Skip to main content
Top
Published in: Current Osteoporosis Reports 6/2015

01-12-2015 | Skeletal Development (E Schipani and E Zelzer, Section Editors)

Articular Cartilage: Structural and Developmental Intricacies and Questions

Authors: Rebekah S. Decker, Eiki Koyama, Maurizio Pacifici

Published in: Current Osteoporosis Reports | Issue 6/2015

Login to get access

Abstract

Articular cartilage has obvious and fundamental roles in joint function and body movement. Much is known about its organization, extracellular matrix, and phenotypic properties of its cells, but less is known about its developmental biology. Incipient articular cartilage in late embryos and neonates is a thin tissue with scanty matrix and small cells, while adult tissue is thick and zonal and contains large cells and abundant matrix. What remains unclear is not only how incipient articular cartilage forms, but how it then grows and matures into a functional, complex, and multifaceted structure. This review focuses on recent and exciting discoveries on the developmental biology and growth of articular cartilage, frames them within the context of classic studies, and points to lingering questions and research goals. Advances in this research area will have significant relevance to basic science, and also considerable translational value to design superior cartilage repair and regeneration strategies.
Literature
1.
go back to reference Lyons TJ, McClure SF, Stoddart RW, McClure J. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord. 2006;7(1):52.PubMedCentralCrossRefPubMed Lyons TJ, McClure SF, Stoddart RW, McClure J. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord. 2006;7(1):52.PubMedCentralCrossRefPubMed
2.
go back to reference Hunziker E, Quinn T, Häuselmann H-J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil. 2002;10(7):564–72.CrossRefPubMed Hunziker E, Quinn T, Häuselmann H-J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr Cartil. 2002;10(7):564–72.CrossRefPubMed
3.
go back to reference Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med. 1974;291(24):1285–92.CrossRefPubMed Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med. 1974;291(24):1285–92.CrossRefPubMed
4.
go back to reference Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.PubMedCentralCrossRefPubMed Williams R, Khan IM, Richardson K, et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS One. 2010;5(10):e13246.PubMedCentralCrossRefPubMed
5.
go back to reference Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(6):889–97.CrossRefPubMed Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population. J Cell Sci. 2004;117(6):889–97.CrossRefPubMed
6.
go back to reference Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004;50(5):1522–32.CrossRefPubMed Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004;50(5):1522–32.CrossRefPubMed
7.
go back to reference Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ. The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther. 2012;42(3):243–53.CrossRefPubMed Tetteh ES, Bajaj S, Ghodadra NS, Cole BJ. The basic science and surgical treatment options for articular cartilage injuries of the knee. J Orthop Sports Phys Ther. 2012;42(3):243–53.CrossRefPubMed
9.
go back to reference Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater. 2013;25(248):e67. Johnstone B, Alini M, Cucchiarini M, et al. Tissue engineering for articular cartilage repair–the state of the art. Eur Cell Mater. 2013;25(248):e67.
10.
go back to reference Caldwell K, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthr Cartil. 2015;23(3):351–62.CrossRefPubMed Caldwell K, Wang J. Cell-based articular cartilage repair: the link between development and regeneration. Osteoarthr Cartil. 2015;23(3):351–62.CrossRefPubMed
11.
go back to reference Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil. 2007;15(4):403–13.CrossRefPubMed Hunziker EB, Kapfinger E, Geiss J. The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil. 2007;15(4):403–13.CrossRefPubMed
12.
go back to reference Weiss C, Rosenberg L, Helfet AJ. An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg. 1968;50(4):663–74.PubMed Weiss C, Rosenberg L, Helfet AJ. An ultrastructural study of normal young adult human articular cartilage. J Bone Joint Surg. 1968;50(4):663–74.PubMed
13.
go back to reference Gannon A, Nagel T, Bell A, Avery N, Kelly D. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cell Mater. 2014;29:105–23. Gannon A, Nagel T, Bell A, Avery N, Kelly D. Postnatal changes to the mechanical properties of articular cartilage are driven by the evolution of its collagen network. Eur Cell Mater. 2014;29:105–23.
14.
go back to reference Helminen HJ, Hyttinen MM, Lammi MJ, et al. Regular joint loading in youth assists in the establishment and strengthening of the collagen network of articular cartilage and contributes to the prevention of osteoarthrosis later in life: a hypothesis. J Bone Miner Metab. 2000;18(5):245–57.CrossRefPubMed Helminen HJ, Hyttinen MM, Lammi MJ, et al. Regular joint loading in youth assists in the establishment and strengthening of the collagen network of articular cartilage and contributes to the prevention of osteoarthrosis later in life: a hypothesis. J Bone Miner Metab. 2000;18(5):245–57.CrossRefPubMed
15.
go back to reference Mienaltowski MJ, Huang L, Stromberg AJ, MacLeod JN. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet Disord. 2008;9:149.PubMedCentralCrossRefPubMed Mienaltowski MJ, Huang L, Stromberg AJ, MacLeod JN. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet Disord. 2008;9:149.PubMedCentralCrossRefPubMed
16.
go back to reference Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol. 1977;39:115–27.PubMed Holder N. An experimental investigation into the early development of the chick elbow joint. J Embryol Exp Morphol. 1977;39:115–27.PubMed
17.
go back to reference Mitrovic D. Development of the diarthrodial joints in the rat embryo. Am J Anat. 1978;151(4):475–85.CrossRefPubMed Mitrovic D. Development of the diarthrodial joints in the rat embryo. Am J Anat. 1978;151(4):475–85.CrossRefPubMed
18.
go back to reference Craig FM, Bentley G, Archer CW. The spatial and temporal pattern of collagens I and II and keratan sulphate in the developing chick metatarsophalangeal joint. Development. 1987;99(3):383–91.PubMed Craig FM, Bentley G, Archer CW. The spatial and temporal pattern of collagens I and II and keratan sulphate in the developing chick metatarsophalangeal joint. Development. 1987;99(3):383–91.PubMed
19.
go back to reference Nalin AM, Greenlee Jr TK, Sandell LJ. Collagen gene expression during development of avian synovial joints: transient expression of types II and XI collagen genes in the joint capsule. Dev Dyn. 1995;203(3):352–62.CrossRefPubMed Nalin AM, Greenlee Jr TK, Sandell LJ. Collagen gene expression during development of avian synovial joints: transient expression of types II and XI collagen genes in the joint capsule. Dev Dyn. 1995;203(3):352–62.CrossRefPubMed
20.
go back to reference Hyde G, Boot‐Handford RP, Wallis GA. Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat. 2008;213(5):531–8.PubMedCentralPubMed Hyde G, Boot‐Handford RP, Wallis GA. Col2a1 lineage tracing reveals that the meniscus of the knee joint has a complex cellular origin. J Anat. 2008;213(5):531–8.PubMedCentralPubMed
21.
go back to reference Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis. 2010;48(11):635–44.PubMedCentralCrossRefPubMed Soeda T, Deng JM, de Crombrugghe B, Behringer RR, Nakamura T, Akiyama H. Sox9-expressing precursors are the cellular origin of the cruciate ligament of the knee joint and the limb tendons. Genesis. 2010;48(11):635–44.PubMedCentralCrossRefPubMed
22.
go back to reference Zhang Q, Cigan AD, Marrero L, et al. Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis. 2011;49(2):75–82.CrossRefPubMed Zhang Q, Cigan AD, Marrero L, et al. Expression of doublecortin reveals articular chondrocyte lineage in mouse embryonic limbs. Genesis. 2011;49(2):75–82.CrossRefPubMed
23.
go back to reference Storm EE, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development. 1996;122(12):3969–79.PubMed Storm EE, Kingsley DM. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development. 1996;122(12):3969–79.PubMed
24.
go back to reference Koyama E, Shibukawa Y, Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.PubMedCentralCrossRefPubMed Koyama E, Shibukawa Y, Nagayama M, et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev Biol. 2008;316(1):62–73.PubMedCentralCrossRefPubMed
25.
26.
go back to reference St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–86.PubMedCentralCrossRefPubMed St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 1999;13(16):2072–86.PubMedCentralCrossRefPubMed
27.
go back to reference Koyama E, Ochiai T, Rountree RB, et al. Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci. 2007;1116:100–12.PubMedCentralCrossRefPubMed Koyama E, Ochiai T, Rountree RB, et al. Synovial joint formation during mouse limb skeletogenesis: roles of Indian hedgehog signaling. Ann N Y Acad Sci. 2007;1116:100–12.PubMedCentralCrossRefPubMed
28.
go back to reference Decker RS, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10.CrossRefPubMed Decker RS, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10.CrossRefPubMed
29.••
go back to reference Li T, Longobardi L, Myers TJ, et al. Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. 2012;22(9):1342–59. Specialized niches of joint progenitor cells give rise to unique tissues.PubMedCentralCrossRef Li T, Longobardi L, Myers TJ, et al. Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. 2012;22(9):1342–59. Specialized niches of joint progenitor cells give rise to unique tissues.PubMedCentralCrossRef
30.••
go back to reference Jenner F, IJpma A, Cleary M, et al. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev. 2014;23(16):1883–98. Spatially defined cells within the murine knee interzone have unique roles in joint development.PubMedCentralCrossRefPubMed Jenner F, IJpma A, Cleary M, et al. Differential gene expression of the intermediate and outer interzone layers of developing articular cartilage in murine embryos. Stem Cells Dev. 2014;23(16):1883–98. Spatially defined cells within the murine knee interzone have unique roles in joint development.PubMedCentralCrossRefPubMed
31.
go back to reference Ray A, Singh PNP, Sohaskey ML, Harland RM, Bandyopadhyay A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development. 2015;142(6):1169–79.CrossRefPubMed Ray A, Singh PNP, Sohaskey ML, Harland RM, Bandyopadhyay A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development. 2015;142(6):1169–79.CrossRefPubMed
32.
go back to reference Dy P, Wang W, Bhattaram P, et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.PubMedCentralCrossRefPubMed Dy P, Wang W, Bhattaram P, et al. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell. 2012;22(3):597–609.PubMedCentralCrossRefPubMed
33.••
go back to reference Kan A, Tabin CJ. c-Jun is required for the specification of joint cell fates. Genes Dev. 2013;27(5):514–24. Transcription facter c-Jun works upstream of Wnt9a to determine joint progenitor cell fate.PubMedCentralCrossRefPubMed Kan A, Tabin CJ. c-Jun is required for the specification of joint cell fates. Genes Dev. 2013;27(5):514–24. Transcription facter c-Jun works upstream of Wnt9a to determine joint progenitor cell fate.PubMedCentralCrossRefPubMed
34.
go back to reference Fell HB, Canti R. Experiments on the development in vitro of the avian knee-joint. Proc R Soc Lond B Biol Sci. 1934;116(799):316–51.CrossRef Fell HB, Canti R. Experiments on the development in vitro of the avian knee-joint. Proc R Soc Lond B Biol Sci. 1934;116(799):316–51.CrossRef
35.
go back to reference Persson M. The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat. 1983;137(Pt 3):591.PubMedCentralPubMed Persson M. The role of movements in the development of sutural and diarthrodial joints tested by long-term paralysis of chick embryos. J Anat. 1983;137(Pt 3):591.PubMedCentralPubMed
36.
go back to reference Dowthwaite GP, Edwards JC, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem. 1998;46(5):641–51.CrossRefPubMed Dowthwaite GP, Edwards JC, Pitsillides AA. An essential role for the interaction between hyaluronan and hyaluronan binding proteins during joint development. J Histochem Cytochem. 1998;46(5):641–51.CrossRefPubMed
37.
go back to reference Osborne A, Lamb K, Lewthwaite J, Dowthwaite G, Pitsillides A. Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact. 2002;2(5):448–56.PubMed Osborne A, Lamb K, Lewthwaite J, Dowthwaite G, Pitsillides A. Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. J Musculoskelet Neuronal Interact. 2002;2(5):448–56.PubMed
38.
go back to reference Kahn J, Shwartz Y, Blitz E, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16(5):734–43.CrossRefPubMed Kahn J, Shwartz Y, Blitz E, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell. 2009;16(5):734–43.CrossRefPubMed
39.
go back to reference Tamamura Y, Otani T, Kanatani N, et al. Developmental regulation of Wnt/β-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem. 2005;280(19):19185–95.CrossRefPubMed Tamamura Y, Otani T, Kanatani N, et al. Developmental regulation of Wnt/β-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem. 2005;280(19):19185–95.CrossRefPubMed
40.
go back to reference Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. III. Mature Articular Cartilage. J Bone Joint Surg. 1963;45(3):529–40. Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. III. Mature Articular Cartilage. J Bone Joint Surg. 1963;45(3):529–40.
41.
go back to reference Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. II. Repair in Immature Cartilage. J Bone Joint Surg. 1962;44(4):688–98. Mankin HJ. Localization of tritiated thymidine in articular cartilage of rabbits. II. Repair in Immature Cartilage. J Bone Joint Surg. 1962;44(4):688–98.
42.
go back to reference Archer CW, Morrison H, Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat. 1994;184(Pt 3):447.PubMedCentralPubMed Archer CW, Morrison H, Pitsillides AA. Cellular aspects of the development of diarthrodial joints and articular cartilage. J Anat. 1994;184(Pt 3):447.PubMedCentralPubMed
43.
go back to reference Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl). 2001;203(6):469–79.CrossRef Hayes AJ, MacPherson S, Morrison H, Dowthwaite G, Archer CW. The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl). 2001;203(6):469–79.CrossRef
44.
go back to reference Kozhemyakina E, Zhang M, Ionescu A, et al. Identification of a prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol. 2015;67(5):1261–73.CrossRefPubMed Kozhemyakina E, Zhang M, Ionescu A, et al. Identification of a prg4-expressing articular cartilage progenitor cell population in mice. Arthritis Rheumatol. 2015;67(5):1261–73.CrossRefPubMed
45.
go back to reference Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenet Cell Genet. 2000;90(3–4):291–7.CrossRefPubMed Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenet Cell Genet. 2000;90(3–4):291–7.CrossRefPubMed
46.
go back to reference Iwamoto M, Tamamura Y, Koyama E, et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol. 2007;305(1):40–51.PubMedCentralCrossRefPubMed Iwamoto M, Tamamura Y, Koyama E, et al. Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol. 2007;305(1):40–51.PubMedCentralCrossRefPubMed
47.
go back to reference Rhee DK, Marcelino J, Baker M, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115(3):622–31.PubMedCentralCrossRefPubMed Rhee DK, Marcelino J, Baker M, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest. 2005;115(3):622–31.PubMedCentralCrossRefPubMed
48.
go back to reference Lefebvre V, Bhattaram P. Editorial: prg4-expressing cells: articular stem cells or differentiated progeny in the articular chondrocyte lineage? Arthritis Rheumatol. 2015;67(5):1151–4.CrossRefPubMed Lefebvre V, Bhattaram P. Editorial: prg4-expressing cells: articular stem cells or differentiated progeny in the articular chondrocyte lineage? Arthritis Rheumatol. 2015;67(5):1151–4.CrossRefPubMed
49.
go back to reference Wilsman NJ, Leiferman EM, Fry M, Farnum CE, Barreto C. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res. 1996;14(6):927–36.CrossRefPubMed Wilsman NJ, Leiferman EM, Fry M, Farnum CE, Barreto C. Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res. 1996;14(6):927–36.CrossRefPubMed
50.
go back to reference Breur G, VanEnkevort B, Farnum C, Wilsman N. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res. 1991;9(3):348–59.CrossRefPubMed Breur G, VanEnkevort B, Farnum C, Wilsman N. Linear relationship between the volume of hypertrophic chondrocytes and the rate of longitudinal bone growth in growth plates. J Orthop Res. 1991;9(3):348–59.CrossRefPubMed
51.
go back to reference Kuhn JL, Delacey JH, Leenellett EE. Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand white rabbits of varying ages. J Orthop Res. 1996;14(5):706–11.CrossRefPubMed Kuhn JL, Delacey JH, Leenellett EE. Relationship between bone growth rate and hypertrophic chondrocyte volume in New Zealand white rabbits of varying ages. J Orthop Res. 1996;14(5):706–11.CrossRefPubMed
52.
go back to reference Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature. 2013;495(7441):375–8.PubMedCentralCrossRefPubMed Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature. 2013;495(7441):375–8.PubMedCentralCrossRefPubMed
53.
go back to reference Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z Zellforsch Mikrosk Anat. 1925;2(5):783–862.CrossRef Benninghoff A. Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. Z Zellforsch Mikrosk Anat. 1925;2(5):783–862.CrossRef
54.
go back to reference Lui JC, Chau M, Chen W, et al. Spatial regulation of gene expression during growth of articular cartilage in juvenile mice. Pediatr Res. 2015;77(3):406–15.CrossRefPubMed Lui JC, Chau M, Chen W, et al. Spatial regulation of gene expression during growth of articular cartilage in juvenile mice. Pediatr Res. 2015;77(3):406–15.CrossRefPubMed
55.
go back to reference Amanatullah DF, Yamane S, Reddi AH. Distinct patterns of gene expression in the superficial, middle and deep zones of bovine articular cartilage. J Tissue Eng Regen Med. 2014;8(7):505–14.PubMed Amanatullah DF, Yamane S, Reddi AH. Distinct patterns of gene expression in the superficial, middle and deep zones of bovine articular cartilage. J Tissue Eng Regen Med. 2014;8(7):505–14.PubMed
56.
go back to reference Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48.CrossRefPubMed Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48.CrossRefPubMed
57.
go back to reference Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rhematol. 2005;32(5):876–86. Tchetina EV, Squires G, Poole AR. Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rhematol. 2005;32(5):876–86.
58.
go back to reference Loeser RF, Olex AL, McNulty MA, et al. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One. 2013;8(1):e54633.PubMedCentralCrossRefPubMed Loeser RF, Olex AL, McNulty MA, et al. Disease progression and phasic changes in gene expression in a mouse model of osteoarthritis. PLoS One. 2013;8(1):e54633.PubMedCentralCrossRefPubMed
59.
go back to reference Glasson SS, Askew R, Sheppard B, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644–8.CrossRefPubMed Glasson SS, Askew R, Sheppard B, et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 2005;434(7033):644–8.CrossRefPubMed
60.
go back to reference Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15(12):1421–5.CrossRefPubMed Lin AC, Seeto BL, Bartoszko JM, et al. Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med. 2009;15(12):1421–5.CrossRefPubMed
61.
go back to reference Macica C, Liang G, Nasiri A, Broadus AE. Genetic evidence of the regulatory role of parathyroid hormone–related protein in articular chondrocyte maintenance in an experimental mouse model. Arthritis Rheum. 2011;63(11):3333–43.PubMedCentralCrossRefPubMed Macica C, Liang G, Nasiri A, Broadus AE. Genetic evidence of the regulatory role of parathyroid hormone–related protein in articular chondrocyte maintenance in an experimental mouse model. Arthritis Rheum. 2011;63(11):3333–43.PubMedCentralCrossRefPubMed
62.
go back to reference Sampson ER, Hilton MJ, Tian Y, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3(101):101ra193.CrossRef Sampson ER, Hilton MJ, Tian Y, et al. Teriparatide as a chondroregenerative therapy for injury-induced osteoarthritis. Sci Transl Med. 2011;3(101):101ra193.CrossRef
63.••
go back to reference Ruan MZ, Erez A, Guse K, et al. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med. 2013;5(176):176ra134. Prg4 gene therapy is potentially a novel tool for prevention of post-traumatic osteoarthrits.CrossRef Ruan MZ, Erez A, Guse K, et al. Proteoglycan 4 expression protects against the development of osteoarthritis. Sci Transl Med. 2013;5(176):176ra134. Prg4 gene therapy is potentially a novel tool for prevention of post-traumatic osteoarthrits.CrossRef
64.
go back to reference Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2(11):827–37.CrossRefPubMed Sharrocks AD. The ETS-domain transcription factor family. Nat Rev Mol Cell Biol. 2001;2(11):827–37.CrossRefPubMed
65.••
go back to reference Ohta Y, Okabe T, Larmour C, et al. Articular cartilage endurance and resistance to osteoarthritic changes require transcription factor Erg. Arthritis Rheum. 2015. doi:10.1002/art.39243. Erg is required for maintenance of permanent articular cartilage. Ohta Y, Okabe T, Larmour C, et al. Articular cartilage endurance and resistance to osteoarthritic changes require transcription factor Erg. Arthritis Rheum. 2015. doi:10.​1002/​art.​39243. Erg is required for maintenance of permanent articular cartilage.
66.
go back to reference Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290(2):763–9.CrossRefPubMed Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun. 2002;290(2):763–9.CrossRefPubMed
67.
go back to reference Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil. 2002;10(3):199–206.CrossRefPubMed Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil. 2002;10(3):199–206.CrossRefPubMed
68.
go back to reference Musumeci G, Castrogiovanni P, Leonardi R, et al. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review. World J Orthop. 2014;5(2):80.PubMedCentralCrossRefPubMed Musumeci G, Castrogiovanni P, Leonardi R, et al. New perspectives for articular cartilage repair treatment through tissue engineering: A contemporary review. World J Orthop. 2014;5(2):80.PubMedCentralCrossRefPubMed
71.••
go back to reference Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair. Science. 2012;336(6082):717–21. The novel small-molecule Kartogenin has chondroprotective effects in mouse OA models.CrossRefPubMed Johnson K, Zhu S, Tremblay MS, et al. A stem cell-based approach to cartilage repair. Science. 2012;336(6082):717–21. The novel small-molecule Kartogenin has chondroprotective effects in mouse OA models.CrossRefPubMed
72.
go back to reference Decker RS, Koyama E, Enomoto-Iwamoto M, et al. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol. 2014;395(2):255–67.CrossRefPubMed Decker RS, Koyama E, Enomoto-Iwamoto M, et al. Mouse limb skeletal growth and synovial joint development are coordinately enhanced by Kartogenin. Dev Biol. 2014;395(2):255–67.CrossRefPubMed
Metadata
Title
Articular Cartilage: Structural and Developmental Intricacies and Questions
Authors
Rebekah S. Decker
Eiki Koyama
Maurizio Pacifici
Publication date
01-12-2015
Publisher
Springer US
Published in
Current Osteoporosis Reports / Issue 6/2015
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-015-0290-z

Other articles of this Issue 6/2015

Current Osteoporosis Reports 6/2015 Go to the issue

Therapeutics and Medical Management (E Shane and R Adler, Section Editors)

How Long to Treat with Denosumab

Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)

Pathophysiology of Vascular Calcification

Bone and Joint Pain (PW Mantyh and TJ Schnitzer, Section Editors)

A Mechanism-Based Approach to the Management of Osteoarthritis Pain

Epidemiology and Pathophysiology (J Cauley and B Dawson-Hughes, Section Editors)

Bone Density Screening and Re-screening in Postmenopausal Women and Older Men

Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)

Prebiotic and Probiotic Regulation of Bone Health: Role of the Intestine and its Microbiome

Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)

Vibration Therapy to Prevent Bone Loss and Falls: Mechanisms and Efficacy