Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2011

01-01-2011 | Epidemiology

Aromatase immunoreactivity is increased in mammographically dense regions of the breast

Authors: Celine M. Vachon, Hironobu Sasano, Karthik Ghosh, Kathleen R. Brandt, David A. Watson, Carol Reynolds, Wilma L. Lingle, Paul E. Goss, Rong Li, Sarah E. Aiyar, Christopher G. Scott, V. Shane Pankratz, Richard J. Santen, James N. Ingle

Published in: Breast Cancer Research and Treatment | Issue 1/2011

Login to get access

Abstract

Mammographic breast density (MBD) is one of the strongest risk factors for breast cancer. Unfortunately, the biologic basis underlying this association is unknown. This study compared aromatase expression or immunoreactivity (IR) in core biopsies from mammographically dense versus non-dense regions of the breast to examine whether estrogen synthesis in the breast is associated with MBD and one possible mechanism through which MBD may influence breast cancer. Eligible participants were 40+ years, had a screening mammogram with visible MBD and no prior cancer or current endocrine therapy. Mammograms were used to identify dense and non-dense regions and ultrasound-guided core biopsies were performed to obtain tissue from these regions. Immunostaining for aromatase employed the streptavidin–biotin amplification method and #677 mouse monoclonal antibody. Aromatase IR was scored in terms of extent and intensity of staining for each cell type (stroma, epithelium, adipocytes) on histologic sections. A modified histological H-score provided quantitation of aromatase IR in each cell type and overall. Repeated measure analyses evaluated average differences (βH) in H-score in dense versus non-dense tissue within and across cell types. Forty-nine women with mean age 50 years (range: 40–82), participated. Aromatase IR was increased in dense (vs. non-dense) tissue in both the stroma (βH = 0.58) and epithelium (βH = 0.12) (P < 0.01). Adipocytes from non-dense tissue, however, had a greater IR compared to those from dense tissue (βH = −0.24, P < 0.01). An overall H-score which integrated results from all cell types demonstrated that aromatase IR was twice as great for dense (mean H-score = 0.90, SD = 0.53) versus non-dense (mean H-score = 0.45, SD = 0.39) breast tissue (βH = 0.45; P < 0.001). Overall, aromatase IR was greater for mammographically dense versus non-dense tissue and may partly explain how MBD influences breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference McCormack VA, Highnam R, Perry N, dos Santos Silva I (2007) Comparison of a new and existing method of mammographic density measurement: intramethod reliability and associations with known risk factors. Cancer Epidemiol Biomarkers Prev 16:1148–1154CrossRefPubMed McCormack VA, Highnam R, Perry N, dos Santos Silva I (2007) Comparison of a new and existing method of mammographic density measurement: intramethod reliability and associations with known risk factors. Cancer Epidemiol Biomarkers Prev 16:1148–1154CrossRefPubMed
2.
go back to reference Martin LJ, Boyd NF (2008) Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10:201CrossRefPubMed Martin LJ, Boyd NF (2008) Mammographic density. Potential mechanisms of breast cancer risk associated with mammographic density: hypotheses based on epidemiological evidence. Breast Cancer Res 10:201CrossRefPubMed
3.
go back to reference Greendale GA, Palla SL, Ursin G, Laughlin GA, Crandall C, Pike MC, Reboussin BA (2005) The association of endogenous sex steroids and sex steroid binding proteins with mammographic density: results from the Postmenopausal Estrogen/Progestin Interventions Mammographic Density Study. Am J Epidemiol 162:826–834CrossRefPubMed Greendale GA, Palla SL, Ursin G, Laughlin GA, Crandall C, Pike MC, Reboussin BA (2005) The association of endogenous sex steroids and sex steroid binding proteins with mammographic density: results from the Postmenopausal Estrogen/Progestin Interventions Mammographic Density Study. Am J Epidemiol 162:826–834CrossRefPubMed
4.
go back to reference Verheus M, Peeters PH, van Noord PA, van der Schouw YT, Grobbee DE, van Gils CH (2007) No relationship between circulating levels of sex steroids and mammographic breast density: the Prospect-EPIC cohort. Breast Cancer Res 9:R53CrossRefPubMed Verheus M, Peeters PH, van Noord PA, van der Schouw YT, Grobbee DE, van Gils CH (2007) No relationship between circulating levels of sex steroids and mammographic breast density: the Prospect-EPIC cohort. Breast Cancer Res 9:R53CrossRefPubMed
5.
go back to reference McCormack VA, Dowsett M, Folkerd E, Johnson N, Palles C, Coupland B, Holly JM, Vinnicombe SJ, Perry NM, dos Santos Silva I (2009) Sex steroids, growth factors and mammographic density: a cross-sectional study of UK postmenopausal Caucasian and Afro-Caribbean women. Breast Cancer Res 11:R38CrossRefPubMed McCormack VA, Dowsett M, Folkerd E, Johnson N, Palles C, Coupland B, Holly JM, Vinnicombe SJ, Perry NM, dos Santos Silva I (2009) Sex steroids, growth factors and mammographic density: a cross-sectional study of UK postmenopausal Caucasian and Afro-Caribbean women. Breast Cancer Res 11:R38CrossRefPubMed
6.
go back to reference Tamimi RM, Byrne C, Colditz GA, Hankinson SE (2007) Endogenous hormone levels, mammographic density, and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 99:1178–1187CrossRefPubMed Tamimi RM, Byrne C, Colditz GA, Hankinson SE (2007) Endogenous hormone levels, mammographic density, and subsequent risk of breast cancer in postmenopausal women. J Natl Cancer Inst 99:1178–1187CrossRefPubMed
7.
go back to reference Miller WR, O’Neill J (1987) The importance of local synthesis of estrogen within the breast. Steroids 50:537–548CrossRefPubMed Miller WR, O’Neill J (1987) The importance of local synthesis of estrogen within the breast. Steroids 50:537–548CrossRefPubMed
8.
go back to reference Dunbier AK, Anderson H, Folkerd E, Ghazoui Z, Smith IE, Ellis MJ, Dowsett M, Neoadjuvant Letrozole Study Group (2009) Expression of estrogen responsive genes in breast cancers correlates with plasma estradiol levels in postmenopausal women. Cancer Res 69:63 Dunbier AK, Anderson H, Folkerd E, Ghazoui Z, Smith IE, Ellis MJ, Dowsett M, Neoadjuvant Letrozole Study Group (2009) Expression of estrogen responsive genes in breast cancers correlates with plasma estradiol levels in postmenopausal women. Cancer Res 69:63
9.
go back to reference Miller WR, Dixon JM, Macfarlane L, Cameron D, Anderson TJ (2003) Pathological features of breast cancer response following neoadjuvant treatment with either letrozole or tamoxifen. Eur J Cancer 39:462–468CrossRefPubMed Miller WR, Dixon JM, Macfarlane L, Cameron D, Anderson TJ (2003) Pathological features of breast cancer response following neoadjuvant treatment with either letrozole or tamoxifen. Eur J Cancer 39:462–468CrossRefPubMed
10.
go back to reference Yue W, Wang JP, Hamilton CJ, Demers LM, Santen RJ (1998) In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res 58:927–932PubMed Yue W, Wang JP, Hamilton CJ, Demers LM, Santen RJ (1998) In situ aromatization enhances breast tumor estradiol levels and cellular proliferation. Cancer Res 58:927–932PubMed
11.
go back to reference Lipton A, Harvey HA, Demers LM, Hanagan JR, Mulagha MT, Kochak GM, Fitzsimmons S, Sanders SI, Santen RJ (1990) A phase I trial of CGS 16949A. A new aromatase inhibitor. Cancer 65:1279–1285CrossRefPubMed Lipton A, Harvey HA, Demers LM, Hanagan JR, Mulagha MT, Kochak GM, Fitzsimmons S, Sanders SI, Santen RJ (1990) A phase I trial of CGS 16949A. A new aromatase inhibitor. Cancer 65:1279–1285CrossRefPubMed
12.
go back to reference Brodie A, Lu Q, Long B (1999) Aromatase and its inhibitors. J Steroid Biochem Mol Biol 69:205–210CrossRefPubMed Brodie A, Lu Q, Long B (1999) Aromatase and its inhibitors. J Steroid Biochem Mol Biol 69:205–210CrossRefPubMed
13.
go back to reference Morales L, Neven P, Paridaens R (2005) Choosing between an aromatase inhibitor and tamoxifen in the adjuvant setting. Curr Opin Oncol 17:559–565CrossRefPubMed Morales L, Neven P, Paridaens R (2005) Choosing between an aromatase inhibitor and tamoxifen in the adjuvant setting. Curr Opin Oncol 17:559–565CrossRefPubMed
14.
go back to reference Santen RJ, Martel J, Hoagland M, Naftolin F, Roa L, Harada N, Hafer L, Zaino R, Santner SJ (1994) Stromal spindle cells contain aromatase in human breast tumors. J Clin Endocrinol Metab 79:627–632CrossRefPubMed Santen RJ, Martel J, Hoagland M, Naftolin F, Roa L, Harada N, Hafer L, Zaino R, Santner SJ (1994) Stromal spindle cells contain aromatase in human breast tumors. J Clin Endocrinol Metab 79:627–632CrossRefPubMed
15.
go back to reference Boyd NF, Martin LJ, Yaffe MJ, Minkin S (2006) Mammographic density: a hormonally responsive risk factor for breast cancer. J Br Menopause Soc 12:186–193CrossRefPubMed Boyd NF, Martin LJ, Yaffe MJ, Minkin S (2006) Mammographic density: a hormonally responsive risk factor for breast cancer. J Br Menopause Soc 12:186–193CrossRefPubMed
16.
go back to reference Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH (2003) Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5:R129–R135CrossRefPubMed Alowami S, Troup S, Al-Haddad S, Kirkpatrick I, Watson PH (2003) Mammographic density is related to stroma and stromal proteoglycan expression. Breast Cancer Res 5:R129–R135CrossRefPubMed
17.
go back to reference Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349CrossRefPubMed Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349CrossRefPubMed
18.
go back to reference Hawes D, Downey S, Pearce CL, Bartow S, Wan P, Pike MC, Wu AH (2006) Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity. Breast Cancer Res 8:R24CrossRefPubMed Hawes D, Downey S, Pearce CL, Bartow S, Wan P, Pike MC, Wu AH (2006) Dense breast stromal tissue shows greatly increased concentration of breast epithelium but no increase in its proliferative activity. Breast Cancer Res 8:R24CrossRefPubMed
19.
go back to reference Stomper PC, Penetrante RB, Edge SB, Arredondo MA, Blumenson LE, Stewart CC (1996) Cellular proliferative activity of mammographic normal dense and fatty tissue determined by DNA S phase percentage. Breast Cancer Res Treat 37:229–236CrossRefPubMed Stomper PC, Penetrante RB, Edge SB, Arredondo MA, Blumenson LE, Stewart CC (1996) Cellular proliferative activity of mammographic normal dense and fatty tissue determined by DNA S phase percentage. Breast Cancer Res Treat 37:229–236CrossRefPubMed
20.
go back to reference Khan QJ, Kimler BF, O’Dea AP, Zalles CM, Sharma P, Fabian CJ (2007) Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle aspiration from women at high risk for breast cancer. Breast Cancer Res 9:R35CrossRefPubMed Khan QJ, Kimler BF, O’Dea AP, Zalles CM, Sharma P, Fabian CJ (2007) Mammographic density does not correlate with Ki-67 expression or cytomorphology in benign breast cells obtained by random periareolar fine needle aspiration from women at high risk for breast cancer. Breast Cancer Res 9:R35CrossRefPubMed
21.
go back to reference Verheus M, Maskarinec G, Erber E, Steude JS, Killeen J, Hernandez BY, Cline JM (2009) Mammographic density and epithelial histopathologic markers. BMC Cancer 9:182CrossRefPubMed Verheus M, Maskarinec G, Erber E, Steude JS, Killeen J, Hernandez BY, Cline JM (2009) Mammographic density and epithelial histopathologic markers. BMC Cancer 9:182CrossRefPubMed
22.
go back to reference Harvey JA, Santen RJ, Petroni GR, Bovbjerg VE, Smolkin ME, Sheriff FS, Russo J (2008) Histologic changes in the breast with menopausal hormone therapy use: correlation with breast density, estrogen receptor, progesterone receptor, and proliferation indices. Menopause 15:67–73PubMed Harvey JA, Santen RJ, Petroni GR, Bovbjerg VE, Smolkin ME, Sheriff FS, Russo J (2008) Histologic changes in the breast with menopausal hormone therapy use: correlation with breast density, estrogen receptor, progesterone receptor, and proliferation indices. Menopause 15:67–73PubMed
23.
go back to reference Santner SJ, Pauley RJ, Tait L, Kaseta J, Santen RJ (1997) Aromatase activity and expression in breast cancer and benign breast tissue stromal cells. J Clin Endocrinol Metab 82:200–208CrossRefPubMed Santner SJ, Pauley RJ, Tait L, Kaseta J, Santen RJ (1997) Aromatase activity and expression in breast cancer and benign breast tissue stromal cells. J Clin Endocrinol Metab 82:200–208CrossRefPubMed
24.
go back to reference Ghosh S, Choudary A, Ghosh S, Musi N, Hu Y, Li R (2009) IKKbeta mediates cell shape-induced aromatase expression and estrogen biosynthesis in adipose stromal cells. Mol Endocrinol 23:662–670CrossRefPubMed Ghosh S, Choudary A, Ghosh S, Musi N, Hu Y, Li R (2009) IKKbeta mediates cell shape-induced aromatase expression and estrogen biosynthesis in adipose stromal cells. Mol Endocrinol 23:662–670CrossRefPubMed
25.
go back to reference Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Gurates B et al (2005) Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 57:359–383CrossRefPubMed Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Gurates B et al (2005) Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 57:359–383CrossRefPubMed
26.
go back to reference Zhou J, Gurates B, Yang S, Sebastian S, Bulun SE (2001) Malignant breast epithelial cells stimulate aromatase expression via promoter II in human adipose fibroblasts: an epithelial-stromal interaction in breast tumors mediated by CCAAT/enhancer binding protein beta. Cancer Res 61:2328–2334PubMed Zhou J, Gurates B, Yang S, Sebastian S, Bulun SE (2001) Malignant breast epithelial cells stimulate aromatase expression via promoter II in human adipose fibroblasts: an epithelial-stromal interaction in breast tumors mediated by CCAAT/enhancer binding protein beta. Cancer Res 61:2328–2334PubMed
27.
go back to reference Bulun SE, Price TM, Aitken J, Mahendroo MS, Simpson ER (1993) A link between breast cancer and local estrogen biosynthesis suggested by quantification of breast adipose tissue aromatase cytochrome P450 transcripts using competitive polymerase chain reaction after reverse transcription. J Clin Endocrinol Metab 77:1622–1628CrossRefPubMed Bulun SE, Price TM, Aitken J, Mahendroo MS, Simpson ER (1993) A link between breast cancer and local estrogen biosynthesis suggested by quantification of breast adipose tissue aromatase cytochrome P450 transcripts using competitive polymerase chain reaction after reverse transcription. J Clin Endocrinol Metab 77:1622–1628CrossRefPubMed
28.
go back to reference Bulun SE, Simpson ER (1994) Regulation of aromatase expression in human tissues. Breast Cancer Res Treat 30:19–29CrossRefPubMed Bulun SE, Simpson ER (1994) Regulation of aromatase expression in human tissues. Breast Cancer Res Treat 30:19–29CrossRefPubMed
29.
go back to reference Bulun SE, Sharda G, Rink J, Sharma S, Simpson ER (1996) Distribution of aromatase P450 transcripts and adipose fibroblasts in the human breast. J Clin Endocrinol Metab 81:1273–1277CrossRefPubMed Bulun SE, Sharda G, Rink J, Sharma S, Simpson ER (1996) Distribution of aromatase P450 transcripts and adipose fibroblasts in the human breast. J Clin Endocrinol Metab 81:1273–1277CrossRefPubMed
30.
go back to reference Liu GJ, Wu YS, Brenin D, Yue W, Aiyar S, Gompel A, Wang JP, Tekmal RR, Santen RJ (2008) Development of a high sensitivity, nested Q-PCR assay for mouse and human aromatase. Breast Cancer Res Treat 111:343–351CrossRefPubMed Liu GJ, Wu YS, Brenin D, Yue W, Aiyar S, Gompel A, Wang JP, Tekmal RR, Santen RJ (2008) Development of a high sensitivity, nested Q-PCR assay for mouse and human aromatase. Breast Cancer Res Treat 111:343–351CrossRefPubMed
31.
go back to reference Santner SJ, Feil PD, Santen RJ (1984) In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. J Clin Endocrinol Metab 59:29–33CrossRefPubMed Santner SJ, Feil PD, Santen RJ (1984) In situ estrogen production via the estrone sulfatase pathway in breast tumors: relative importance versus the aromatase pathway. J Clin Endocrinol Metab 59:29–33CrossRefPubMed
32.
go back to reference Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga S, Hirakawa H, Kimura M, Sasano H (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res 63:2762–2770PubMed Suzuki T, Nakata T, Miki Y, Kaneko C, Moriya T, Ishida T, Akinaga S, Hirakawa H, Kimura M, Sasano H (2003) Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. Cancer Res 63:2762–2770PubMed
33.
go back to reference Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, Hidaka K, Shiotsu Y, Kusaka H, Sasano H (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87:5760–5768CrossRefPubMed Miki Y, Nakata T, Suzuki T, Darnel AD, Moriya T, Kaneko C, Hidaka K, Shiotsu Y, Kusaka H, Sasano H (2002) Systemic distribution of steroid sulfatase and estrogen sulfotransferase in human adult and fetal tissues. J Clin Endocrinol Metab 87:5760–5768CrossRefPubMed
34.
go back to reference Vachon CM, Ingle JN, Suman VJ, Scott CG, Gottardt H, Olson JE, Goss PE (2007) Pilot study of the impact of letrozole vs. placebo on breast density in women completing 5 years of tamoxifen. Breast 16:204–210CrossRefPubMed Vachon CM, Ingle JN, Suman VJ, Scott CG, Gottardt H, Olson JE, Goss PE (2007) Pilot study of the impact of letrozole vs. placebo on breast density in women completing 5 years of tamoxifen. Breast 16:204–210CrossRefPubMed
35.
go back to reference Cuzick J, Warwick J, Pinney E, Warren RM, Duffy SW (2004) Tamoxifen and breast density in women at increased risk of breast cancer. J Natl Cancer Inst 96:621–628CrossRefPubMed Cuzick J, Warwick J, Pinney E, Warren RM, Duffy SW (2004) Tamoxifen and breast density in women at increased risk of breast cancer. J Natl Cancer Inst 96:621–628CrossRefPubMed
36.
go back to reference Cigler T, Tu D, Yaffe MJ, Findlay B, Verma S, Johnston D, Richardson H, Hu H, Qi S, Goss PE (2009) A randomized, placebo-controlled trial (NCIC CTG MAP1) examining the effects of letrozole on mammographic breast density and other end organs in postmenopausal women. Breast Cancer Res Treat. 2009 Dec 6 [Epub ahead of print] Cigler T, Tu D, Yaffe MJ, Findlay B, Verma S, Johnston D, Richardson H, Hu H, Qi S, Goss PE (2009) A randomized, placebo-controlled trial (NCIC CTG MAP1) examining the effects of letrozole on mammographic breast density and other end organs in postmenopausal women. Breast Cancer Res Treat. 2009 Dec 6 [Epub ahead of print]
37.
go back to reference Fabian CJ, Kimler BF, Zalles CM, Khan QJ, Mayo MS, Phillips TA, Simonsen M, Metheny T, Petroff BK (2007) Reduction in proliferation with six months of letrozole in women on hormone replacement therapy. Breast Cancer Res Treat 106:75–84CrossRefPubMed Fabian CJ, Kimler BF, Zalles CM, Khan QJ, Mayo MS, Phillips TA, Simonsen M, Metheny T, Petroff BK (2007) Reduction in proliferation with six months of letrozole in women on hormone replacement therapy. Breast Cancer Res Treat 106:75–84CrossRefPubMed
38.
go back to reference Mousa NA, Crystal P, Wolfman WL, Bedaiwy MA, Casper RF (2008) Aromatase inhibitors and mammographic breast density in postmenopausal women receiving hormone therapy. Menopause 15:875–884CrossRefPubMed Mousa NA, Crystal P, Wolfman WL, Bedaiwy MA, Casper RF (2008) Aromatase inhibitors and mammographic breast density in postmenopausal women receiving hormone therapy. Menopause 15:875–884CrossRefPubMed
Metadata
Title
Aromatase immunoreactivity is increased in mammographically dense regions of the breast
Authors
Celine M. Vachon
Hironobu Sasano
Karthik Ghosh
Kathleen R. Brandt
David A. Watson
Carol Reynolds
Wilma L. Lingle
Paul E. Goss
Rong Li
Sarah E. Aiyar
Christopher G. Scott
V. Shane Pankratz
Richard J. Santen
James N. Ingle
Publication date
01-01-2011
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2011
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-010-0944-6

Other articles of this Issue 1/2011

Breast Cancer Research and Treatment 1/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine