffy PM, et al. Use of variational autoencoders with unsupervised learning to detect incorrect organ segmentations at CT [J]. Radiol Artif Intell. 2021;3(4): e200218PubMedPubMedCentralCrossRef
56.
go back to reference Doman K, Konishi T, Mekada Y. Lesion image synthesis using DCGANs for metastatic liver cancer detection [J]. Adv Exp Med Biol. 2020;1213:95–106PubMedCrossRef Doman K, Konishi T, Mekada Y. Lesion image synthesis using DCGANs for metastatic liver cancer detection [J]. Adv Exp Med Biol. 2020;1213:95–106PubMedCrossRef
57.
go back to reference Xue LY, Jiang ZY, Fu TT, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis [J]. Eur Radiol. 2020;30(5):2973–2983PubMedPubMedCentralCrossRef Xue LY, Jiang ZY, Fu TT, et al. Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis [J]. Eur Radiol. 2020;30(5):2973–2983PubMedPubMedCentralCrossRef
58.
go back to reference Meng D, Zhang LB, Cao GT, et al. Liver fibrosis classification based on transfer learning and FCNet for ultrasound images [J]. IEEE Access. 2017;5:5804–5810 Meng D, Zhang LB, Cao GT, et al. Liver fibrosis classification based on transfer learning and FCNet for ultrasound images [J]. IEEE Access. 2017;5:5804–5810
59.
go back to reference Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge [J]. Int J Comput Vision. 2015;115(3):211–252CrossRef Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge [J]. Int J Comput Vision. 2015;115(3):211–252CrossRef
60.
go back to reference Liu F, Samsonov A, Chen LH, et al. SANTIS: sampling- augmented neural network with incoherent structure for MR image reconstruction [J]. Magn Reson Med. 2019;82(5):1890–1904PubMedPubMedCentralCrossRef Liu F, Samsonov A, Chen LH, et al. SANTIS: sampling- augmented neural network with incoherent structure for MR image reconstruction [J]. Magn Reson Med. 2019;82(5):1890–1904PubMedPubMedCentralCrossRef
61.
go back to reference Choi KJ, Jang JK, Lee SS, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT Images in the liver [J]. Radiology. 2018;289(3):688–697PubMedCrossRef Choi KJ, Jang JK, Lee SS, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT Images in the liver [J]. Radiology. 2018;289(3):688–697PubMedCrossRef
64.
go back to reference Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules [J]. Eur Radiol. 2020;30(1):558–570PubMedCrossRef Mokrane FZ, Lu L, Vavasseur A, et al. Radiomics machine-learning signature for diagnosis of hepatocellular carcinoma in cirrhotic patients with indeterminate liver nodules [J]. Eur Radiol. 2020;30(1):558–570PubMedCrossRef
65.
go back to reference Chiang MF, Tseng TK, Shih CW, et al. Clinical and contrast-enhanced image features in the prediction model for the detection of small hepatocellular carcinomas [J]. J Cancer. 2020;11(24):7166–7175PubMedPubMedCentralCrossRef Chiang MF, Tseng TK, Shih CW, et al. Clinical and contrast-enhanced image features in the prediction model for the detection of small hepatocellular carcinomas [J]. J Cancer. 2020;11(24):7166–7175PubMedPubMedCentralCrossRef
66.
go back to reference Preis O, Blake MA, Scott JA. Neural network evaluation of PET scans of the liver: a potentially useful adjunct in clinical interpretation [J]. Radiology. 2011;258(3):714–721PubMedCrossRef Preis O, Blake MA, Scott JA. Neural network evaluation of PET scans of the liver: a potentially useful adjunct in clinical interpretation [J]. Radiology. 2011;258(3):714–721PubMedCrossRef
67.
go back to reference Liu YN, Ning ZY, Ormeci N, et al. Deep convolutional neural network-aided detection of portal hypertension in patients with cirrhosis [J]. Clin Gastroenterol Hepatol. 2020;18(13):2998PubMedCrossRef Liu YN, Ning ZY, Ormeci N, et al. Deep convolutional neural network-aided detection of portal hypertension in patients with cirrhosis [J]. Clin Gastroenterol Hepatol. 2020;18(13):2998PubMedCrossRef
69.
go back to reference Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI [J]. Eur Radiol. 2019;29(7):3338–3347PubMedPubMedCentralCrossRef Hamm CA, Wang CJ, Savic LJ, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI [J]. Eur Radiol. 2019;29(7):3338–3347PubMedPubMedCentralCrossRef
70.
go back to reference Zhang F, Yang J, Nezami N, et al. Liver tissue classification using an auto-context-based deep neural network with a multi-phase training framework. In Patch-Based Techniques in Medical Imaging: 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4 2018. Springer: International Publishing; 2018. pp. 59–66 Zhang F, Yang J, Nezami N, et al. Liver tissue classification using an auto-context-based deep neural network with a multi-phase training framework. In Patch-Based Techniques in Medical Imaging: 4th International Workshop, Patch-MI 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4 2018. Springer: International Publishing; 2018. pp. 59–66
71.
go back to reference Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features [J]. Eur Radiol. 2019;29(7):3348–3357PubMedPubMedCentralCrossRef Wang CJ, Hamm CA, Savic LJ, et al. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features [J]. Eur Radiol. 2019;29(7):3348–3357PubMedPubMedCentralCrossRef
72.
go back to reference Wang K, Lu X, Zhou H, et al. Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study [J]. Gut. 2019;68(4):729–741PubMedCrossRef Wang K, Lu X, Zhou H, et al. Deep learning radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study [J]. Gut. 2019;68(4):729–741PubMedCrossRef
74.
go back to reference Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images [J]. Clin Hemorheol Micro. 2018;69(3):343–354 Guo LH, Wang D, Qian YY, et al. A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images [J]. Clin Hemorheol Micro. 2018;69(3):343–354
75.
go back to reference Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning [J]. Diagn Interv Imag. 2019;100(4):227–233CrossRef Schmauch B, Herent P, Jehanno P, et al. Diagnosis of focal liver lesions from ultrasound using deep learning [J]. Diagn Interv Imag. 2019;100(4):227–233CrossRef
77.
go back to reference Muller L, Kloeckner R, Mahringer-Kunz A, et al. Fully automated AI-based splenic segmentation for predicting survival and estimating the risk of hepatic decompensation in TACE patients with HCC [J]. Eur Radiol. 2022;32(9):6302–6313PubMedPubMedCentralCrossRef Muller L, Kloeckner R, Mahringer-Kunz A, et al. Fully automated AI-based splenic segmentation for predicting survival and estimating the risk of hepatic decompensation in TACE patients with HCC [J]. Eur Radiol. 2022;32(9):6302–6313PubMedPubMedCentralCrossRef
78.
go back to reference Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study [J]. EBioMedicine. 2019;50:156–165PubMedPubMedCentralCrossRef Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: a multi-institutional study [J]. EBioMedicine. 2019;50:156–165PubMedPubMedCentralCrossRef
79.
go back to reference Song DJ, Wang YY, Wang WT, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters [J]. J Cancer Res Clin. 2021;147(12):3757–3767CrossRef Song DJ, Wang YY, Wang WT, et al. Using deep learning to predict microvascular invasion in hepatocellular carcinoma based on dynamic contrast-enhanced MRI combined with clinical parameters [J]. J Cancer Res Clin. 2021;147(12):3757–3767CrossRef
80.
go back to reference Jiang YQ, Cao SE, Cao SL, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning [J]. J Cancer Res Clin. 2021;147(3):821–833CrossRef Jiang YQ, Cao SE, Cao SL, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning [J]. J Cancer Res Clin. 2021;147(3):821–833CrossRef
81.
go back to reference Zhang YX, Lv XF, Qiu JL, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma [J]. J Magn Reson Imaging. 2021;54(1):134–143PubMedCrossRef Zhang YX, Lv XF, Qiu JL, et al. Deep learning with 3D convolutional neural network for noninvasive prediction of microvascular invasion in hepatocellular carcinoma [J]. J Magn Reson Imaging. 2021;54(1):134–143PubMedCrossRef
82.
go back to reference Ibragimov B, Toesca D, Chang D, et al. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT [J]. Med Phys. 2018;45(10):4763–4774PubMedPubMedCentralCrossRef Ibragimov B, Toesca D, Chang D, et al. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT [J]. Med Phys. 2018;45(10):4763–4774PubMedPubMedCentralCrossRef
84.
go back to reference Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging [J]. Eur Radiol. 2020;30(1):413–424PubMedCrossRef Peng J, Kang S, Ning Z, et al. Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging [J]. Eur Radiol. 2020;30(1):413–424PubMedCrossRef
85.
go back to reference Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept [J]. J Vasc Interv Radiol. 2018;29(6):850–857PubMedPubMedCentralCrossRef Abajian A, Murali N, Savic LJ, et al. Predicting treatment response to intra-arterial therapies for hepatocellular carcinoma with the use of supervised machine learning—an artificial intelligence concept [J]. J Vasc Interv Radiol. 2018;29(6):850–857PubMedPubMedCentralCrossRef
87.
go back to reference Oezdemir I, Wessner CE, Shaw C, et al. Tumor vascular networks depicted in contrast-enhanced ultrasound images as a predictor for transarterial chemoembolization treatment response [J]. Ultrasound Med Biol. 2020;46(9):2276–2286PubMedPubMedCentralCrossRef Oezdemir I, Wessner CE, Shaw C, et al. Tumor vascular networks depicted in contrast-enhanced ultrasound images as a predictor for transarterial chemoembolization treatment response [J]. Ultrasound Med Biol. 2020;46(9):2276–2286PubMedPubMedCentralCrossRef
88.
go back to reference Taylor-Weiner A, Pokkalla H, Han L, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH [J]. Hepatology. 2021;74(1):133–147PubMedCrossRef Taylor-Weiner A, Pokkalla H, Han L, et al. A machine learning approach enables quantitative measurement of liver histology and disease monitoring in NASH [J]. Hepatology. 2021;74(1):133–147PubMedCrossRef
89.
go back to reference Liver EAS. EASL clinical practice guidelines: management of hepatocellular carcinoma [J]. J Hepatol. 2018;69(1):182–236CrossRef Liver EAS. EASL clinical practice guidelines: management of hepatocellular carcinoma [J]. J Hepatol. 2018;69(1):182–236CrossRef
90.
go back to reference Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma [J]. Hepatology. 2018;67(1):358–380PubMedCrossRef Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma [J]. Hepatology. 2018;67(1):358–380PubMedCrossRef
91.
go back to reference Li XH, Liang Q, Chen TW, et al. Diagnostic value of imaging examinations in patients with primary hepatocellular carcinoma [J]. World J Clin Cases. 2018;6(9):242–248PubMedPubMedCentralCrossRef Li XH, Liang Q, Chen TW, et al. Diagnostic value of imaging examinations in patients with primary hepatocellular carcinoma [J]. World J Clin Cases. 2018;6(9):242–248PubMedPubMedCentralCrossRef
92.
go back to reference Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy [J]. Annu Rev Med. 2010;61:317–328PubMedPubMedCentralCrossRef Villanueva A, Minguez B, Forner A, et al. Hepatocellular carcinoma: novel molecular approaches for diagnosis, prognosis, and therapy [J]. Annu Rev Med. 2010;61:317–328PubMedPubMedCentralCrossRef
93.
go back to reference Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications [J]. Transl Res. 2009;154(6):277–287PubMedCrossRef Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications [J]. Transl Res. 2009;154(6):277–287PubMedCrossRef
94.
go back to reference Gevaert O, Xu JJ, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results [J]. Radiology. 2012;264(2):387–396PubMedPubMedCentralCrossRef Gevaert O, Xu JJ, Hoang CD, et al. Non-small cell lung cancer: identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results [J]. Radiology. 2012;264(2):387–396PubMedPubMedCentralCrossRef
96.
go back to reference Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma [J]. J Hepatol. 2022;76(6):1348–1361PubMedPubMedCentralCrossRef Calderaro J, Seraphin TP, Luedde T, et al. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma [J]. J Hepatol. 2022;76(6):1348–1361PubMedPubMedCentralCrossRef
97.
98.
go back to reference Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications [J]. CA-Cancer J Clin. 2019;69(2):127–157PubMedPubMedCentralCrossRef Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications [J]. CA-Cancer J Clin. 2019;69(2):127–157PubMedPubMedCentralCrossRef
99.
go back to reference Barrett T, De Rooij M, Giganti F, et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway [J]. Nat Rev Urol. 2022;20:9–22PubMedCrossRef Barrett T, De Rooij M, Giganti F, et al. Quality checkpoints in the MRI-directed prostate cancer diagnostic pathway [J]. Nat Rev Urol. 2022;20:9–22PubMedCrossRef
100.
go back to reference Liccardo D, Mosca A, Petroni S, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD) [J]. J Gastroenterol. 2015;50(8):903–912PubMedCrossRef Liccardo D, Mosca A, Petroni S, et al. The association between retinal microvascular changes, metabolic risk factors, and liver histology in pediatric patients with non-alcoholic fatty liver disease (NAFLD) [J]. J Gastroenterol. 2015;50(8):903–912PubMedCrossRef
101.
go back to reference Li JX, Zhang B, Zhang D. Joint discriminative and collaborative representation for fatty liver disease diagnosis [J]. Expert Syst Appl. 2017;89:31–40CrossRef Li JX, Zhang B, Zhang D. Joint discriminative and collaborative representation for fatty liver disease diagnosis [J]. Expert Syst Appl. 2017;89:31–40CrossRef
Metadata
Title
Artificial intelligence in liver imaging: methods and applications
Authors
Peng Zhang
Chaofei Gao
Yifei Huang
Xiangyi Chen
Zhuoshi Pan
Lan Wang
Di Dong
Shao Li
Xiaolong Qi
Publication date
20-02-2024
Publisher
Springer India
Published in
Hepatology International / Issue 2/2024
Print ISSN: 1936-0533
Electronic ISSN: 1936-0541
DOI
https://doi.org/10.1007/s12072-023-10630-w

Other articles of this Issue 2/2024

Hepatology International 2/2024 Go to the issue

Abstracts

Abstracts

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.