Skip to main content
Top
Published in: Breast Cancer Research 5/2003

Open Access 01-10-2003 | Research article

Mammographic density is related to stroma and stromal proteoglycan expression

Authors: Salem Alowami, Sandra Troup, Sahar Al-Haddad, Iain Kirkpatrick, Peter H Watson

Published in: Breast Cancer Research | Issue 5/2003

Login to get access

Abstract

Background

Mammographic density and certain histological changes in breast tissues are both risk factors for breast cancer. However, the relationship between these factors remains uncertain. Previous studies have focused on the histology of the epithelial changes, even though breast stroma is the major tissue compartment by volume. We have previously identified lumican and decorin as abundant small leucine-rich proteoglycans in breast stroma that show altered expression after breast tumorigenesis. In this study we have examined breast biopsies for a relationship between mammographic density and stromal alterations.

Methods

We reviewed mammograms from women aged 50–69 years who had enrolled in a provincial mammography screening program and had undergone an excision biopsy for an abnormality that was subsequently diagnosed as benign or pre-invasive breast disease. The overall mammographic density was classified into density categories. All biopsy tissue sections were reviewed and tissue blocks from excision margins distant from the diagnostic lesion were selected. Histological composition was assessed in sections stained with haematoxylin and eosin, and the expression of lumican and decorin was assessed by immunohistochemistry; both were quantified by semi-quantitative scoring.

Results

Tissue sections corresponding to regions of high in comparison with low mammographic density showed no significant difference in the density of ductal and lobular units but showed significantly higher collagen density and extent of fibrosis. Similarly, the expression of lumican and decorin was significantly increased.

Conclusion

Alteration in stromal composition is correlated with increased mammographic density. Although epithelial changes define the eventual pathway for breast cancer development, mammographic density might correspond more directly to alterations in stromal composition.
Literature
1.
go back to reference Ernster VL, Barclay J: Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: a dilemma. J Natl Cancer Inst Monogr. 1997, 22: 151-156. Ernster VL, Barclay J: Increases in ductal carcinoma in situ (DCIS) of the breast in relation to mammography: a dilemma. J Natl Cancer Inst Monogr. 1997, 22: 151-156.
2.
go back to reference King MC, Wieand S, Hale K, Lee M, Walsh T, Owens K, Tait J, Ford L, Dunn BK, Costantino J, Wickerham L, Wolmark N, Fisher B: Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA. 2001, 286: 2251-2256. 10.1001/jama.286.18.2251.CrossRefPubMed King MC, Wieand S, Hale K, Lee M, Walsh T, Owens K, Tait J, Ford L, Dunn BK, Costantino J, Wickerham L, Wolmark N, Fisher B: Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. JAMA. 2001, 286: 2251-2256. 10.1001/jama.286.18.2251.CrossRefPubMed
3.
go back to reference Dupont WD, Page DL: Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med. 1985, 312: 146-151.CrossRefPubMed Dupont WD, Page DL: Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med. 1985, 312: 146-151.CrossRefPubMed
4.
go back to reference Allred DC, Mohsin SK, Fuqua SA: Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer. 2001, 8: 47-61.CrossRefPubMed Allred DC, Mohsin SK, Fuqua SA: Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer. 2001, 8: 47-61.CrossRefPubMed
5.
go back to reference Boyd NF, Martin LJ, Stone J, Greenberg C, Minkin S, Yaffe MJ: Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention. Curr Oncol Rep. 2001, 3: 314-321.CrossRefPubMed Boyd NF, Martin LJ, Stone J, Greenberg C, Minkin S, Yaffe MJ: Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention. Curr Oncol Rep. 2001, 3: 314-321.CrossRefPubMed
6.
go back to reference Heine JJ, Malhotra P: Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 1. Tissue and related risk factors. Acad Radiol. 2002, 9: 298-316. 10.1016/S1076-6332(03)80373-2.CrossRefPubMed Heine JJ, Malhotra P: Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 1. Tissue and related risk factors. Acad Radiol. 2002, 9: 298-316. 10.1016/S1076-6332(03)80373-2.CrossRefPubMed
7.
go back to reference Lee NA, Rusinek H, Weinreb J, Chandra R, Toth H, Singer C, Newstead G: Fatty and fibroglandular tissue volumes in the breasts of women 20–83 years old: comparison of X-ray mammography and computer-assisted MR imaging. AJR Am J Roentgenol. 1997, 168: 501-506.CrossRefPubMed Lee NA, Rusinek H, Weinreb J, Chandra R, Toth H, Singer C, Newstead G: Fatty and fibroglandular tissue volumes in the breasts of women 20–83 years old: comparison of X-ray mammography and computer-assisted MR imaging. AJR Am J Roentgenol. 1997, 168: 501-506.CrossRefPubMed
8.
go back to reference Urbanski S, Jensen HM, Cooke G, McFarlane D, Shannon P, Kruikov V, Boyd NF: The association of histological and radiological indicators of breast cancer risk. Br J Cancer. 1988, 58: 474-479.CrossRefPubMedPubMedCentral Urbanski S, Jensen HM, Cooke G, McFarlane D, Shannon P, Kruikov V, Boyd NF: The association of histological and radiological indicators of breast cancer risk. Br J Cancer. 1988, 58: 474-479.CrossRefPubMedPubMedCentral
9.
go back to reference Boyd NF, Jensen HM, Cooke G, Han HL: Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst. 1992, 84: 1170-1179.CrossRefPubMed Boyd NF, Jensen HM, Cooke G, Han HL: Relationship between mammographic and histological risk factors for breast cancer. J Natl Cancer Inst. 1992, 84: 1170-1179.CrossRefPubMed
10.
go back to reference Boyd NF, Jensen HM, Cooke G, Han HL, Lockwood GA, Miller AB: Mammographic densities and the prevalence and incidence of histological types of benign breast disease. Reference Pathologists of the Canadian National Breast Screening Study. Eur J Cancer Prev. 2000, 9: 15-24. 10.1097/00008469-200002000-00003.CrossRefPubMed Boyd NF, Jensen HM, Cooke G, Han HL, Lockwood GA, Miller AB: Mammographic densities and the prevalence and incidence of histological types of benign breast disease. Reference Pathologists of the Canadian National Breast Screening Study. Eur J Cancer Prev. 2000, 9: 15-24. 10.1097/00008469-200002000-00003.CrossRefPubMed
11.
go back to reference Roskelley CD, Bissell MJ: Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem Cell Biol. 1995, 73: 391-397.CrossRefPubMed Roskelley CD, Bissell MJ: Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function. Biochem Cell Biol. 1995, 73: 391-397.CrossRefPubMed
12.
go back to reference Lelievre SA, Weaver VM, Nickerson JA, Larabell CA, Bhaumik A, Petersen OW, Bissell MJ: Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci USA. 1998, 95: 14711-14716. 10.1073/pnas.95.25.14711.CrossRefPubMedPubMedCentral Lelievre SA, Weaver VM, Nickerson JA, Larabell CA, Bhaumik A, Petersen OW, Bissell MJ: Tissue phenotype depends on reciprocal interactions between the extracellular matrix and the structural organization of the nucleus. Proc Natl Acad Sci USA. 1998, 95: 14711-14716. 10.1073/pnas.95.25.14711.CrossRefPubMedPubMedCentral
13.
go back to reference Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C: Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet. 2001, 10: 1907-1913. 10.1093/hmg/10.18.1907.CrossRefPubMed Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson PH, Eng C: Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet. 2001, 10: 1907-1913. 10.1093/hmg/10.18.1907.CrossRefPubMed
14.
go back to reference Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C: Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet. 2002, 32: 355-357. 10.1038/ng1013.CrossRefPubMed Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C: Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet. 2002, 32: 355-357. 10.1038/ng1013.CrossRefPubMed
15.
go back to reference Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavas-soli FA: Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res. 2000, 60: 2562-2566.PubMed Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavas-soli FA: Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res. 2000, 60: 2562-2566.PubMed
16.
go back to reference Leygue E, Snell L, Dotzlaw H, Troup S, Hiller-Hitchcock T, Murphy LC, Roughley PJ, Watson PH: Lumican and decorin are differentially expressed in human breast carcinoma. J Pathol. 2000, 192: 313-320. 10.1002/1096-9896(200011)192:3<313::AID-PATH694>3.3.CO;2-2.CrossRefPubMed Leygue E, Snell L, Dotzlaw H, Troup S, Hiller-Hitchcock T, Murphy LC, Roughley PJ, Watson PH: Lumican and decorin are differentially expressed in human breast carcinoma. J Pathol. 2000, 192: 313-320. 10.1002/1096-9896(200011)192:3<313::AID-PATH694>3.3.CO;2-2.CrossRefPubMed
17.
go back to reference Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, Roughley PJ, Murphy LC, Watson PH: Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 2003, 9: 207-214.PubMed Troup S, Njue C, Kliewer EV, Parisien M, Roskelley C, Chakravarti S, Roughley PJ, Murphy LC, Watson PH: Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res. 2003, 9: 207-214.PubMed
18.
go back to reference Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H: Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998, 141: 1277-1286. 10.1083/jcb.141.5.1277.CrossRefPubMedPubMedCentral Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H: Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J Cell Biol. 1998, 141: 1277-1286. 10.1083/jcb.141.5.1277.CrossRefPubMedPubMedCentral
19.
go back to reference Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I: Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem. 1999, 274: 4489-4492. 10.1074/jbc.274.8.4489.CrossRefPubMed Iozzo RV, Moscatello DK, McQuillan DJ, Eichstetter I: Decorin is a biological ligand for the epidermal growth factor receptor. J Biol Chem. 1999, 274: 4489-4492. 10.1074/jbc.274.8.4489.CrossRefPubMed
20.
go back to reference Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997, 136: 729-743. 10.1083/jcb.136.3.729.CrossRefPubMedPubMedCentral Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV: Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol. 1997, 136: 729-743. 10.1083/jcb.136.3.729.CrossRefPubMedPubMedCentral
21.
go back to reference Iozzo RV: The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem. 1999, 274: 18843-18846. 10.1074/jbc.274.27.18843.CrossRefPubMed Iozzo RV: The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins. J Biol Chem. 1999, 274: 18843-18846. 10.1074/jbc.274.27.18843.CrossRefPubMed
22.
go back to reference Boyd NF, Stone J, Martin LJ, Jong R, Fishell E, Yaffe M, Hammond G, Minkin S: The association of breast mitogens with mammographic densities. Br J Cancer. 2002, 87: 876-882. 10.1038/sj.bjc.6600537.CrossRefPubMedPubMedCentral Boyd NF, Stone J, Martin LJ, Jong R, Fishell E, Yaffe M, Hammond G, Minkin S: The association of breast mitogens with mammographic densities. Br J Cancer. 2002, 87: 876-882. 10.1038/sj.bjc.6600537.CrossRefPubMedPubMedCentral
23.
go back to reference Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, Giles GG, Tritchler D, Chiarelli A, Yaffe MJ, Hopper JL: Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002, 347: 886-894. 10.1056/NEJMoa013390.CrossRefPubMed Boyd NF, Dite GS, Stone J, Gunasekara A, English DR, McCredie MR, Giles GG, Tritchler D, Chiarelli A, Yaffe MJ, Hopper JL: Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med. 2002, 347: 886-894. 10.1056/NEJMoa013390.CrossRefPubMed
24.
go back to reference Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G: Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst. 2003, 95: 30-37. 10.1093/jnci/95.1.30.CrossRefPubMed Greendale GA, Reboussin BA, Slone S, Wasilauskas C, Pike MC, Ursin G: Postmenopausal hormone therapy and change in mammographic density. J Natl Cancer Inst. 2003, 95: 30-37. 10.1093/jnci/95.1.30.CrossRefPubMed
25.
go back to reference Boyd N, Martin L, Stone J, Little L, Minkin S, Yaffe M: A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol Biomarkers Prev. 2002, 11: 1048-1053.PubMed Boyd N, Martin L, Stone J, Little L, Minkin S, Yaffe M: A longitudinal study of the effects of menopause on mammographic features. Cancer Epidemiol Biomarkers Prev. 2002, 11: 1048-1053.PubMed
26.
go back to reference van Gils CH, Hendriks JH, Holland R, Karssemeijer N, Otten JD, Straatman H, Verbeek AL: Changes in mammographic breast density and concomitant changes in breast cancer risk. Eur J Cancer Prev. 1999, 8: 509-515.CrossRefPubMed van Gils CH, Hendriks JH, Holland R, Karssemeijer N, Otten JD, Straatman H, Verbeek AL: Changes in mammographic breast density and concomitant changes in breast cancer risk. Eur J Cancer Prev. 1999, 8: 509-515.CrossRefPubMed
27.
go back to reference Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R: Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995, 87: 1622-1629.CrossRefPubMed Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R: Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst. 1995, 87: 1622-1629.CrossRefPubMed
28.
go back to reference Haiman CA, Hankinson SE, De Vivo I, Guillemette C, Ishibe N, Hunter DJ, Byrne C: Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res Treat. 2003, 77: 27-36. 10.1023/A:1021112121782.CrossRefPubMed Haiman CA, Hankinson SE, De Vivo I, Guillemette C, Ishibe N, Hunter DJ, Byrne C: Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res Treat. 2003, 77: 27-36. 10.1023/A:1021112121782.CrossRefPubMed
29.
go back to reference Heine JJ, Malhotra P: Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 2. Serial breast tissue change and related temporal influences. Acad Radiol. 2002, 9: 317-335. 10.1016/S1076-6332(03)80374-4.CrossRefPubMed Heine JJ, Malhotra P: Mammographic tissue, breast cancer risk, serial image analysis, and digital mammography. Part 2. Serial breast tissue change and related temporal influences. Acad Radiol. 2002, 9: 317-335. 10.1016/S1076-6332(03)80374-4.CrossRefPubMed
30.
go back to reference Brisson J, Brisson B, Cote G, Maunsell E, Berube S, Robert J: Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000, 9: 911-915.PubMed Brisson J, Brisson B, Cote G, Maunsell E, Berube S, Robert J: Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev. 2000, 9: 911-915.PubMed
31.
go back to reference Friedenreich CM, Bryant HE, Alexander F, Hugh J, Danyluk J, Page DL: Risk factors for benign breast biopsies: a nested case-control study in the Alberta breast screening program. Cancer Detect Prev. 2001, 25: 280-291.PubMed Friedenreich CM, Bryant HE, Alexander F, Hugh J, Danyluk J, Page DL: Risk factors for benign breast biopsies: a nested case-control study in the Alberta breast screening program. Cancer Detect Prev. 2001, 25: 280-291.PubMed
32.
go back to reference Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF: Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev. 2001, 10: 243-248.PubMed Guo YP, Martin LJ, Hanna W, Banerjee D, Miller N, Fishell E, Khokha R, Boyd NF: Growth factors and stromal matrix proteins associated with mammographic densities. Cancer Epidemiol Biomarkers Prev. 2001, 10: 243-248.PubMed
33.
go back to reference Vachon CM, Sellers TA, Vierkant RA, Wu FF, Brandt KR: Case-control study of increased mammographic breast density response to hormone replacement therapy. Cancer Epidemiol Biomarkers Prev. 2002, 11: 1382-1388.PubMed Vachon CM, Sellers TA, Vierkant RA, Wu FF, Brandt KR: Case-control study of increased mammographic breast density response to hormone replacement therapy. Cancer Epidemiol Biomarkers Prev. 2002, 11: 1382-1388.PubMed
34.
go back to reference Haiman CA, Bernstein L, Berg D, Ingles SA, Salane M, Ursin G: Genetic determinants of mammographic density. Breast Cancer Res. 2002, 4: R5-10.1186/bcr434.CrossRefPubMedPubMedCentral Haiman CA, Bernstein L, Berg D, Ingles SA, Salane M, Ursin G: Genetic determinants of mammographic density. Breast Cancer Res. 2002, 4: R5-10.1186/bcr434.CrossRefPubMedPubMedCentral
35.
go back to reference Thurfjell E: Breast density and the risk of breast cancer. N Engl J Med. 2002, 347: 866-10.1056/NEJMp020093.CrossRefPubMed Thurfjell E: Breast density and the risk of breast cancer. N Engl J Med. 2002, 347: 866-10.1056/NEJMp020093.CrossRefPubMed
36.
go back to reference Arthur JE, Ellis IO, Flowers C, Roebuck E, Elston CW, Blamey RW: The relationship of 'high risk' mammographic patterns to histological risk factors for development of cancer in the human breast. Br J Radiol. 1990, 63: 845-849.CrossRefPubMed Arthur JE, Ellis IO, Flowers C, Roebuck E, Elston CW, Blamey RW: The relationship of 'high risk' mammographic patterns to histological risk factors for development of cancer in the human breast. Br J Radiol. 1990, 63: 845-849.CrossRefPubMed
37.
go back to reference Bright RA, Morrison AS, Brisson J, Burstein NA, Sadowsky NS, Kopans DB, Meyer JE: Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer. 1988, 61: 266-271.CrossRefPubMed Bright RA, Morrison AS, Brisson J, Burstein NA, Sadowsky NS, Kopans DB, Meyer JE: Relationship between mammographic and histologic features of breast tissue in women with benign biopsies. Cancer. 1988, 61: 266-271.CrossRefPubMed
38.
go back to reference Bartow SA, Pathak DR, Mettler FA, Key CR, Pike MC: Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors. Am J Epidemiol. 1995, 142: 813-819.PubMed Bartow SA, Pathak DR, Mettler FA, Key CR, Pike MC: Breast mammographic pattern: a concatenation of confounding and breast cancer risk factors. Am J Epidemiol. 1995, 142: 813-819.PubMed
39.
go back to reference Byrne C, Schairer C, Brinton LA, Wolfe J, Parekh N, Salane M, Carter C, Hoover R: Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes Control. 2001, 12: 103-110. 10.1023/A:1008935821885.CrossRefPubMed Byrne C, Schairer C, Brinton LA, Wolfe J, Parekh N, Salane M, Carter C, Hoover R: Effects of mammographic density and benign breast disease on breast cancer risk (United States). Cancer Causes Control. 2001, 12: 103-110. 10.1023/A:1008935821885.CrossRefPubMed
40.
go back to reference Lochter A, Bissell MJ: Involvement of extracellular matrix constituents in breast cancer. Semin Cancer Biol. 1995, 6: 165-173. 10.1006/scbi.1995.0017.CrossRefPubMed Lochter A, Bissell MJ: Involvement of extracellular matrix constituents in breast cancer. Semin Cancer Biol. 1995, 6: 165-173. 10.1006/scbi.1995.0017.CrossRefPubMed
41.
go back to reference Kinzler KW, Vogelstein B: Landscaping the cancer terrain. Science. 1998, 280: 1036-7. 10.1126/science.280.5366.1036.CrossRefPubMed Kinzler KW, Vogelstein B: Landscaping the cancer terrain. Science. 1998, 280: 1036-7. 10.1126/science.280.5366.1036.CrossRefPubMed
42.
go back to reference Yoo LI, Chung DC, Yuan J: LKB1 – a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer. 2002, 2: 529-535. 10.1038/nrc843.CrossRefPubMed Yoo LI, Chung DC, Yuan J: LKB1 – a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer. 2002, 2: 529-535. 10.1038/nrc843.CrossRefPubMed
43.
go back to reference Leygue E, Snell L, Dotzlaw H, Hole K, Hiller-Hitchcock T, Roughley PJ, Watson PH, Murphy LC: Expression of lumican in human breast carcinoma. Cancer Res. 1998, 58: 1348-1352.PubMed Leygue E, Snell L, Dotzlaw H, Hole K, Hiller-Hitchcock T, Roughley PJ, Watson PH, Murphy LC: Expression of lumican in human breast carcinoma. Cancer Res. 1998, 58: 1348-1352.PubMed
44.
go back to reference Pollak M: Insulin-like growth factor physiology and cancer risk. Eur J Cancer. 2000, 36: 1224-1228. 10.1016/S0959-8049(00)00102-7.CrossRefPubMed Pollak M: Insulin-like growth factor physiology and cancer risk. Eur J Cancer. 2000, 36: 1224-1228. 10.1016/S0959-8049(00)00102-7.CrossRefPubMed
45.
go back to reference Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE: Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res. 2000, 60: 3744-3748.PubMed Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE: Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res. 2000, 60: 3744-3748.PubMed
46.
go back to reference Haase HR, Clarkson RW, Waters MJ, Bartold PM: Growth factor modulation of mitogenic responses and proteoglycan synthesis by human periodontal fibroblasts. J Cell Physiol. 1998, 174: 353-361. 10.1002/(SICI)1097-4652(199803)174:3<353::AID-JCP9>3.3.CO;2-D.CrossRefPubMed Haase HR, Clarkson RW, Waters MJ, Bartold PM: Growth factor modulation of mitogenic responses and proteoglycan synthesis by human periodontal fibroblasts. J Cell Physiol. 1998, 174: 353-361. 10.1002/(SICI)1097-4652(199803)174:3<353::AID-JCP9>3.3.CO;2-D.CrossRefPubMed
47.
go back to reference Melching LI, Roughley PJ: Modulation of keratan sulfate synthesis on lumican by the action of cytokines on human articular chondrocytes. Matrix Biol. 1999, 18: 381-390. 10.1016/S0945-053X(99)00033-5.CrossRefPubMed Melching LI, Roughley PJ: Modulation of keratan sulfate synthesis on lumican by the action of cytokines on human articular chondrocytes. Matrix Biol. 1999, 18: 381-390. 10.1016/S0945-053X(99)00033-5.CrossRefPubMed
48.
go back to reference d'Avis PY, Frazier CR, Shapiro JR, Fedarko NS: Age-related changes in effects of insulin-like growth factor I on human osteoblast-like cells. Biochem J. 1997, 324 (Pt 3): 753-760.CrossRefPubMedPubMedCentral d'Avis PY, Frazier CR, Shapiro JR, Fedarko NS: Age-related changes in effects of insulin-like growth factor I on human osteoblast-like cells. Biochem J. 1997, 324 (Pt 3): 753-760.CrossRefPubMedPubMedCentral
49.
go back to reference Luo J, Dunn T, Ewing C, Sauvageot J, Chen Y, Trent J, Isaacs W: Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate. 2002, 51: 189-200. 10.1002/pros.10087.CrossRefPubMed Luo J, Dunn T, Ewing C, Sauvageot J, Chen Y, Trent J, Isaacs W: Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate. 2002, 51: 189-200. 10.1002/pros.10087.CrossRefPubMed
Metadata
Title
Mammographic density is related to stroma and stromal proteoglycan expression
Authors
Salem Alowami
Sandra Troup
Sahar Al-Haddad
Iain Kirkpatrick
Peter H Watson
Publication date
01-10-2003
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 5/2003
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr622

Other articles of this Issue 5/2003

Breast Cancer Research 5/2003 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine