Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Arterial Diseases | Research

Rare and common coding variants in lipid metabolism-related genes and their association with coronary artery disease

Authors: Wei Li, Yongyi Wang, Ritai Huang, Feng Lian, Genxing Xu, Weijun Wang, Song Xue

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

Coronary artery disease (CAD) is a complex disease that is influenced by environmental and genetic factors. In this study, we aimed to investigate the relationship between coding variants in lipid metabolism-related genes and CAD in a Chinese Han population.

Methods

A total of 252 individuals were recruited for this study, including 120 CAD patients and 132 healthy control individuals. Rare and common coding variants in 12 lipid metabolism-related genes (ANGPTL3, ANGPTL4, APOA1, APOA5, APOC1, APOC3, CETP, LDLR, LIPC, LPL, PCSK9 and SCARB1) were detected via next-generation sequencing (NGS)-based targeted sequencing. Associations between common variants and CAD were evaluated by Fisher’s exact test. A gene-based association test of rare variants was performed by the sequence kernel association test-optimal (SKAT-O test).

Results

We found 51 rare variants and 17 common variants in this study. One common missense variant, LIPC rs6083, was significantly associated with CAD after Bonferroni correction (OR = 0.47, 95% CI = 0.29–0.76, p = 1.9 × 10− 3). Thirty-three nonsynonymous rare variants were identified, including two novel variants located in the ANGPTL4 (p.Gly47Glu) and SCARB1 (p.Leu233Phe) genes. We did not find a significant association between rare variants and CAD via gene-based analysis via the SKAT-O test.

Conclusions

Targeted sequencing is a powerful tool for identifying rare and common variants in CAD. The common missense variant LIPC rs6083 confers protection against CAD. The clinical relevance of rare variants in CAD aetiology needs to be investigated in larger sample sizes in the future.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017[J]. Lancet. 2018;392(10159):1736–88.CrossRef Roth GA, Abate D, Abate KH, et al. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of Disease Study 2017[J]. Lancet. 2018;392(10159):1736–88.CrossRef
2.
go back to reference Wang F, Xu C, He Q, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population[J]. Nat Genet. 2011;43(4):345–9.PubMedCrossRef Wang F, Xu C, He Q, et al. Genome-wide association identifies a susceptibility locus for coronary artery disease in the Chinese Han population[J]. Nat Genet. 2011;43(4):345–9.PubMedCrossRef
3.
5.
go back to reference Consortium T, W T C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J]. Nature. 2007;447(7145):661–78.CrossRef Consortium T, W T C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls[J]. Nature. 2007;447(7145):661–78.CrossRef
6.
go back to reference Consortium TCG. A genome-wide association study in europeans and South asians identifies five new loci for coronary artery disease[J]. Nat Genet. 2011;43(4):339–44.CrossRef Consortium TCG. A genome-wide association study in europeans and South asians identifies five new loci for coronary artery disease[J]. Nat Genet. 2011;43(4):339–44.CrossRef
7.
go back to reference Nikpay M, Goel A, Won HH, et al. A comprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease[J]. Nat Genet. 2015;47(10):1121–30.PubMedPubMedCentralCrossRef Nikpay M, Goel A, Won HH, et al. A comprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease[J]. Nat Genet. 2015;47(10):1121–30.PubMedPubMedCentralCrossRef
8.
go back to reference Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for mendelian disease gene discovery[J]. Nat Rev Genet. 2011;12(11):745–55.PubMedCrossRef Bamshad MJ, Ng SB, Bigham AW, et al. Exome sequencing as a tool for mendelian disease gene discovery[J]. Nat Rev Genet. 2011;12(11):745–55.PubMedCrossRef
9.
go back to reference Sadananda SN, Foo JN, Toh MT, et al. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol[J]. J Lipid Res. 2015;56(10):1993–2001.PubMedPubMedCentralCrossRef Sadananda SN, Foo JN, Toh MT, et al. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol[J]. J Lipid Res. 2015;56(10):1993–2001.PubMedPubMedCentralCrossRef
10.
go back to reference Safarova MS, Fan X, Austin EE, Arteriosclerosis, et al. Thromb Vascular Biology. 2019;39(6):1227–33.CrossRef Safarova MS, Fan X, Austin EE, Arteriosclerosis, et al. Thromb Vascular Biology. 2019;39(6):1227–33.CrossRef
11.
go back to reference Sikkema-Raddatz B, Johansson LF, de Boer EN, et al. Targeted next-generation sequencing can replace Sanger sequencing in Clinical Diagnostics[J]. Hum Mutat. 2013;34(7):1035–42.PubMedCrossRef Sikkema-Raddatz B, Johansson LF, de Boer EN, et al. Targeted next-generation sequencing can replace Sanger sequencing in Clinical Diagnostics[J]. Hum Mutat. 2013;34(7):1035–42.PubMedCrossRef
12.
go back to reference Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and Coronary Disease[J]. N Engl J Med. 2014;371(1):22–31.PubMedCrossRef Crosby J, Peloso GM, Auer PL, et al. Loss-of-function mutations in APOC3, triglycerides, and Coronary Disease[J]. N Engl J Med. 2014;371(1):22–31.PubMedCrossRef
13.
go back to reference Dewey FE, Gusarova V, O Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery Disease[J]. N Engl J Med. 2016;374(12):1123–33.PubMedPubMedCentralCrossRef Dewey FE, Gusarova V, O Dushlaine C, et al. Inactivating variants in ANGPTL4 and risk of coronary artery Disease[J]. N Engl J Med. 2016;374(12):1123–33.PubMedPubMedCentralCrossRef
14.
go back to reference Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing,ANGPTL3 mutations, and familial combined Hypolipidemia[J]. N Engl J Med. 2010;363(23):2220–7.PubMedPubMedCentralCrossRef Musunuru K, Pirruccello JP, Do R, et al. Exome sequencing,ANGPTL3 mutations, and familial combined Hypolipidemia[J]. N Engl J Med. 2010;363(23):2220–7.PubMedPubMedCentralCrossRef
15.
go back to reference Do R, Stitziel NO, Won H, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction[J]. Nature. 2015;518(7537):102–6.PubMedCrossRef Do R, Stitziel NO, Won H, et al. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction[J]. Nature. 2015;518(7537):102–6.PubMedCrossRef
16.
17.
go back to reference Stitziel NO, Stirrups KE, Masca NG, et al. Coding variation inANGPTL4,LPL, and SVEP1 and the risk of Coronary Disease[J]. N Engl J Med. 2016;374(12):1134–44.PubMedCrossRef Stitziel NO, Stirrups KE, Masca NG, et al. Coding variation inANGPTL4,LPL, and SVEP1 and the risk of Coronary Disease[J]. N Engl J Med. 2016;374(12):1134–44.PubMedCrossRef
18.
go back to reference Helgadottir A, Gretarsdottir S, Thorleifsson G, et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease[J]. Nat Genet. 2016;48(6):634–9.PubMedPubMedCentralCrossRef Helgadottir A, Gretarsdottir S, Thorleifsson G, et al. Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease[J]. Nat Genet. 2016;48(6):634–9.PubMedPubMedCentralCrossRef
19.
go back to reference Wang F, Wang IZ, Ellis S, et al. Analysis of causal effect of APOA5 variants on premature coronary artery disease[J]. Ann Hum Genet. 2018;82(6):437–47.PubMedPubMedCentralCrossRef Wang F, Wang IZ, Ellis S, et al. Analysis of causal effect of APOA5 variants on premature coronary artery disease[J]. Ann Hum Genet. 2018;82(6):437–47.PubMedPubMedCentralCrossRef
20.
go back to reference Soufi M, Sattler AM, Kurt B, et al. Mutation screening of the APOA5 gene in subjects with coronary artery Disease[J]. J Investig Med. 2015;60(7):1015–9.CrossRef Soufi M, Sattler AM, Kurt B, et al. Mutation screening of the APOA5 gene in subjects with coronary artery Disease[J]. J Investig Med. 2015;60(7):1015–9.CrossRef
21.
go back to reference Goyal S, Tanigawa Y, Zhang W, et al. APOC3 genetic variation, serum triglycerides, and risk of coronary artery disease in Asian indians, europeans, and other ethnic groups[J]. Lipids Health Dis. 2021;20(1):113.PubMedPubMedCentralCrossRef Goyal S, Tanigawa Y, Zhang W, et al. APOC3 genetic variation, serum triglycerides, and risk of coronary artery disease in Asian indians, europeans, and other ethnic groups[J]. Lipids Health Dis. 2021;20(1):113.PubMedPubMedCentralCrossRef
22.
go back to reference Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, et al. Loss-of-function mutations inAPOC3 and risk of ischemic vascular Disease[J]. N Engl J Med. 2014;371(1):32–41.PubMedCrossRef Jørgensen AB, Frikke-Schmidt R, Nordestgaard BG, et al. Loss-of-function mutations inAPOC3 and risk of ischemic vascular Disease[J]. N Engl J Med. 2014;371(1):32–41.PubMedCrossRef
23.
go back to reference Boekholdt SM, Kuivenhoven J, Hovingh GK, et al. CETP gene variation: relation to lipid parameters and cardiovascular risk[J]. Curr Opin Lipidol. 2004;15(4):393–8.PubMedCrossRef Boekholdt SM, Kuivenhoven J, Hovingh GK, et al. CETP gene variation: relation to lipid parameters and cardiovascular risk[J]. Curr Opin Lipidol. 2004;15(4):393–8.PubMedCrossRef
24.
go back to reference Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels.[J]. J Clin Invest. 1996;97(12):2917–23.PubMedPubMedCentralCrossRef Zhong S, Sharp DS, Grove JS, et al. Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl ester transfer protein gene despite increased HDL levels.[J]. J Clin Invest. 1996;97(12):2917–23.PubMedPubMedCentralCrossRef
25.
go back to reference Nomura A, Won H, Khera AV, et al. Protein-truncating variants at the Cholesteryl Ester Transfer Protein Gene and risk for Coronary Heart Disease[J]. Circul Res. 2017;121(1):81–8.CrossRef Nomura A, Won H, Khera AV, et al. Protein-truncating variants at the Cholesteryl Ester Transfer Protein Gene and risk for Coronary Heart Disease[J]. Circul Res. 2017;121(1):81–8.CrossRef
26.
go back to reference Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride-lowering LPL variants and LDL-C–Lowering LDLR variants with risk of Coronary Heart Disease[J]. JAMA. 2019;321(4):364.PubMedPubMedCentralCrossRef Ference BA, Kastelein JJP, Ray KK, et al. Association of triglyceride-lowering LPL variants and LDL-C–Lowering LDLR variants with risk of Coronary Heart Disease[J]. JAMA. 2019;321(4):364.PubMedPubMedCentralCrossRef
27.
go back to reference Baroni MG, Berni A, Romeo S, Genetic study of common variants at the Apo E, Apo AI, Apo CIII, Apo B et al. lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): variation in LIPC gene associates with clinical outcomes in patients with established CAD[J]. BMC Medical Genetics, 2003,4(1):8. Baroni MG, Berni A, Romeo S, Genetic study of common variants at the Apo E, Apo AI, Apo CIII, Apo B et al. lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): variation in LIPC gene associates with clinical outcomes in patients with established CAD[J]. BMC Medical Genetics, 2003,4(1):8.
28.
go back to reference Khera AV, Won H, Peloso GM, et al. Association of Rare and Common Variation in the lipoprotein lipase gene with coronary artery Disease[J]. JAMA. 2017;317(9):937.PubMedPubMedCentralCrossRef Khera AV, Won H, Peloso GM, et al. Association of Rare and Common Variation in the lipoprotein lipase gene with coronary artery Disease[J]. JAMA. 2017;317(9):937.PubMedPubMedCentralCrossRef
29.
go back to reference Koenig SN, Sucharski HC, Jose EM, et al. Inherited variants in SCARB1 cause severe early-onset coronary artery Disease[J]. Circul Res. 2021;129(2):296–307.CrossRef Koenig SN, Sucharski HC, Jose EM, et al. Inherited variants in SCARB1 cause severe early-onset coronary artery Disease[J]. Circul Res. 2021;129(2):296–307.CrossRef
30.
go back to reference Zanoni P, Khetarpal SA, Larach DB, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease[J]. Science. 2016;351(6278):1166–71.ADSPubMedPubMedCentralCrossRef Zanoni P, Khetarpal SA, Larach DB, et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease[J]. Science. 2016;351(6278):1166–71.ADSPubMedPubMedCentralCrossRef
31.
go back to reference Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test[J]. Am J Hum Genet. 2011;89(1):82–93.PubMedPubMedCentralCrossRef Wu MC, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test[J]. Am J Hum Genet. 2011;89(1):82–93.PubMedPubMedCentralCrossRef
32.
go back to reference Adzhubei I, Jordan DM, Sunyaev SR. Predicting Functional Effect of human missense mutations using PolyPhen-2[J]. Curr Protocols Hum Genet. 2013;76(1):t7–t20. Adzhubei I, Jordan DM, Sunyaev SR. Predicting Functional Effect of human missense mutations using PolyPhen-2[J]. Curr Protocols Hum Genet. 2013;76(1):t7–t20.
34.
go back to reference Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Sci. 2015;17(5):405–24. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Sci. 2015;17(5):405–24.
35.
go back to reference Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer[J]. Gene. 1988;73(1):237–44.PubMedCrossRef Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer[J]. Gene. 1988;73(1):237–44.PubMedCrossRef
36.
go back to reference Kobayashi J, Miyashita K, Nakajima K, et al. Hepatic lipase: a comprehensive view of its role on plasma lipid and lipoprotein Metabolism[J]. J Atheroscler Thromb. 2015;22(10):1001–11.PubMedCrossRef Kobayashi J, Miyashita K, Nakajima K, et al. Hepatic lipase: a comprehensive view of its role on plasma lipid and lipoprotein Metabolism[J]. J Atheroscler Thromb. 2015;22(10):1001–11.PubMedCrossRef
37.
go back to reference Annema W, Tietge UJ. Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport[J]. Curr Atheroscler Rep. 2011;13(3):257–65.PubMedPubMedCentralCrossRef Annema W, Tietge UJ. Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport[J]. Curr Atheroscler Rep. 2011;13(3):257–65.PubMedPubMedCentralCrossRef
38.
go back to reference Isaacs A, Sayed-Tabatabaei FA, Njajou OT, et al. The – 514 C->T hepatic lipase promoter region polymorphism and plasma lipids: a meta-analysis[J]. J Clin Endocrinol Metab. 2004;89(8):3858–63.PubMedCrossRef Isaacs A, Sayed-Tabatabaei FA, Njajou OT, et al. The – 514 C->T hepatic lipase promoter region polymorphism and plasma lipids: a meta-analysis[J]. J Clin Endocrinol Metab. 2004;89(8):3858–63.PubMedCrossRef
39.
go back to reference Hodoglugil U, Williamson DW, Mahley RW. Polymorphisms in the hepatic lipase gene affect plasma HDL-cholesterol levels in a Turkish population[J]. J Lipid Res. 2010;51(2):422–30.PubMedPubMedCentralCrossRef Hodoglugil U, Williamson DW, Mahley RW. Polymorphisms in the hepatic lipase gene affect plasma HDL-cholesterol levels in a Turkish population[J]. J Lipid Res. 2010;51(2):422–30.PubMedPubMedCentralCrossRef
40.
go back to reference Li W, Wang Y, Huang R, et al. Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease[J]. Mol Biol Rep. 2022;49(10):9373–8.PubMedCrossRef Li W, Wang Y, Huang R, et al. Association of lipid metabolism-related gene promoter methylation with risk of coronary artery disease[J]. Mol Biol Rep. 2022;49(10):9373–8.PubMedCrossRef
41.
go back to reference Boyko AR, Williamson SH, Indap AR, et al. Assessing the evolutionary impact of amino acid mutations in the Human Genome[J]. PLoS Genet. 2008;4(5):e1000083.PubMedPubMedCentralCrossRef Boyko AR, Williamson SH, Indap AR, et al. Assessing the evolutionary impact of amino acid mutations in the Human Genome[J]. PLoS Genet. 2008;4(5):e1000083.PubMedPubMedCentralCrossRef
42.
go back to reference Cohen JC, Boerwinkle E, Mosley TH, et al. Sequence variations in PCSK9, Low LDL, and Protection against Coronary Heart Disease[J]. N Engl J Med. 2006;354(12):1264–72.PubMedCrossRef Cohen JC, Boerwinkle E, Mosley TH, et al. Sequence variations in PCSK9, Low LDL, and Protection against Coronary Heart Disease[J]. N Engl J Med. 2006;354(12):1264–72.PubMedCrossRef
43.
go back to reference Jia E, Wang J, Yang Z, et al. Molecular scanning of the human carboxypeptidase E gene for mutations in Chinese subjects with coronary atherosclerosis[J]. Mol Cell Biochem. 2007;307(1–2):31–9.PubMedCrossRef Jia E, Wang J, Yang Z, et al. Molecular scanning of the human carboxypeptidase E gene for mutations in Chinese subjects with coronary atherosclerosis[J]. Mol Cell Biochem. 2007;307(1–2):31–9.PubMedCrossRef
44.
go back to reference Liu Y, Niu W, Wu Z, et al. Variants in exon 11 of MEF2A gene and coronary artery disease: evidence from a case-control study, systematic review, and Meta-Analysis[J]. PLoS ONE. 2012;7(2):e31406.ADSPubMedPubMedCentralCrossRef Liu Y, Niu W, Wu Z, et al. Variants in exon 11 of MEF2A gene and coronary artery disease: evidence from a case-control study, systematic review, and Meta-Analysis[J]. PLoS ONE. 2012;7(2):e31406.ADSPubMedPubMedCentralCrossRef
45.
go back to reference Wang P, Wang Y, Peng H, et al. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease[J]. Aging. 2021;13(23):25393–407.PubMedPubMedCentralCrossRef Wang P, Wang Y, Peng H, et al. Functional rare variant in a C/EBP beta binding site in NINJ2 gene increases the risk of coronary artery disease[J]. Aging. 2021;13(23):25393–407.PubMedPubMedCentralCrossRef
46.
go back to reference Mitchell BD, Fornage M, McArdle PF, et al. Using previously genotyped controls in genome-wide association studies (GWAS): application to the Stroke Genetics Network (SiGN)[J]. Front Genet. 2014;5:95.PubMedPubMedCentralCrossRef Mitchell BD, Fornage M, McArdle PF, et al. Using previously genotyped controls in genome-wide association studies (GWAS): application to the Stroke Genetics Network (SiGN)[J]. Front Genet. 2014;5:95.PubMedPubMedCentralCrossRef
Metadata
Title
Rare and common coding variants in lipid metabolism-related genes and their association with coronary artery disease
Authors
Wei Li
Yongyi Wang
Ritai Huang
Feng Lian
Genxing Xu
Weijun Wang
Song Xue
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03759-5

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue