Skip to main content
Top
Published in: BMC Medical Informatics and Decision Making 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Research

XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease

Authors: Fuliang Yi, Hui Yang, Durong Chen, Yao Qin, Hongjuan Han, Jing Cui, Wenlin Bai, Yifei Ma, Rong Zhang, Hongmei Yu

Published in: BMC Medical Informatics and Decision Making | Issue 1/2023

Login to get access

Abstract

Background

Due to the class imbalance issue faced when Alzheimer’s disease (AD) develops from normal cognition (NC) to mild cognitive impairment (MCI), present clinical practice is met with challenges regarding the auxiliary diagnosis of AD using machine learning (ML). This leads to low diagnosis performance. We aimed to construct an interpretable framework, extreme gradient boosting-Shapley additive explanations (XGBoost-SHAP), to handle the imbalance among different AD progression statuses at the algorithmic level. We also sought to achieve multiclassification of NC, MCI, and AD.

Methods

We obtained patient data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, including clinical information, neuropsychological test results, neuroimaging-derived biomarkers, and APOE-ε4 gene statuses. First, three feature selection algorithms were applied, and they were then included in the XGBoost algorithm. Due to the imbalance among the three classes, we changed the sample weight distribution to achieve multiclassification of NC, MCI, and AD. Then, the SHAP method was linked to XGBoost to form an interpretable framework. This framework utilized attribution ideas that quantified the impacts of model predictions into numerical values and analysed them based on their directions and sizes. Subsequently, the top 10 features (optimal subset) were used to simplify the clinical decision-making process, and their performance was compared with that of a random forest (RF), Bagging, AdaBoost, and a naive Bayes (NB) classifier. Finally, the National Alzheimer’s Coordinating Center (NACC) dataset was employed to assess the impact path consistency of the features within the optimal subset.

Results

Compared to the RF, Bagging, AdaBoost, NB and XGBoost (unweighted), the interpretable framework had higher classification performance with accuracy improvements of 0.74%, 0.74%, 1.46%, 13.18%, and 0.83%, respectively. The framework achieved high sensitivity (81.21%/74.85%), specificity (92.18%/89.86%), accuracy (87.57%/80.52%), area under the receiver operating characteristic curve (AUC) (0.91/0.88), positive clinical utility index (0.71/0.56), and negative clinical utility index (0.75/0.68) on the ADNI and NACC datasets, respectively. In the ADNI dataset, the top 10 features were found to have varying associations with the risk of AD onset based on their SHAP values. Specifically, the higher SHAP values of CDRSB, ADAS13, ADAS11, ventricle volume, ADASQ4, and FAQ were associated with higher risks of AD onset. Conversely, the higher SHAP values of LDELTOTAL, mPACCdigit, RAVLT_immediate, and MMSE were associated with lower risks of AD onset. Similar results were found for the NACC dataset.

Conclusions

The proposed interpretable framework contributes to achieving excellent performance in imbalanced AD multiclassification tasks and provides scientific guidance (optimal subset) for clinical decision-making, thereby facilitating disease management and offering new research ideas for optimizing AD prevention and treatment programs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kleiman MJ, Barenholtz E, Galvin JE, Initiative AsDN. Screening for early-stage Alzheimer’s disease using optimized feature sets and machine learning. J Alzheimers Dis. 2021;81(1):355–66.PubMedPubMedCentralCrossRef Kleiman MJ, Barenholtz E, Galvin JE, Initiative AsDN. Screening for early-stage Alzheimer’s disease using optimized feature sets and machine learning. J Alzheimers Dis. 2021;81(1):355–66.PubMedPubMedCentralCrossRef
2.
go back to reference Nagaraj S, Duong TQ. Deep learning and risk score classification of mild cognitive impairment and Alzheimer’s Disease. J Alzheimers Dis. 2021;80(3):1079–90.PubMedCrossRef Nagaraj S, Duong TQ. Deep learning and risk score classification of mild cognitive impairment and Alzheimer’s Disease. J Alzheimers Dis. 2021;80(3):1079–90.PubMedCrossRef
3.
go back to reference Patel H, Iniesta R, Stahl D, Dobson RJ, Newhouse SJ. Working towards a blood-derived gene expression Biomarker Specific for Alzheimer’s Disease. J Alzheimers Dis. 2020;74(2):545–61.PubMedPubMedCentralCrossRef Patel H, Iniesta R, Stahl D, Dobson RJ, Newhouse SJ. Working towards a blood-derived gene expression Biomarker Specific for Alzheimer’s Disease. J Alzheimers Dis. 2020;74(2):545–61.PubMedPubMedCentralCrossRef
5.
go back to reference Anderson ND. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019;24(1):78–87.PubMedCrossRef Anderson ND. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019;24(1):78–87.PubMedCrossRef
6.
go back to reference Gauthier S, Rosa-Neto P, Morais J, Webster C. World Alzheimer Report 2021-Journey through the diagnosis of Dementia.(2021). London, England: Alzheimer’s Disease International, 314. Gauthier S, Rosa-Neto P, Morais J, Webster C. World Alzheimer Report 2021-Journey through the diagnosis of Dementia.(2021). London, England: Alzheimer’s Disease International, 314.
7.
go back to reference Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, Chang GH, Joshi AS, Dwyer B, Zhu S. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain. 2020;143(6):1920–33.PubMedPubMedCentralCrossRef Qiu S, Joshi PS, Miller MI, Xue C, Zhou X, Karjadi C, Chang GH, Joshi AS, Dwyer B, Zhu S. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain. 2020;143(6):1920–33.PubMedPubMedCentralCrossRef
8.
go back to reference Battista P, Salvatore C, Castiglioni I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav Neurol. 2017;2017:1850909.PubMedPubMedCentralCrossRef Battista P, Salvatore C, Castiglioni I. Optimizing neuropsychological assessments for cognitive, behavioral, and functional impairment classification: a machine learning study. Behav Neurol. 2017;2017:1850909.PubMedPubMedCentralCrossRef
9.
go back to reference Chandra A, Dervenoulas G, Politis M. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol. 2019;266(6):1293–302.PubMedCrossRef Chandra A, Dervenoulas G, Politis M. Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol. 2019;266(6):1293–302.PubMedCrossRef
10.
go back to reference Tan MS, Cheah P-L, Chin A-V, Looi L-M, Chang S-W. A review on omics-based biomarkers discovery for Alzheimer’s disease from the bioinformatics perspectives: statistical approach vs machine learning approach. Comput Biol Med. 2021;139:104947.PubMedCrossRef Tan MS, Cheah P-L, Chin A-V, Looi L-M, Chang S-W. A review on omics-based biomarkers discovery for Alzheimer’s disease from the bioinformatics perspectives: statistical approach vs machine learning approach. Comput Biol Med. 2021;139:104947.PubMedCrossRef
11.
go back to reference Abdelnour C, Agosta F, Bozzali M, Fougère B, Iwata A, Nilforooshan R, Takada LT, Viñuela F, Traber M. Perspectives and challenges in patient stratification in Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):1–12.CrossRef Abdelnour C, Agosta F, Bozzali M, Fougère B, Iwata A, Nilforooshan R, Takada LT, Viñuela F, Traber M. Perspectives and challenges in patient stratification in Alzheimer’s disease. Alzheimers Res Ther. 2022;14(1):1–12.CrossRef
12.
go back to reference Martínez-Florez JF, Osorio JD, Cediel JC, Rivas JC, Granados-Sánchez AM, López-Peláez J, Jaramillo T, Cardona JF. Short-term memory binding distinguishing amnestic mild cognitive impairment from healthy aging: a machine learning study. J Alzheimers Dis. 2021;81(2):729–42.PubMedCrossRef Martínez-Florez JF, Osorio JD, Cediel JC, Rivas JC, Granados-Sánchez AM, López-Peláez J, Jaramillo T, Cardona JF. Short-term memory binding distinguishing amnestic mild cognitive impairment from healthy aging: a machine learning study. J Alzheimers Dis. 2021;81(2):729–42.PubMedCrossRef
13.
go back to reference Song M, Jung H, Lee S, Kim D, Ahn M. Diagnostic classification and biomarker identification of Alzheimer’s disease with random forest algorithm. Brain Sci. 2021;11(4):453.PubMedPubMedCentralCrossRef Song M, Jung H, Lee S, Kim D, Ahn M. Diagnostic classification and biomarker identification of Alzheimer’s disease with random forest algorithm. Brain Sci. 2021;11(4):453.PubMedPubMedCentralCrossRef
14.
go back to reference García-Gutierrez F, Díaz-Álvarez J, Matias-Guiu JA, Pytel V, Matías-Guiu J, Cabrera-Martín MN, Ayala JL. GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms. Med Biol Eng Comput. 2022;60(9):2737–56.PubMedPubMedCentralCrossRef García-Gutierrez F, Díaz-Álvarez J, Matias-Guiu JA, Pytel V, Matías-Guiu J, Cabrera-Martín MN, Ayala JL. GA-MADRID: design and validation of a machine learning tool for the diagnosis of Alzheimer’s disease and frontotemporal dementia using genetic algorithms. Med Biol Eng Comput. 2022;60(9):2737–56.PubMedPubMedCentralCrossRef
15.
go back to reference Liang W, Zhang K, Cao P, Liu X, Yang J, Zaiane O. Rethinking modeling Alzheimer’s disease progression from a multi-task learning perspective with deep recurrent neural network. Comput Biol Med. 2021;138:104935.PubMedCrossRef Liang W, Zhang K, Cao P, Liu X, Yang J, Zaiane O. Rethinking modeling Alzheimer’s disease progression from a multi-task learning perspective with deep recurrent neural network. Comput Biol Med. 2021;138:104935.PubMedCrossRef
16.
go back to reference Fotouhi S, Asadi S, Kattan MW. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J Biomed Inform. 2019;90:103089.PubMedCrossRef Fotouhi S, Asadi S, Kattan MW. A comprehensive data level analysis for cancer diagnosis on imbalanced data. J Biomed Inform. 2019;90:103089.PubMedCrossRef
17.
go back to reference Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining: 2016; 2016: 785–794. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining: 2016; 2016: 785–794.
18.
go back to reference Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017, 30. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017, 30.
19.
go back to reference Xue B, Li D, Lu C, King CR, Wildes T, Avidan MS, Kannampallil T, Abraham J. Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks of postoperative complications. JAMA Netw Open. 2021;4(3):e212240–0.PubMedPubMedCentralCrossRef Xue B, Li D, Lu C, King CR, Wildes T, Avidan MS, Kannampallil T, Abraham J. Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks of postoperative complications. JAMA Netw Open. 2021;4(3):e212240–0.PubMedPubMedCentralCrossRef
20.
go back to reference Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, Du M, Tong T. Predicting Alzheimer’s disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data. Front Aging Neurosci. 2020;12:77.PubMedPubMedCentralCrossRef Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, Du M, Tong T. Predicting Alzheimer’s disease conversion from mild cognitive impairment using an extreme learning machine-based grading method with multimodal data. Front Aging Neurosci. 2020;12:77.PubMedPubMedCentralCrossRef
21.
go back to reference Tufail AB, Ma Y-K, Zhang Q-N. Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. J Digit Imaging. 2020;33(5):1073–90.PubMedPubMedCentralCrossRef Tufail AB, Ma Y-K, Zhang Q-N. Binary classification of Alzheimer’s disease using sMRI imaging modality and deep learning. J Digit Imaging. 2020;33(5):1073–90.PubMedPubMedCentralCrossRef
22.
go back to reference Akter S, Das D, Haque RU, Tonmoy MIQ, Hasan MR, Mahjabeen S, Ahmed M. AD-CovNet: an exploratory analysis using a hybrid deep learning model to handle data imbalance, predict fatality, and risk factors in Alzheimer’s patients with COVID-19. Comput Biol Med. 2022;146:105657.PubMedPubMedCentralCrossRef Akter S, Das D, Haque RU, Tonmoy MIQ, Hasan MR, Mahjabeen S, Ahmed M. AD-CovNet: an exploratory analysis using a hybrid deep learning model to handle data imbalance, predict fatality, and risk factors in Alzheimer’s patients with COVID-19. Comput Biol Med. 2022;146:105657.PubMedPubMedCentralCrossRef
23.
go back to reference Lin W, Gao Q, Du M, Chen W, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput Biol Med. 2021;134:104478.PubMedCrossRef Lin W, Gao Q, Du M, Chen W, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease using linear discriminant analysis scoring for multimodal data. Comput Biol Med. 2021;134:104478.PubMedCrossRef
24.
go back to reference Ebrahimi A, Luo S, Chiong R, Initiative AsDN. Deep sequence modelling for Alzheimer’s disease detection using MRI. Comput Biol Med. 2021;134:104537.PubMedCrossRef Ebrahimi A, Luo S, Chiong R, Initiative AsDN. Deep sequence modelling for Alzheimer’s disease detection using MRI. Comput Biol Med. 2021;134:104537.PubMedCrossRef
25.
go back to reference Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, Dormont D, Durrleman S, Burgos N, Colliot O. Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med Image Anal. 2020;63:101694.PubMedCrossRef Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, Dormont D, Durrleman S, Burgos N, Colliot O. Convolutional neural networks for classification of Alzheimer’s disease: overview and reproducible evaluation. Med Image Anal. 2020;63:101694.PubMedCrossRef
26.
go back to reference Basheera S, Ram MSS. A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Comput Med Imaging Graph. 2020;81:101713.PubMedCrossRef Basheera S, Ram MSS. A novel CNN based Alzheimer’s disease classification using hybrid enhanced ICA segmented gray matter of MRI. Comput Med Imaging Graph. 2020;81:101713.PubMedCrossRef
27.
go back to reference Hu J, Qing Z, Liu R, Zhang X, Lv P, Wang M, Wang Y, He K, Gao Y, Zhang B. Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease. Front Neurosci. 2021;14:626154.PubMedPubMedCentralCrossRef Hu J, Qing Z, Liu R, Zhang X, Lv P, Wang M, Wang Y, He K, Gao Y, Zhang B. Deep learning-based classification and voxel-based visualization of frontotemporal dementia and Alzheimer’s disease. Front Neurosci. 2021;14:626154.PubMedPubMedCentralCrossRef
28.
go back to reference Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun X, Pan Z, Wang K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):1–14.CrossRef Hou N, Li M, He L, Xie B, Wang L, Zhang R, Yu Y, Sun X, Pan Z, Wang K. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost. J Transl Med. 2020;18(1):1–14.CrossRef
29.
go back to reference Zhang Y, Feng T, Wang S, Dong R, Yang J, Su J, Wang B. A novel XGBoost method to identify cancer tissue-of-origin based on copy number variations. Front Genet. 2020;11:585029.PubMedPubMedCentralCrossRef Zhang Y, Feng T, Wang S, Dong R, Yang J, Su J, Wang B. A novel XGBoost method to identify cancer tissue-of-origin based on copy number variations. Front Genet. 2020;11:585029.PubMedPubMedCentralCrossRef
30.
go back to reference Yu B, Qiu W, Chen C, Ma A, Jiang J, Zhou H, Ma Q. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics. 2020;36(4):1074–81.PubMedCrossRef Yu B, Qiu W, Chen C, Ma A, Jiang J, Zhou H, Ma Q. SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics. 2020;36(4):1074–81.PubMedCrossRef
31.
go back to reference Lundberg SM, Erion GG, Lee S-I. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:180203888 2018. Lundberg SM, Erion GG, Lee S-I. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:180203888 2018.
32.
go back to reference Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2(1):56–67.PubMedPubMedCentralCrossRef Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, Nair B, Katz R, Himmelfarb J, Bansal N, Lee S-I. From local explanations to global understanding with explainable AI for trees. Nat Mach Intell. 2020;2(1):56–67.PubMedPubMedCentralCrossRef
33.
go back to reference Sanz J, Sesma-Sara M, Bustince H. A fuzzy association rule-based classifier for imbalanced classification problems. Inf Sci. 2021;577:265–79.CrossRef Sanz J, Sesma-Sara M, Bustince H. A fuzzy association rule-based classifier for imbalanced classification problems. Inf Sci. 2021;577:265–79.CrossRef
34.
go back to reference Chang C-H, Lin C-H, Liu C-Y, Huang C-S, Chen S-J, Lin W-C, Yang H-T, Lane H-Y. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer’s disease: machine learning approaches. J Psychopharmacol. 2021;35(3):265–72.PubMedCrossRef Chang C-H, Lin C-H, Liu C-Y, Huang C-S, Chen S-J, Lin W-C, Yang H-T, Lane H-Y. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer’s disease: machine learning approaches. J Psychopharmacol. 2021;35(3):265–72.PubMedCrossRef
35.
go back to reference Wang X, Jiao B, Liu H, Wang Y, Hao X, Zhu Y, Xu B, Xu H, Zhang S, Jia X. Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer’s disease. CNS Neurosci Ther. 2022;28(12):2206–17.PubMedPubMedCentralCrossRef Wang X, Jiao B, Liu H, Wang Y, Hao X, Zhu Y, Xu B, Xu H, Zhang S, Jia X. Machine learning based on Optical Coherence Tomography images as a diagnostic tool for Alzheimer’s disease. CNS Neurosci Ther. 2022;28(12):2206–17.PubMedPubMedCentralCrossRef
36.
go back to reference Zhou J, Qiu Y, Liu X, Xie Z, Lv S, Peng Y, Li X. Annotating whole genome variants and constructing a multi-classifier based on samples of ADNI. Front Biosci (Landmark Ed). 2022;27(1):37.PubMedCrossRef Zhou J, Qiu Y, Liu X, Xie Z, Lv S, Peng Y, Li X. Annotating whole genome variants and constructing a multi-classifier based on samples of ADNI. Front Biosci (Landmark Ed). 2022;27(1):37.PubMedCrossRef
37.
go back to reference Min X, Li M, Dong D, Feng Z, Zhang P, Ke Z, You H, Han F, Ma H, Tian J. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method. Eur J Radiol. 2019;115:16–21.PubMedCrossRef Min X, Li M, Dong D, Feng Z, Zhang P, Ke Z, You H, Han F, Ma H, Tian J. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method. Eur J Radiol. 2019;115:16–21.PubMedCrossRef
38.
go back to reference Peng J, Hao D, Yang L, Du M, Song X, Jiang H, Zhang Y, Zheng D. Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: a preliminary study using random forest. Biocybern Biomed Eng. 2020;40(1):352–62.PubMedPubMedCentralCrossRef Peng J, Hao D, Yang L, Du M, Song X, Jiang H, Zhang Y, Zheng D. Evaluation of electrohysterogram measured from different gestational weeks for recognizing preterm delivery: a preliminary study using random forest. Biocybern Biomed Eng. 2020;40(1):352–62.PubMedPubMedCentralCrossRef
39.
go back to reference Rupapara V, Rustam F, Aljedaani W, Shahzad HF, Lee E, Ashraf I. Blood cancer prediction using leukemia microarray gene data and hybrid logistic vector trees model. Sci Rep. 2022;12(1):1–15.CrossRef Rupapara V, Rustam F, Aljedaani W, Shahzad HF, Lee E, Ashraf I. Blood cancer prediction using leukemia microarray gene data and hybrid logistic vector trees model. Sci Rep. 2022;12(1):1–15.CrossRef
40.
41.
go back to reference Vinutha N, Pattar S, Sharma S, Shenoy P, Venugopal K. A machine learning framework for assessment of cognitive and functional impairments in Alzheimer’s disease: data preprocessing and analysis. J Prev Alzheimers Dis. 2020;7(2):87–94.PubMed Vinutha N, Pattar S, Sharma S, Shenoy P, Venugopal K. A machine learning framework for assessment of cognitive and functional impairments in Alzheimer’s disease: data preprocessing and analysis. J Prev Alzheimers Dis. 2020;7(2):87–94.PubMed
42.
go back to reference Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer’s disease by using explainable machine learning approach. Sci Rep. 2022;12(1):1–26.CrossRef Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer’s disease by using explainable machine learning approach. Sci Rep. 2022;12(1):1–26.CrossRef
43.
go back to reference Dubey R, Zhou J, Wang Y, Thompson PM, Ye J, Initiative AsDN. Analysis of sampling techniques for imbalanced data: an n = 648 ADNI study. NeuroImage. 2014;87:220–41.PubMedCrossRef Dubey R, Zhou J, Wang Y, Thompson PM, Ye J, Initiative AsDN. Analysis of sampling techniques for imbalanced data: an n = 648 ADNI study. NeuroImage. 2014;87:220–41.PubMedCrossRef
44.
go back to reference Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches [research frontier]. ieee ComputatioNal iNtelligeNCe magaziNe 2018, 13(4):59–76. Santos MS, Soares JP, Abreu PH, Araujo H, Santos J. Cross-validation for imbalanced datasets: avoiding overoptimistic and overfitting approaches [research frontier]. ieee ComputatioNal iNtelligeNCe magaziNe 2018, 13(4):59–76.
45.
go back to reference Tsoy E, Erlhoff SJ, Goode CA, Dorsman KA, Kanjanapong S, Lindbergh CA, La Joie R, Strom A, Rabinovici GD, Lanata SC. BHA-CS: a novel cognitive composite for Alzheimer’s disease and related disorders. Alzheimers Dement (Amst). 2020;12(1):e12042.PubMed Tsoy E, Erlhoff SJ, Goode CA, Dorsman KA, Kanjanapong S, Lindbergh CA, La Joie R, Strom A, Rabinovici GD, Lanata SC. BHA-CS: a novel cognitive composite for Alzheimer’s disease and related disorders. Alzheimers Dement (Amst). 2020;12(1):e12042.PubMed
46.
go back to reference Younan D, Petkus AJ, Widaman KF, Wang X, Casanova R, Espeland MA, Gatz M, Henderson VW, Manson JE, Rapp SR. Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease. Brain. 2020;143(1):289–302.PubMedCrossRef Younan D, Petkus AJ, Widaman KF, Wang X, Casanova R, Espeland MA, Gatz M, Henderson VW, Manson JE, Rapp SR. Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease. Brain. 2020;143(1):289–302.PubMedCrossRef
47.
go back to reference Gallagher J, Rick J, Xie SX, Martinez-Martin P, Mamikonyan E, Chen-Plotkin A, Dahodwala N, Morley J, Duda JE, Trojanowski JQ. Psychometric Properties of the clinical dementia rating Scale Sum of Boxes in Parkinson’s Disease. J Parkinsons Dis. 2021;11(2):737–45.PubMedPubMedCentralCrossRef Gallagher J, Rick J, Xie SX, Martinez-Martin P, Mamikonyan E, Chen-Plotkin A, Dahodwala N, Morley J, Duda JE, Trojanowski JQ. Psychometric Properties of the clinical dementia rating Scale Sum of Boxes in Parkinson’s Disease. J Parkinsons Dis. 2021;11(2):737–45.PubMedPubMedCentralCrossRef
48.
go back to reference Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72.PubMedCrossRef Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–72.PubMedCrossRef
49.
go back to reference Tzeng RC, Yang YW, Hsu KC, Chang HT, Chiu PY. Sum of boxes of the clinical dementia rating scale highly predicts conversion or reversion in predementia stages. Front Aging Neurosci. 2022;14:1021792.PubMedPubMedCentralCrossRef Tzeng RC, Yang YW, Hsu KC, Chang HT, Chiu PY. Sum of boxes of the clinical dementia rating scale highly predicts conversion or reversion in predementia stages. Front Aging Neurosci. 2022;14:1021792.PubMedPubMedCentralCrossRef
50.
go back to reference Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.PubMedCrossRef Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry. 1984;141(11):1356–64.PubMedCrossRef
51.
go back to reference Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): modifications and responsiveness in Pre-Dementia populations. Narrative Rev J Alzheimers Dis. 2018;63(2):423–44.CrossRef Kueper JK, Speechley M, Montero-Odasso M. The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog): modifications and responsiveness in Pre-Dementia populations. Narrative Rev J Alzheimers Dis. 2018;63(2):423–44.CrossRef
52.
go back to reference Podhorna J, Krahnke T, Shear M, Harrison JE. Alzheimer’s Disease Neuroimaging Initiative: Alzheimer’s Disease Assessment Scale-Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease: change over time and the effect of enrichment strategies. Alzheimers Res Ther. 2016;8(1):1–13.CrossRef Podhorna J, Krahnke T, Shear M, Harrison JE. Alzheimer’s Disease Neuroimaging Initiative: Alzheimer’s Disease Assessment Scale-Cognitive subscale variants in mild cognitive impairment and mild Alzheimer’s disease: change over time and the effect of enrichment strategies. Alzheimers Res Ther. 2016;8(1):1–13.CrossRef
53.
go back to reference Fokuoh E, Xiao D, Fang W, Liu Y, Lu Y, Wang K. Longitudinal analysis of APOE-ɛ4 genotype with the logical memory delayed recall score in Alzheimer’s disease. J Genet. 2021;100:1–9.CrossRef Fokuoh E, Xiao D, Fang W, Liu Y, Lu Y, Wang K. Longitudinal analysis of APOE-ɛ4 genotype with the logical memory delayed recall score in Alzheimer’s disease. J Genet. 2021;100:1–9.CrossRef
54.
go back to reference Bruno D, Mueller KD, Betthauser T, Chin N, Engelman CD, Christian B, Koscik RL, Johnson SC. Serial position effects in the logical memory test: loss of primacy predicts amyloid positivity. J Neuropsychol. 2021;15(3):448–61.PubMedCrossRef Bruno D, Mueller KD, Betthauser T, Chin N, Engelman CD, Christian B, Koscik RL, Johnson SC. Serial position effects in the logical memory test: loss of primacy predicts amyloid positivity. J Neuropsychol. 2021;15(3):448–61.PubMedCrossRef
55.
go back to reference Zhang X, Wu Y, He Y, Ge X, Cui J, Han H, Luo Y, Liu L, Wang Z, Yu H. Metrological properties of neuropsychological tests for measuring cognitive change in individuals with prodromal Alzheimer’s disease. Aging Ment Health 2021:1–9. Zhang X, Wu Y, He Y, Ge X, Cui J, Han H, Luo Y, Liu L, Wang Z, Yu H. Metrological properties of neuropsychological tests for measuring cognitive change in individuals with prodromal Alzheimer’s disease. Aging Ment Health 2021:1–9.
56.
go back to reference Lombardi G, Crescioli G, Cavedo E, Lucenteforte E, Casazza G, Bellatorre AG, Lista C, Costantino G, Frisoni G, Virgili G. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database Syst Rev 2020(3). Lombardi G, Crescioli G, Cavedo E, Lucenteforte E, Casazza G, Bellatorre AG, Lista C, Costantino G, Frisoni G, Virgili G. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer’s disease in people with mild cognitive impairment. Cochrane Database Syst Rev 2020(3).
Metadata
Title
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
Authors
Fuliang Yi
Hui Yang
Durong Chen
Yao Qin
Hongjuan Han
Jing Cui
Wenlin Bai
Yifei Ma
Rong Zhang
Hongmei Yu
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Medical Informatics and Decision Making / Issue 1/2023
Electronic ISSN: 1472-6947
DOI
https://doi.org/10.1186/s12911-023-02238-9

Other articles of this Issue 1/2023

BMC Medical Informatics and Decision Making 1/2023 Go to the issue