Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Research

Analysis of erythrocyte dynamics in Rhesus macaque monkeys during infection with Plasmodium cynomolgi

Authors: Luis L. Fonseca, Chester J. Joyner, Celia L. Saney, Alberto Moreno, John W. Barnwell, Mary R. Galinski, Eberhard O. Voit, The MaHPIC Consortium

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Malaria is a major mosquito transmitted, blood-borne parasitic disease that afflicts humans. The disease causes anaemia and other clinical complications, which can lead to death. Plasmodium vivax is known for its reticulocyte host cell specificity, but many gaps in disease details remain. Much less is known about the closely related species, Plasmodium cynomolgi, although it is naturally acquired and causes zoonotic malaria. Here, a computational model is developed based on longitudinal analyses of P. cynomolgi infections in nonhuman primates to investigate the erythrocyte dynamics that is pertinent to understanding both P. cynomolgi and P. vivax malaria in humans.

Methods

A cohort of five P. cynomolgi infected Rhesus macaques (Macaca mulatta) is studied, with individuals exhibiting a plethora of clinical outcomes, including varying levels of anaemia. A discrete recursive model with age structure is developed to replicate the dynamics of P. cynomolgi blood-stage infections. The model allows for parasitic reticulocyte preference and assumes an age preference among the mature RBCs. RBC senescence is modelled using a hazard function, according to which RBCs have a mean lifespan of 98 ± 21 days.

Results

Based on in vivo data from three cohorts of macaques, the computational model is used to characterize the reticulocyte lifespan in circulation as 24 ± 5 h (n = 15) and the rate of RBC production as 2727 ± 209 cells/h/µL (n = 15). Analysis of the host responses reveals a pre-patency increase in the number of reticulocytes. It also allows the quantification of RBC removal through the bystander effect.

Conclusions

The evident pre-patency increase in reticulocytes is due to a shift towards the release of younger reticulocytes, which could result from a parasite-induced factor meant to increase reticulocyte availability and satisfy the parasite’s tropism, which has an average value of 32:1 in this cohort. The number of RBCs lost due to the bystander effect relative to infection-induced RBC losses is 62% for P. cynomolgi infections, which is substantially lower than the value of 95% previously determined for another simian species, Plasmodium coatneyi.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Control and elimination of Plasmodium vivax malaria—a technical brief. Geneva: World Health Organization; 2015. WHO. Control and elimination of Plasmodium vivax malaria—a technical brief. Geneva: World Health Organization; 2015.
2.
go back to reference Borner J, Pick C, Thiede J, Kolawole OM, Kingsley MT, Schulze J, et al. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol Phylogenet Evol. 2016;94:221–31.CrossRef Borner J, Pick C, Thiede J, Kolawole OM, Kingsley MT, Schulze J, et al. Phylogeny of haemosporidian blood parasites revealed by a multi-gene approach. Mol Phylogenet Evol. 2016;94:221–31.CrossRef
3.
go back to reference Baird JK. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev. 2013;26:36–57.CrossRef Baird JK. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev. 2013;26:36–57.CrossRef
4.
go back to reference Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95:15–34.CrossRef Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95:15–34.CrossRef
5.
go back to reference Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV, Landau I, et al. Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol. 2011;11:299.CrossRef Pacheco MA, Battistuzzi FU, Junge RE, Cornejo OE, Williams CV, Landau I, et al. Timing the origin of human malarias: the lemur puzzle. BMC Evol Biol. 2011;11:299.CrossRef
6.
go back to reference Pasini EM, Bohme U, Rutledge GG, Voorberg-Vander Wel A, Sanders M, Berriman M, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res. 2017;2:42.CrossRef Pasini EM, Bohme U, Rutledge GG, Voorberg-Vander Wel A, Sanders M, Berriman M, et al. An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion. Wellcome Open Res. 2017;2:42.CrossRef
7.
go back to reference Joyner C, Consortium TM, Wood JS, Moreno A, Garcia A, Galinski MR. Severe and complicated cynomolgi malaria in a Rhesus macaque resulted in similar histopathological changes as those seen in human malaria. Am J Trop Med Hyg. 2017;97:548–55.CrossRef Joyner C, Consortium TM, Wood JS, Moreno A, Garcia A, Galinski MR. Severe and complicated cynomolgi malaria in a Rhesus macaque resulted in similar histopathological changes as those seen in human malaria. Am J Trop Med Hyg. 2017;97:548–55.CrossRef
8.
go back to reference Kosaisavee V, Suwanarusk R, Chua ACY, Kyle DE, Malleret B, Zhang R, et al. Strict tropism for cd71(+)/cd234(+) human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. Blood. 2017;130:1357–63.CrossRef Kosaisavee V, Suwanarusk R, Chua ACY, Kyle DE, Malleret B, Zhang R, et al. Strict tropism for cd71(+)/cd234(+) human reticulocytes limits the zoonotic potential of Plasmodium cynomolgi. Blood. 2017;130:1357–63.CrossRef
10.
go back to reference Medica DL, Sinnis P. Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes. Infect Immun. 2005;73:4363–9.CrossRef Medica DL, Sinnis P. Quantitative dynamics of Plasmodium yoelii sporozoite transmission by infected anopheline mosquitoes. Infect Immun. 2005;73:4363–9.CrossRef
11.
go back to reference Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer MG, Meuwissen JH. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans R Soc Trop Med Hyg. 1991;85:175–80.CrossRef Ponnudurai T, Lensen AH, van Gemert GJ, Bolmer MG, Meuwissen JH. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans R Soc Trop Med Hyg. 1991;85:175–80.CrossRef
12.
go back to reference Prudencio M, Rodriguez A, Mota MM. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol. 2006;4:849–56.CrossRef Prudencio M, Rodriguez A, Mota MM. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat Rev Microbiol. 2006;4:849–56.CrossRef
13.
go back to reference Vaughan AM, Aly AS, Kappe SH. Malaria parasite pre-erythrocytic stage infection: gliding and hiding. Cell Host Microbe. 2008;4:209–18.CrossRef Vaughan AM, Aly AS, Kappe SH. Malaria parasite pre-erythrocytic stage infection: gliding and hiding. Cell Host Microbe. 2008;4:209–18.CrossRef
14.
go back to reference Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol. 2015;6:145.CrossRef Joyner C, Barnwell JW, Galinski MR. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol. 2015;6:145.CrossRef
15.
go back to reference Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg. 1982;31:1291–3.CrossRef Krotoski WA, Collins WE, Bray RS, Garnham PC, Cogswell FB, Gwadz RW, et al. Demonstration of hypnozoites in sporozoite-transmitted Plasmodium vivax infection. Am J Trop Med Hyg. 1982;31:1291–3.CrossRef
16.
go back to reference White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297.CrossRef White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10:297.CrossRef
17.
go back to reference Joyner C, Moreno A, Meyer EV, Cabrera-Mora M, Ma HC, Kissinger JC, et al. Plasmodium cynomolgi infections in Rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malar J. 2016;15:451.CrossRef Joyner C, Moreno A, Meyer EV, Cabrera-Mora M, Ma HC, Kissinger JC, et al. Plasmodium cynomolgi infections in Rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malar J. 2016;15:451.CrossRef
18.
go back to reference Coatney GR, Allergy NIO. Diseases I: the primate malarias. Washington: U.S. National Institute of Allergy and Infectious Diseases; 1971. Coatney GR, Allergy NIO. Diseases I: the primate malarias. Washington: U.S. National Institute of Allergy and Infectious Diseases; 1971.
19.
go back to reference Murphy GS, Oldfield EC. Falciparum malaria. Infect Dis Clin North Am. 1996;10:747–75.CrossRef Murphy GS, Oldfield EC. Falciparum malaria. Infect Dis Clin North Am. 1996;10:747–75.CrossRef
20.
go back to reference Genton B, D’Acremont V. Clinical features of malaria in returning travelers and migrants. Decker: Travelers’ malaria Hamilton; 2001. p. 371–92. Genton B, D’Acremont V. Clinical features of malaria in returning travelers and migrants. Decker: Travelers’ malaria Hamilton; 2001. p. 371–92.
21.
go back to reference Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.CrossRef Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481.CrossRef
22.
24.
go back to reference Russell BM, Cooke BM. The rheopathobiology of Plasmodium vivax and other important primate malaria parasites. Trends Parasitol. 2017;33:321–34.CrossRef Russell BM, Cooke BM. The rheopathobiology of Plasmodium vivax and other important primate malaria parasites. Trends Parasitol. 2017;33:321–34.CrossRef
25.
go back to reference Warren M, Skinner JC, Guinn E. Biology of the simian malarias of southeast Asia. I. Host cell preferences of young trophozoites of four species of Plasmodium. J Parasitol. 1966;52:14–6.CrossRef Warren M, Skinner JC, Guinn E. Biology of the simian malarias of southeast Asia. I. Host cell preferences of young trophozoites of four species of Plasmodium. J Parasitol. 1966;52:14–6.CrossRef
26.
go back to reference Akinyi S, Hanssen E, Meyer EVS, Jiang J, Korir CC, Singh B, et al. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola vesicle complexes (Schüffner’s dots) of infected erythrocytes is a member of the phist family. Mol Microbiol. 2012;84:816–31.CrossRef Akinyi S, Hanssen E, Meyer EVS, Jiang J, Korir CC, Singh B, et al. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola vesicle complexes (Schüffner’s dots) of infected erythrocytes is a member of the phist family. Mol Microbiol. 2012;84:816–31.CrossRef
27.
go back to reference Aikawa M, Miller LH, Rabbege J. Caveola–vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P. cynomolgi. Unique structures related to Schüffner’s dots. Am J Pathol. 1975;79:285–300.PubMedPubMedCentral Aikawa M, Miller LH, Rabbege J. Caveola–vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P. cynomolgi. Unique structures related to Schüffner’s dots. Am J Pathol. 1975;79:285–300.PubMedPubMedCentral
28.
go back to reference Mideo N, Day T, Read AF. Modelling malaria pathogenesis. Cell Microbiol. 2008;10:1947–55.CrossRef Mideo N, Day T, Read AF. Modelling malaria pathogenesis. Cell Microbiol. 2008;10:1947–55.CrossRef
29.
go back to reference Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson JA, McCarthy JS, et al. Within-host modeling of blood-stage malaria. Immunol Rev. 2018;285:168–93.CrossRef Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson JA, McCarthy JS, et al. Within-host modeling of blood-stage malaria. Immunol Rev. 2018;285:168–93.CrossRef
30.
go back to reference Anderson RM, May RM, Gupta S. Non-linear phenomena in host—parasite interactions. Parasitology. 1989;99:S59–79.CrossRef Anderson RM, May RM, Gupta S. Non-linear phenomena in host—parasite interactions. Parasitology. 1989;99:S59–79.CrossRef
31.
go back to reference Hetzel C, Anderson RM. The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies. Parasitology. 1996;113:25–38.CrossRef Hetzel C, Anderson RM. The within-host cellular dynamics of bloodstage malaria: theoretical and experimental studies. Parasitology. 1996;113:25–38.CrossRef
32.
go back to reference Johnson PLF, Kochin BF, Ahmed R, Antia R. How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens? Proc R Soc Lond B Biol Sci. 2012;279:2777–85.CrossRef Johnson PLF, Kochin BF, Ahmed R, Antia R. How do antigenically varying pathogens avoid cross-reactive responses to invariant antigens? Proc R Soc Lond B Biol Sci. 2012;279:2777–85.CrossRef
33.
go back to reference Mcqueen PG, Mckenzie FE. Competition for red blood cells can enhance Plasmodium vivax parasitemia in mixed-species malaria infections. Am J Trop Med Hyg. 2006;75:112–25.CrossRef Mcqueen PG, Mckenzie FE. Competition for red blood cells can enhance Plasmodium vivax parasitemia in mixed-species malaria infections. Am J Trop Med Hyg. 2006;75:112–25.CrossRef
34.
go back to reference Fonseca LL, Voit EO. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Math Biosci. 2015;270:224–36.CrossRef Fonseca LL, Voit EO. Comparison of mathematical frameworks for modeling erythropoiesis in the context of malaria infection. Math Biosci. 2015;270:224–36.CrossRef
36.
go back to reference Tang Y, Joyner CJ, Cabrera-Mora M, Saney CL, Lapp SA, Nural MV, et al. Integrative analysis associates monocytes with insufficient erythropoiesis during acute Plasmodium cynomolgi malaria in Rhesus macaques. Malar J. 2017;16:384.CrossRef Tang Y, Joyner CJ, Cabrera-Mora M, Saney CL, Lapp SA, Nural MV, et al. Integrative analysis associates monocytes with insufficient erythropoiesis during acute Plasmodium cynomolgi malaria in Rhesus macaques. Malar J. 2017;16:384.CrossRef
37.
go back to reference Schirm S, Engel C, Loeffler M, Scholz M. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLoS ONE. 2013;8:1–17.CrossRef Schirm S, Engel C, Loeffler M, Scholz M. A biomathematical model of human erythropoiesis under erythropoietin and chemotherapy administration. PLoS ONE. 2013;8:1–17.CrossRef
38.
go back to reference Fonseca LL, Alezi HS, Moreno A, Barnwell JW, Galinski MR, Voit EO. Quantifying the removal of red blood cells in Plasmodium coatneyi infection. Malar J. 2016;15:1.CrossRef Fonseca LL, Alezi HS, Moreno A, Barnwell JW, Galinski MR, Voit EO. Quantifying the removal of red blood cells in Plasmodium coatneyi infection. Malar J. 2016;15:1.CrossRef
39.
go back to reference Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al. Plasmodium coatneyi in Rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun. 2013;81:1889–904.CrossRef Moreno A, Cabrera-Mora M, Garcia A, Orkin J, Strobert E, Barnwell JW, et al. Plasmodium coatneyi in Rhesus macaques replicates the multisystemic dysfunction of severe malaria in humans. Infect Immun. 2013;81:1889–904.CrossRef
40.
go back to reference Dasari P, Fries A, Heber SD, Salama A, Blau I-W, Lingelbach K, et al. Malarial anemia: digestive vacuole of Plasmodium falciparum mediates complement deposition on bystander cells to provoke hemophagocytosis. Med Microbiol Immunol. 2014;203:383–93.CrossRef Dasari P, Fries A, Heber SD, Salama A, Blau I-W, Lingelbach K, et al. Malarial anemia: digestive vacuole of Plasmodium falciparum mediates complement deposition on bystander cells to provoke hemophagocytosis. Med Microbiol Immunol. 2014;203:383–93.CrossRef
41.
go back to reference Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119:127–33.CrossRef Jakeman GN, Saul A, Hogarth WL, Collins WE. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology. 1999;119:127–33.CrossRef
42.
go back to reference Lichtman M, Beutler E, Kipps T, Seligsohn U, Kaushansky K, Prchal J. Williams hematology. 8th ed. New York: McGraw-Hill Education; 2010. Lichtman M, Beutler E, Kipps T, Seligsohn U, Kaushansky K, Prchal J. Williams hematology. 8th ed. New York: McGraw-Hill Education; 2010.
43.
go back to reference Lee KJ, Yin W, Arafat D, Tang Y, Uppal K, Tran V, et al. Comparative transcriptomics and metabolomics in a Rhesus macaque drug administration study. Front Cell Dev Biol. 2014;2:54.CrossRef Lee KJ, Yin W, Arafat D, Tang Y, Uppal K, Tran V, et al. Comparative transcriptomics and metabolomics in a Rhesus macaque drug administration study. Front Cell Dev Biol. 2014;2:54.CrossRef
44.
go back to reference Fonseca LL, Joyner CJ, Consortium M, Galinski MR, Voit EO. A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malar J. 2017;16:375.CrossRef Fonseca LL, Joyner CJ, Consortium M, Galinski MR, Voit EO. A model of Plasmodium vivax concealment based on Plasmodium cynomolgi infections in Macaca mulatta. Malar J. 2017;16:375.CrossRef
45.
go back to reference Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:23.CrossRef Langhorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10:23.CrossRef
46.
go back to reference Ng S, March S, Galstian A, Gural N, Stevens KR, Mota MM, et al. Towards a humanized mouse model of liver stage malaria using ectopic artificial livers. Sci Rep. 2017;7:45424.CrossRef Ng S, March S, Galstian A, Gural N, Stevens KR, Mota MM, et al. Towards a humanized mouse model of liver stage malaria using ectopic artificial livers. Sci Rep. 2017;7:45424.CrossRef
47.
go back to reference Vallender EJ, Miller GM. Nonhuman primate models in the genomic era: a paradigm shift. ILAR J. 2013;54:154–65.CrossRef Vallender EJ, Miller GM. Nonhuman primate models in the genomic era: a paradigm shift. ILAR J. 2013;54:154–65.CrossRef
48.
go back to reference Antia R, Yates A, Roode JCD. The dynamics of acute malaria infections. I. Effect of the parasite’s red blood cell preference. Proc R Soc Lond B Biol Sci. 2008;275:1449–58.CrossRef Antia R, Yates A, Roode JCD. The dynamics of acute malaria infections. I. Effect of the parasite’s red blood cell preference. Proc R Soc Lond B Biol Sci. 2008;275:1449–58.CrossRef
49.
go back to reference Mcqueen PG, Mckenzie FE. Age-structured red blood cell susceptibility and the dynamics of malaria infections. Proc Natl Acad Sci USA. 2004;101:9161–6.CrossRef Mcqueen PG, Mckenzie FE. Age-structured red blood cell susceptibility and the dynamics of malaria infections. Proc Natl Acad Sci USA. 2004;101:9161–6.CrossRef
50.
go back to reference Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT. Williams hematology. 4th ed. New York: McGraw-Hill Medical; 2011. Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Seligsohn U, Prchal JT. Williams hematology. 4th ed. New York: McGraw-Hill Medical; 2011.
51.
go back to reference Skadberg O, Brun A, Sandberg S. Human reticulocytes isolated from peripheral blood: maturation time and hemoglobin synthesis. Lab Hematol. 2003;9:198–206.PubMed Skadberg O, Brun A, Sandberg S. Human reticulocytes isolated from peripheral blood: maturation time and hemoglobin synthesis. Lab Hematol. 2003;9:198–206.PubMed
52.
go back to reference Brugnara C. Use of reticulocyte cellular indices in the diagnosis and treatment of hematological disorders. Int J Clin Lab Res. 1998;28:1–11.CrossRef Brugnara C. Use of reticulocyte cellular indices in the diagnosis and treatment of hematological disorders. Int J Clin Lab Res. 1998;28:1–11.CrossRef
54.
go back to reference Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. Infect Genet Evol. 2016;40:243–52.CrossRef Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. Infect Genet Evol. 2016;40:243–52.CrossRef
55.
go back to reference Cromer D, Evans KJ, Schofield L, Davenport MP. Preferential invasion of reticulocytes during late-stage Plasmodium berghei infection accounts for reduced circulating reticulocyte levels. Int J Parasitol. 2006;36:1389–97.CrossRef Cromer D, Evans KJ, Schofield L, Davenport MP. Preferential invasion of reticulocytes during late-stage Plasmodium berghei infection accounts for reduced circulating reticulocyte levels. Int J Parasitol. 2006;36:1389–97.CrossRef
56.
go back to reference Thakre N, Fernandes P, Mueller A-K, Graw F. Characterizing malaria blood-stage infection patterns of two Plasmodium parasite strains. Front Microbiol. 2017;00:00. Thakre N, Fernandes P, Mueller A-K, Graw F. Characterizing malaria blood-stage infection patterns of two Plasmodium parasite strains. Front Microbiol. 2017;00:00.
57.
go back to reference Collins WE, Jeffery GM, Roberts JM. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am J Trop Med Hyg. 2003;68:410–2.CrossRef Collins WE, Jeffery GM, Roberts JM. A retrospective examination of anemia during infection of humans with Plasmodium vivax. Am J Trop Med Hyg. 2003;68:410–2.CrossRef
58.
go back to reference Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:614–22.CrossRef Price RN, Simpson JA, Nosten F, Luxemburger C, Hkirjaroen L, ter Kuile F, et al. Factors contributing to anemia after uncomplicated falciparum malaria. Am J Trop Med Hyg. 2001;65:614–22.CrossRef
59.
go back to reference Handayani S, Chiu DT, Tjitra E, Kuo JS, Lampah D, Kenangalem E, et al. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J Infect Dis. 2009;199:445–50.CrossRef Handayani S, Chiu DT, Tjitra E, Kuo JS, Lampah D, Kenangalem E, et al. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J Infect Dis. 2009;199:445–50.CrossRef
60.
go back to reference Paul A, Padmapriya P, Natarajan V. Diagnosis of malarial infection using change in properties of optically trapped red blood cells. Biomed J. 2017;40:101–5.CrossRef Paul A, Padmapriya P, Natarajan V. Diagnosis of malarial infection using change in properties of optically trapped red blood cells. Biomed J. 2017;40:101–5.CrossRef
Metadata
Title
Analysis of erythrocyte dynamics in Rhesus macaque monkeys during infection with Plasmodium cynomolgi
Authors
Luis L. Fonseca
Chester J. Joyner
Celia L. Saney
Alberto Moreno
John W. Barnwell
Mary R. Galinski
Eberhard O. Voit
The MaHPIC Consortium
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2560-6

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.