Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2006

Open Access 01-12-2006 | Research article

The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces

Authors: Tim J Lyons, Sheena F McClure, Robert W Stoddart, John McClure

Published in: BMC Musculoskeletal Disorders | Issue 1/2006

Login to get access

Abstract

Background

The chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line (between the calcified cartilage and the subchondral bone) and the subchondral bone. A detailed knowledge of the structure, function and pathophysiology of the normal chondro-osseous junction is essential for an understanding of the pathogenesis of osteoarthrosis.

Methods

Full thickness samples from human knee joints were processed and embedded in paraffin wax. One hundred serial sections (10 μm thick) were taken from the chondro-osseous junctional region of a block from the medial tibial plateau of a normal joint. They were stained with haematoxylin and eosin and photographed. For a simple physical reconstruction images of each 10th sequential tissue section were printed and the areas of the photomicrographs containing the chondro-osseous junctional region were cut out and then overlaid so as to create a three-dimensional (3D) model of this region. A 3D reconstruction was also made using computer modelling.

Results

Histochemical staining revealed some instances where prolongations of uncalcified cartilage, delineated by the tidemark, dipped into the calcified cartilage and, in places, abutted onto subchondral bone and marrow spaces. Small areas of uncalcified cartilage containing chondrocytes (virtual islands) were seen, in two-dimensional (2D) sections, to be apparently entombed in calcified matrix. The simple physical 3D reconstruction confirmed that these prolongations of uncalcified cartilage were continuous with the cartilage of zone IV and demonstrated that the virtual islands of uncalcified cartilage were cross-sections of these prolongations. The computer-generated 3D reconstructions clearly demonstrated that the uncalcified prolongations ran through the calcified cartilage to touch bone and marrow spaces and confirmed that the apparent entombment of chondrocytes was a 2D artefact.

Conclusion

This study demonstrates that the chondro-osseous junctional region is more complex than previously described. The tidemark is a clearly defined boundary delineating uncalcified from calcified cartilage. It is not a straight line across a joint, but a complex three-dimensional structure that follows uncalcified cartilage prolongations dipping down through the calcified cartilage to abut onto subjacent bone or marrow spaces.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gannon FH, Sokoloff L: Histomorphometry of the aging human patella: histologic criteria and controls. Osteoarthritis Cartilage. 1999, 7: 173-181. 10.1053/joca.1998.0206.CrossRefPubMed Gannon FH, Sokoloff L: Histomorphometry of the aging human patella: histologic criteria and controls. Osteoarthritis Cartilage. 1999, 7: 173-181. 10.1053/joca.1998.0206.CrossRefPubMed
2.
go back to reference Havelka S, Horn V, Spohrova D, Valough P: The calcified-non calcified cartilage interface; the tidemark. Acta Biol Hung. 1984, 35: 271-279.PubMed Havelka S, Horn V, Spohrova D, Valough P: The calcified-non calcified cartilage interface; the tidemark. Acta Biol Hung. 1984, 35: 271-279.PubMed
3.
go back to reference Scott JE, Dorling J: Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochemie. 1965, 5: 221-233. 10.1007/BF00306130.CrossRefPubMed Scott JE, Dorling J: Differential staining of acid glycosaminoglycans (mucopolysaccharides) by alcian blue in salt solutions. Histochemie. 1965, 5: 221-233. 10.1007/BF00306130.CrossRefPubMed
4.
go back to reference Green WT, Garland NM, Eanes ED, Sokoloff L: Microradiography study of the calcified layer of articular cartilage. Arch Pathol. 1970, 90: 151-158.PubMed Green WT, Garland NM, Eanes ED, Sokoloff L: Microradiography study of the calcified layer of articular cartilage. Arch Pathol. 1970, 90: 151-158.PubMed
5.
go back to reference Dmitrovsky E, Lane LB, Bullough PG: The characterisation of the tidemark in human articular cartilage. Metab Bone Dis Relat Res. 1978, 1: 115-118. 10.1016/0221-8747(78)90047-4.CrossRef Dmitrovsky E, Lane LB, Bullough PG: The characterisation of the tidemark in human articular cartilage. Metab Bone Dis Relat Res. 1978, 1: 115-118. 10.1016/0221-8747(78)90047-4.CrossRef
6.
go back to reference Lyons TJ, Stoddart RW, McClure SF, McClure J: The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol. 2005, 36: 207-215. 10.1007/s10735-005-3283-x.CrossRefPubMed Lyons TJ, Stoddart RW, McClure SF, McClure J: The tidemark of the chondro-osseous junction of the normal human knee joint. J Mol Histol. 2005, 36: 207-215. 10.1007/s10735-005-3283-x.CrossRefPubMed
7.
go back to reference Inoue H: Alterations in the collagen framework of osteoarthritic cartilage and subchondral bone. Int Orthop. 1981, 5: 47-52. 10.1007/BF00286099.CrossRefPubMed Inoue H: Alterations in the collagen framework of osteoarthritic cartilage and subchondral bone. Int Orthop. 1981, 5: 47-52. 10.1007/BF00286099.CrossRefPubMed
8.
go back to reference Boskey AL, Bullough , Dmitrovsky E: The biochemistry of the mineralisation of bone. Metab Bone Dis Relat Res. 1980, 2: 61-67. Boskey AL, Bullough , Dmitrovsky E: The biochemistry of the mineralisation of bone. Metab Bone Dis Relat Res. 1980, 2: 61-67.
9.
go back to reference Teshima R: Studies on calcification in normal and osteoarthrotic articular cartilage – ultrastructure and chemical analysis. J Jap Orthop Ass. 1977, 1952: 93-100. Teshima R: Studies on calcification in normal and osteoarthrotic articular cartilage – ultrastructure and chemical analysis. J Jap Orthop Ass. 1977, 1952: 93-100.
10.
go back to reference Spinelli R: New aspects of the structure of articular cartilage. The 'tidemark' seen on the scanning electron microscope. Ital J Orthop Traumatol. 1976, 2: 393-401.PubMed Spinelli R: New aspects of the structure of articular cartilage. The 'tidemark' seen on the scanning electron microscope. Ital J Orthop Traumatol. 1976, 2: 393-401.PubMed
11.
go back to reference Teshima R, Nawata K, Hagino H, Morio Y, Inoue M, Irizawa Y: Effects of weight bearing on the tidemark and osteochondral junction of articular cartilage: histomorphometric analyses of 7 normal femoral heads. Acta Orthop Scand. 1999, 70: 381-386.CrossRefPubMed Teshima R, Nawata K, Hagino H, Morio Y, Inoue M, Irizawa Y: Effects of weight bearing on the tidemark and osteochondral junction of articular cartilage: histomorphometric analyses of 7 normal femoral heads. Acta Orthop Scand. 1999, 70: 381-386.CrossRefPubMed
12.
go back to reference Bonde HV, Talman ML, Kofoed H: The area of the tidemark in osteoarthritis – a three-dimensional stereological study in 21 patients. APMIS. 2005, 113: 349-352. 10.1111/j.1600-0463.2005.apm_113506.x.CrossRefPubMed Bonde HV, Talman ML, Kofoed H: The area of the tidemark in osteoarthritis – a three-dimensional stereological study in 21 patients. APMIS. 2005, 113: 349-352. 10.1111/j.1600-0463.2005.apm_113506.x.CrossRefPubMed
13.
go back to reference Gardner DL, Mazuryk R, O'Connor P, Orford CR: Anatomical changes and pathogenesis of OA in man, with particular reference to the hip and knee joints. Studies in osteoarthrosis: pathogenesis, intervention, assessment. Edited by: Lott DJ, Jasani MK, Birdwood GFB. 1987, Chichester: John Wiley & Sons, 21-48. Gardner DL, Mazuryk R, O'Connor P, Orford CR: Anatomical changes and pathogenesis of OA in man, with particular reference to the hip and knee joints. Studies in osteoarthrosis: pathogenesis, intervention, assessment. Edited by: Lott DJ, Jasani MK, Birdwood GFB. 1987, Chichester: John Wiley & Sons, 21-48.
Metadata
Title
The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces
Authors
Tim J Lyons
Sheena F McClure
Robert W Stoddart
John McClure
Publication date
01-12-2006
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2006
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/1471-2474-7-52

Other articles of this Issue 1/2006

BMC Musculoskeletal Disorders 1/2006 Go to the issue