Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2020

Open Access 01-12-2020 | Amyotrophic Lateral Sclerosis | Review

Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers

Authors: Elisabetta Zucchi, Valentina Bonetto, Gianni Sorarù, Ilaria Martinelli, Piero Parchi, Rocco Liguori, Jessica Mandrioli

Published in: Molecular Neurodegeneration | Issue 1/2020

Login to get access

Abstract

Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today’s MND research agenda.
In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.
In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Appendix
Available only for authorised users
Literature
21.
go back to reference BEST (Biomarkers, EndpointS, and other Tools) Resource. FDA-NIH Biomarker Working Group. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US); 2016. BEST (Biomarkers, EndpointS, and other Tools) Resource. FDA-NIH Biomarker Working Group. Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD): National Institutes of Health (US); 2016.
31.
32.
go back to reference Sobue G, Hashizume Y, Yasuda T, Mukai E, Kumagai T, Mitsuma T, et al. Phosphorylated high molecular weight neurofilament protein in lower motor neurons in amyotrophic lateral sclerosis and other neurodegenerative diseases involving ventral horn cells. Acta Neuropathol. 1990;79:402–8. https://doi.org/10.1007/BF00308716.CrossRefPubMed Sobue G, Hashizume Y, Yasuda T, Mukai E, Kumagai T, Mitsuma T, et al. Phosphorylated high molecular weight neurofilament protein in lower motor neurons in amyotrophic lateral sclerosis and other neurodegenerative diseases involving ventral horn cells. Acta Neuropathol. 1990;79:402–8. https://​doi.​org/​10.​1007/​BF00308716.CrossRefPubMed
33.
go back to reference Itoh T, Sobue G, Ken E, Mitsuma T, Takahashi A, Trojanowski JQ. Phosphorylated high molecular weight neurofilament protein in the peripheral motor, sensory and sympathetic neuronal perikarya: system-dependent normal variations and changes in amyotrophic lateral sclerosis and multiple system atrophy. Acta Neuropathol. 1992;83:240–5. https://doi.org/10.1007/BF00296785.CrossRefPubMed Itoh T, Sobue G, Ken E, Mitsuma T, Takahashi A, Trojanowski JQ. Phosphorylated high molecular weight neurofilament protein in the peripheral motor, sensory and sympathetic neuronal perikarya: system-dependent normal variations and changes in amyotrophic lateral sclerosis and multiple system atrophy. Acta Neuropathol. 1992;83:240–5. https://​doi.​org/​10.​1007/​BF00296785.CrossRefPubMed
41.
go back to reference Ludemann N, Clement A, Hans VH, Leschik J, Behl C, Brandt R. O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J Biol Chem. 2005;280:31648–58.CrossRefPubMed Ludemann N, Clement A, Hans VH, Leschik J, Behl C, Brandt R. O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclerosis (ALS). J Biol Chem. 2005;280:31648–58.CrossRefPubMed
45.
go back to reference Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelsø C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 1996;67:2013–8.CrossRefPubMed Rosengren LE, Karlsson JE, Karlsson JO, Persson LI, Wikkelsø C. Patients with amyotrophic lateral sclerosis and other neurodegenerative diseases have increased levels of neurofilament protein in CSF. J Neurochem. 1996;67:2013–8.CrossRefPubMed
52.
go back to reference Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. 2016;54:1655–61. https://doi.org/10.1515/cclm-2015-1195.CrossRefPubMed Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius Å, et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. 2016;54:1655–61. https://​doi.​org/​10.​1515/​cclm-2015-1195.CrossRefPubMed
71.
83.
go back to reference Steinacker P, Huss A, Mayer B, Grehl T, Grosskreutz J, Borck G, et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemp Degener. 2017;18:112–9. https://doi.org/10.1080/21678421.2016.1241279.CrossRef Steinacker P, Huss A, Mayer B, Grehl T, Grosskreutz J, Borck G, et al. Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemp Degener. 2017;18:112–9. https://​doi.​org/​10.​1080/​21678421.​2016.​1241279.CrossRef
90.
92.
go back to reference Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, et al. Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology. 2006;66:265–7.CrossRefPubMed Kimura F, Fujimura C, Ishida S, Nakajima H, Furutama D, Uehara H, et al. Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology. 2006;66:265–7.CrossRefPubMed
97.
go back to reference Mandrioli J, D’Amico R, Zucchi E, Gessani A, Fini N, Fasano A, et al. RAP-ALS investigators group. Rapamycin treatment for amyotrophic lateral sclerosis: Protocol for a phase II randomized, double-blind, placebo-controlled, multicenter, clinical trial (RAP-ALS trial). Medicine (Baltimore). 2018;97:e11119. https://doi.org/10.1097/MD.0000000000011119.CrossRef Mandrioli J, D’Amico R, Zucchi E, Gessani A, Fini N, Fasano A, et al. RAP-ALS investigators group. Rapamycin treatment for amyotrophic lateral sclerosis: Protocol for a phase II randomized, double-blind, placebo-controlled, multicenter, clinical trial (RAP-ALS trial). Medicine (Baltimore). 2018;97:e11119. https://​doi.​org/​10.​1097/​MD.​0000000000011119​.CrossRef
106.
Metadata
Title
Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers
Authors
Elisabetta Zucchi
Valentina Bonetto
Gianni Sorarù
Ilaria Martinelli
Piero Parchi
Rocco Liguori
Jessica Mandrioli
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2020
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-020-00406-3

Other articles of this Issue 1/2020

Molecular Neurodegeneration 1/2020 Go to the issue