Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2018

Open Access 01-12-2018 | Research

The CSF neurofilament light signature in rapidly progressive neurodegenerative dementias

Authors: Samir Abu-Rumeileh, Sabina Capellari, Michelangelo Stanzani-Maserati, Barbara Polischi, Paolo Martinelli, Paola Caroppo, Anna Ladogana, Piero Parchi

Published in: Alzheimer's Research & Therapy | Issue 1/2018

Login to get access

Abstract

Background

Neurofilament light chain protein (NfL) is a surrogate biomarker of neurodegeneration that has never been systematically tested, either alone or in combination with other biomarkers, in atypical/rapidly progressive neurodegenerative dementias (NDs).

Methods

Using validated, commercially available enzyme-linked immunosorbent assay kits, we measured cerebrospinal fluid (CSF) NfL, total tau (t-tau), phosphorylated tau, and β-amyloid 42 in subjects with a neuropathological or clinical diagnosis of prion disease (n = 141), Alzheimer’s disease (AD) (n = 73), dementia with Lewy bodies (DLB) (n = 35), or frontotemporal lobar degeneration (FTLD) (n = 44). Several cases with an atypical/rapidly progressive course were included in each group. We evaluated the diagnostic accuracy of every CSF biomarker and their combinations by ROC curve analyses.

Results

In each patient group CSF NfL showed higher levels than in control subjects, reaching the highest values in those with Creutzfeldt-Jakob disease (CJD). In the latter, NfL showed a divergent, subtype-specific correlation with t-tau, depending on the degree of subcortical involvement and disease duration. Most significantly, patients with classic sporadic CJD (sCJD) MM1 showed a significantly lower concentration of CSF NfL than those with sCJD MV2, despite the much higher t-tau levels and the more rapid clinical course. High NfL levels were also detected in most atypical CJD cases, showing a disease duration longer than 2 years and/or borderline/negative results in other CSF assays (e.g., 14-3-3, t-tau, and prion real-time quaking-induced conversion). Rapidly progressive/atypical cases showed higher NfL levels than typical patients in FTLD, but not in AD or DLB. NfL showed accuracy similar to that of t-tau in discriminating CJD from other NDs, but it had higher efficacy in differentiating atypical forms, especially in regard to Alzheimer’s disease.

Conclusions

The present data indicate that CSF NfL and t-tau levels reflect distinct pathophysiological mechanisms of neurodegeneration and support the clinical use of NfL as a fast screening biomarker for the differential diagnosis of atypical/rapidly progressive NDs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parchi P, Saverioni D. Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012;50(1):20–45. Review.PubMed Parchi P, Saverioni D. Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012;50(1):20–45. Review.PubMed
2.
go back to reference Ghetti B, Tagliavini F, Kovacs GG, et al. Gerstmann–Sträussler–Scheinker Disease. In: Dickson D, Weller RO, editors. Neurodegeneration: the molecular pathology of dementia and movement disorders. 2nd ed. New York: Wiley-Blackwell; 2011. p. 364–77.CrossRef Ghetti B, Tagliavini F, Kovacs GG, et al. Gerstmann–Sträussler–Scheinker Disease. In: Dickson D, Weller RO, editors. Neurodegeneration: the molecular pathology of dementia and movement disorders. 2nd ed. New York: Wiley-Blackwell; 2011. p. 364–77.CrossRef
3.
go back to reference Parchi P, Giese A, Capellari S, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46(2):224–33.CrossRefPubMed Parchi P, Giese A, Capellari S, et al. Classification of sporadic Creutzfeldt-Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann Neurol. 1999;46(2):224–33.CrossRefPubMed
8.
go back to reference Abu Rumeileh S, Lattanzio F, Stanzani Maserati M, et al. Diagnostic accuracy of a combined analysis of cerebrospinal fluid t-PrP, t-tau, p-tau, and Aβ42 in the differential diagnosis of Creutzfeldt-Jakob disease from Alzheimer’s disease with emphasis on atypical disease variants. J Alzheimers Dis. 2017;55(4):1471–80. https://doi.org/10.3233/JAD-160740. Abu Rumeileh S, Lattanzio F, Stanzani Maserati M, et al. Diagnostic accuracy of a combined analysis of cerebrospinal fluid t-PrP, t-tau, p-tau, and Aβ42 in the differential diagnosis of Creutzfeldt-Jakob disease from Alzheimer’s disease with emphasis on atypical disease variants. J Alzheimers Dis. 2017;55(4):1471–80. https://​doi.​org/​10.​3233/​JAD-160740.
9.
go back to reference Josephs KA, Tsuboi Y, Dickson DW. Creutzfeldt-Jakob disease presenting as progressive supranuclear palsy. Eur J Neurol. 2004;11(5):343–6.CrossRefPubMed Josephs KA, Tsuboi Y, Dickson DW. Creutzfeldt-Jakob disease presenting as progressive supranuclear palsy. Eur J Neurol. 2004;11(5):343–6.CrossRefPubMed
11.
go back to reference Tartaglia MC, Johnson DY, Thai JN, et al. Clinical overlap between Jakob-Creutzfeldt disease and Lewy body disease. Can J Neurol Sci. 2012;39(3):304–10.CrossRefPubMedPubMedCentral Tartaglia MC, Johnson DY, Thai JN, et al. Clinical overlap between Jakob-Creutzfeldt disease and Lewy body disease. Can J Neurol Sci. 2012;39(3):304–10.CrossRefPubMedPubMedCentral
14.
go back to reference Lattanzio F, Abu-Rumeileh S, Franceschini A, et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol. 2017;133(4):559–78. https://doi.org/10.1007/s00401-017-1683-0. Lattanzio F, Abu-Rumeileh S, Franceschini A, et al. Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease: diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and Aβ42 levels. Acta Neuropathol. 2017;133(4):559–78. https://​doi.​org/​10.​1007/​s00401-017-1683-0.
15.
16.
go back to reference Wallin AK, Blennow K, Zetterberg H, et al. CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology. 2010;74(19):1531–7.CrossRefPubMed Wallin AK, Blennow K, Zetterberg H, et al. CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology. 2010;74(19):1531–7.CrossRefPubMed
17.
go back to reference Dorey A, Tholance Y, Vighetto A, et al. Association of cerebrospinal fluid prion protein levels and the distinction between Alzheimer disease and Creutzfeldt-Jakob disease. JAMA Neurol. 2015;72(3):267–75.CrossRefPubMed Dorey A, Tholance Y, Vighetto A, et al. Association of cerebrospinal fluid prion protein levels and the distinction between Alzheimer disease and Creutzfeldt-Jakob disease. JAMA Neurol. 2015;72(3):267–75.CrossRefPubMed
18.
go back to reference Skillbäck T, Rosén C, Asztely F, et al. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol. 2014;71(4):476–83.CrossRefPubMed Skillbäck T, Rosén C, Asztely F, et al. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol. 2014;71(4):476–83.CrossRefPubMed
19.
go back to reference Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233(1-2):183–98.CrossRefPubMed Petzold A. Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci. 2005;233(1-2):183–98.CrossRefPubMed
23.
go back to reference Hall S, Öhrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012;69(11):1445–52.CrossRefPubMed Hall S, Öhrfelt A, Constantinescu R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol. 2012;69(11):1445–52.CrossRefPubMed
31.
go back to reference Parchi P, de Boni L, Saverioni D, et al. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 2012;124(4):517–29. https://doi.org/10.1007/s00401-012-1002-8. Parchi P, de Boni L, Saverioni D, et al. Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 2012;124(4):517–29. https://​doi.​org/​10.​1007/​s00401-012-1002-8.
33.
go back to reference Giannoccaro MP, Bartoletti-Stella A, Piras S, et al. Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: further observations on their oligogenic nature. J Neurol. 2017;264(7):1426–33. https://doi.org/10.1007/s00415-017-8540-x. Giannoccaro MP, Bartoletti-Stella A, Piras S, et al. Multiple variants in families with amyotrophic lateral sclerosis and frontotemporal dementia related to C9orf72 repeat expansion: further observations on their oligogenic nature. J Neurol. 2017;264(7):1426–33. https://​doi.​org/​10.​1007/​s00415-017-8540-x.
34.
go back to reference McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9. https://doi.org/10.1016/j.jalz.2011.03.005. McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–9. https://​doi.​org/​10.​1016/​j.​jalz.​2011.​03.​005.
35.
41.
42.
go back to reference Sjögren M, Blomberg M, Jonsson M, et al. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res. 2001;66(3):510–6.CrossRefPubMed Sjögren M, Blomberg M, Jonsson M, et al. Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res. 2001;66(3):510–6.CrossRefPubMed
Metadata
Title
The CSF neurofilament light signature in rapidly progressive neurodegenerative dementias
Authors
Samir Abu-Rumeileh
Sabina Capellari
Michelangelo Stanzani-Maserati
Barbara Polischi
Paolo Martinelli
Paola Caroppo
Anna Ladogana
Piero Parchi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Alzheimer's Research & Therapy / Issue 1/2018
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-017-0331-1

Other articles of this Issue 1/2018

Alzheimer's Research & Therapy 1/2018 Go to the issue