Skip to main content
Top
Published in: Molecular Neurodegeneration 1/2024

Open Access 01-12-2024 | Alzheimer's Disease | Review

Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models

Authors: Gowoon Son, Thomas C. Neylan, Lea T. Grinberg

Published in: Molecular Neurodegeneration | Issue 1/2024

Login to get access

Abstract

Tauopathies, a group of neurodegenerative diseases that includes Alzheimer’s disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Literature
1.
go back to reference Pollak CP, Perlick D. Sleep problems and institutionalization of the elderly. J Geriatr Psychiatry Neurol. 1991;4:204–10.PubMedCrossRef Pollak CP, Perlick D. Sleep problems and institutionalization of the elderly. J Geriatr Psychiatry Neurol. 1991;4:204–10.PubMedCrossRef
2.
go back to reference Spitznagel MB, Tremont G, Davis JD, Foster SM. Psychosocial predictors of dementia caregiver desire to institutionalize: caregiver, care recipient, and family relationship factors. J Geriatr Psychiatry Neurol. 2006;19:16–20.PubMedPubMedCentralCrossRef Spitznagel MB, Tremont G, Davis JD, Foster SM. Psychosocial predictors of dementia caregiver desire to institutionalize: caregiver, care recipient, and family relationship factors. J Geriatr Psychiatry Neurol. 2006;19:16–20.PubMedPubMedCentralCrossRef
5.
go back to reference Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–66.PubMedPubMedCentralCrossRef Crary JF, Trojanowski JQ, Schneider JA, Abisambra JF, Abner EL, Alafuzoff I, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 2014;128:755–66.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol. 2019;72:725–35.PubMedCrossRef Kovacs GG. Molecular pathology of neurodegenerative diseases: principles and practice. J Clin Pathol. 2019;72:725–35.PubMedCrossRef
8.
go back to reference Deboer T. Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiol Sleep Circadian Rhythms. 2018;5:68–77.PubMedPubMedCentralCrossRef Deboer T. Sleep homeostasis and the circadian clock: do the circadian pacemaker and the sleep homeostat influence each other’s functioning? Neurobiol Sleep Circadian Rhythms. 2018;5:68–77.PubMedPubMedCentralCrossRef
9.
go back to reference Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 1985;342:37–44.PubMedCrossRef Swaab DF, Fliers E, Partiman TS. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res. 1985;342:37–44.PubMedCrossRef
10.
go back to reference Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, et al. Pathologic evaluation of the human Suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol. 1999;58:29–39.PubMedCrossRef Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B, et al. Pathologic evaluation of the human Suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol. 1999;58:29–39.PubMedCrossRef
11.
go back to reference Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, et al. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain. 2008;131:1609–17.PubMedCrossRef Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L, et al. Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain. 2008;131:1609–17.PubMedCrossRef
12.
go back to reference Zhou J-N, Hofman MA, Swaab DF. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol Aging. 1995;16:571–6.PubMedCrossRef Zhou J-N, Hofman MA, Swaab DF. VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol Aging. 1995;16:571–6.PubMedCrossRef
13.
go back to reference Wu Y-H, Zhou J-N, Van Heerikhuize J, Jockers R, Swaab DF. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging. 2007;28:1239–47.PubMedCrossRef Wu Y-H, Zhou J-N, Van Heerikhuize J, Jockers R, Swaab DF. Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease. Neurobiol Aging. 2007;28:1239–47.PubMedCrossRef
14.
go back to reference Swaab DF, Grundke-Iqbal I, Iqbal K, Kremer HPH, Ravid R, van de Nes JAP. τ and ubiquitin in the human hypothalamus in aging and Alzheimer’s disease. Brain Res. 1992;590:239–49.PubMedCrossRef Swaab DF, Grundke-Iqbal I, Iqbal K, Kremer HPH, Ravid R, van de Nes JAP. τ and ubiquitin in the human hypothalamus in aging and Alzheimer’s disease. Brain Res. 1992;590:239–49.PubMedCrossRef
15.
go back to reference Wang JL, Lim AS, Chiang W-Y, Hsieh W-H, Lo M-T, Schneider JA, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans: SCN and rest-activity rhythms. Ann Neurol. 2015;78:317–22.PubMedPubMedCentralCrossRef Wang JL, Lim AS, Chiang W-Y, Hsieh W-H, Lo M-T, Schneider JA, et al. Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans: SCN and rest-activity rhythms. Ann Neurol. 2015;78:317–22.PubMedPubMedCentralCrossRef
17.
go back to reference Boone DR, Sell SL, Micci M-A, Crookshanks JM, Parsley M, Uchida T, et al. Traumatic Brain Injury-Induced Dysregulation of the Circadian Clock. Lyons LC, editor. PLoS ONE. 2012;7:e46204.PubMedPubMedCentralCrossRef Boone DR, Sell SL, Micci M-A, Crookshanks JM, Parsley M, Uchida T, et al. Traumatic Brain Injury-Induced Dysregulation of the Circadian Clock. Lyons LC, editor. PLoS ONE. 2012;7:e46204.PubMedPubMedCentralCrossRef
18.
go back to reference Yamakawa GR, Brady RD, Sun M, McDonald SJ, Shultz SR, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms. 2020;9:100058.PubMedPubMedCentralCrossRef Yamakawa GR, Brady RD, Sun M, McDonald SJ, Shultz SR, Mychasiuk R. The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiol Sleep Circadian Rhythms. 2020;9:100058.PubMedPubMedCentralCrossRef
19.
go back to reference Brunetti V, Testani E, Iorio R, Frisullo G, Luigetti M, Di Giuda D, et al. Post-encephalitic parkinsonism and sleep disorder responsive to immunological treatment: a case report. Clin EEG Neurosci. 2016;47:324–9.PubMedCrossRef Brunetti V, Testani E, Iorio R, Frisullo G, Luigetti M, Di Giuda D, et al. Post-encephalitic parkinsonism and sleep disorder responsive to immunological treatment: a case report. Clin EEG Neurosci. 2016;47:324–9.PubMedCrossRef
20.
go back to reference Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, et al. Best practices in the clinical Management of Progressive Supranuclear Palsy and Corticobasal Syndrome: a consensus statement of the CurePSP centers of care. Front Neurol [Internet]. 2021; [cited 2023 May 17]; 12. Available from: 10.3389/fneur.2021.694872 . Bluett B, Pantelyat AY, Litvan I, Ali F, Apetauerova D, Bega D, et al. Best practices in the clinical Management of Progressive Supranuclear Palsy and Corticobasal Syndrome: a consensus statement of the CurePSP centers of care. Front Neurol [Internet]. 2021; [cited 2023 May 17]; 12. Available from: 10.3389/fneur.2021.694872 .
21.
go back to reference De Pablo-Fernández E, Courtney R, Warner TT, Holton JL. A histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive Supranuclear palsy. JAMA Neurology. 2018;75:1008–12.PubMedPubMedCentralCrossRef De Pablo-Fernández E, Courtney R, Warner TT, Holton JL. A histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive Supranuclear palsy. JAMA Neurology. 2018;75:1008–12.PubMedPubMedCentralCrossRef
22.
go back to reference Lin W, Lin Y-K, Yang F-C, Chung C-H, Hu J-M, Tsao C-H, et al. Risk of neurodegenerative diseases in patients with sleep disorders: a nationwide population-based case-control study. Sleep Med. 2023;107:289–99.PubMedCrossRef Lin W, Lin Y-K, Yang F-C, Chung C-H, Hu J-M, Tsao C-H, et al. Risk of neurodegenerative diseases in patients with sleep disorders: a nationwide population-based case-control study. Sleep Med. 2023;107:289–99.PubMedCrossRef
23.
go back to reference Gemignani A, Pietrini P, Murrell JR, Glazier BS, Zolo P, Guazzelli M, et al. Slow wave and rem sleep mechanisms are differently altered in hereditary pick disease associated with the TAU G389R mutation. Arch Ital Biol. 2005;143:65–79.PubMed Gemignani A, Pietrini P, Murrell JR, Glazier BS, Zolo P, Guazzelli M, et al. Slow wave and rem sleep mechanisms are differently altered in hereditary pick disease associated with the TAU G389R mutation. Arch Ital Biol. 2005;143:65–79.PubMed
24.
go back to reference Walsh CM, Ruoff L, Walker K, Emery A, Varbel J, Karageorgiou E, et al. Sleepless night and day, the plight of progressive Supranuclear palsy. Sleep. 2017;40:zsx154.PubMedPubMedCentralCrossRef Walsh CM, Ruoff L, Walker K, Emery A, Varbel J, Karageorgiou E, et al. Sleepless night and day, the plight of progressive Supranuclear palsy. Sleep. 2017;40:zsx154.PubMedPubMedCentralCrossRef
25.
go back to reference Peter-Derex L, Yammine P, Bastuji H, Croisile B. Sleep and Alzheimer’s disease. Sleep Med Rev. 2015;19:29–38.PubMedCrossRef Peter-Derex L, Yammine P, Bastuji H, Croisile B. Sleep and Alzheimer’s disease. Sleep Med Rev. 2015;19:29–38.PubMedCrossRef
26.
27.
go back to reference Aldrich MS, Foster NL, White RF, Bluemlein L, Ba GP. Sleep abnormalities in progressive supranuclear palsy. Ann Neurol. 1989;25:577–81.PubMedCrossRef Aldrich MS, Foster NL, White RF, Bluemlein L, Ba GP. Sleep abnormalities in progressive supranuclear palsy. Ann Neurol. 1989;25:577–81.PubMedCrossRef
28.
go back to reference Oh JY, Walsh CM, Ranasinghe K, Mladinov M, Pereira FL, Petersen C, et al. Subcortical neuronal correlates of sleep in neurodegenerative diseases. JAMA Neurol. 2022;79:498–508.PubMedPubMedCentralCrossRef Oh JY, Walsh CM, Ranasinghe K, Mladinov M, Pereira FL, Petersen C, et al. Subcortical neuronal correlates of sleep in neurodegenerative diseases. JAMA Neurol. 2022;79:498–508.PubMedPubMedCentralCrossRef
29.
go back to reference Prinz PN, Peskind ER, Vitaliano PP, Raskind MA, Eisdorfer C, Zemcuznikov N, et al. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects. J Am Geriatr Soc. 1982;30:86–93.PubMedCrossRef Prinz PN, Peskind ER, Vitaliano PP, Raskind MA, Eisdorfer C, Zemcuznikov N, et al. Changes in the sleep and waking EEGs of nondemented and demented elderly subjects. J Am Geriatr Soc. 1982;30:86–93.PubMedCrossRef
30.
go back to reference Petit D, Gagnon J-F, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–96.PubMedCrossRef Petit D, Gagnon J-F, Fantini ML, Ferini-Strambi L, Montplaisir J. Sleep and quantitative EEG in neurodegenerative disorders. J Psychosom Res. 2004;56:487–96.PubMedCrossRef
32.
go back to reference Van Cauter E, Leproult R, Plat L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA. 2000;284:861–8.PubMedCrossRef Van Cauter E, Leproult R, Plat L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA. 2000;284:861–8.PubMedCrossRef
33.
go back to reference Falgàs N, Walsh CM, Yack L, Simon AJ, Allen IE, Kramer JH, et al. Alzheimer’s disease phenotypes show different sleep architecture. Alzheimers Dement. 2023;alz.12963. Falgàs N, Walsh CM, Yack L, Simon AJ, Allen IE, Kramer JH, et al. Alzheimer’s disease phenotypes show different sleep architecture. Alzheimers Dement. 2023;alz.12963.
34.
go back to reference Arand D, Bonnet M, Hurwitz T, Mitler M, Rosa R, Sangal RB. The clinical use of the MSLT and MWT. Sleep. 2005;28:123–44.PubMedCrossRef Arand D, Bonnet M, Hurwitz T, Mitler M, Rosa R, Sangal RB. The clinical use of the MSLT and MWT. Sleep. 2005;28:123–44.PubMedCrossRef
35.
go back to reference Littner MR, Kushida C, Wise M, Davila DG, Morgenthaler T, Lee-Chiong T, et al. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep. 2005;28:113–21.PubMedCrossRef Littner MR, Kushida C, Wise M, Davila DG, Morgenthaler T, Lee-Chiong T, et al. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep. 2005;28:113–21.PubMedCrossRef
36.
go back to reference Cooper AD, Josephs KA. Photophobia, visual hallucinations, and REM sleep behavior disorder in progressive supranuclear palsy and corticobasal degeneration: a prospective study. Parkinsonism Relat Disord. 2009;15:59–61.PubMedCrossRef Cooper AD, Josephs KA. Photophobia, visual hallucinations, and REM sleep behavior disorder in progressive supranuclear palsy and corticobasal degeneration: a prospective study. Parkinsonism Relat Disord. 2009;15:59–61.PubMedCrossRef
37.
go back to reference Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70:327–40.PubMedPubMedCentralCrossRef Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ, et al. Clinicopathological correlations in corticobasal degeneration. Ann Neurol. 2011;70:327–40.PubMedPubMedCentralCrossRef
38.
go back to reference Oh J, Eser RA, Ehrenberg AJ, Morales D, Petersen C, Kudlacek J, et al. Profound degeneration of wake-promoting neurons in Alzheimer’s disease. Alzheimers Dement. 2019;15:1253–63.PubMedPubMedCentralCrossRef Oh J, Eser RA, Ehrenberg AJ, Morales D, Petersen C, Kudlacek J, et al. Profound degeneration of wake-promoting neurons in Alzheimer’s disease. Alzheimers Dement. 2019;15:1253–63.PubMedPubMedCentralCrossRef
39.
go back to reference Adams JW, Alosco ML, Mez J, Alvarez VE, Huber BR, Tripodis Y, et al. Association of probable REM sleep behavior disorder with pathology and years of contact sports play in chronic traumatic encephalopathy. Acta Neuropathol. 2020;140:851–62.PubMedPubMedCentralCrossRef Adams JW, Alosco ML, Mez J, Alvarez VE, Huber BR, Tripodis Y, et al. Association of probable REM sleep behavior disorder with pathology and years of contact sports play in chronic traumatic encephalopathy. Acta Neuropathol. 2020;140:851–62.PubMedPubMedCentralCrossRef
41.
go back to reference Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer’s disease. Sleep Med Rev. 2021;60:101541.PubMedPubMedCentralCrossRef Lew CH, Petersen C, Neylan TC, Grinberg LT. Tau-driven degeneration of sleep- and wake-regulating neurons in Alzheimer’s disease. Sleep Med Rev. 2021;60:101541.PubMedPubMedCentralCrossRef
42.
go back to reference Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A. Sundowning and circadian rhythms in Alzheimer’s disease. AJP. 2001;158:704–11.CrossRef Volicer L, Harper DG, Manning BC, Goldstein R, Satlin A. Sundowning and circadian rhythms in Alzheimer’s disease. AJP. 2001;158:704–11.CrossRef
43.
go back to reference Okawa M, Mishima K, Hishikawa Y, Hozumi S, Hori H, Takahashi K. Circadian rhythm disorders in sleep-waking and body temperature in elderly patients with dementia and their treatment. Sleep. 1991;14:478–85.PubMedCrossRef Okawa M, Mishima K, Hishikawa Y, Hozumi S, Hori H, Takahashi K. Circadian rhythm disorders in sleep-waking and body temperature in elderly patients with dementia and their treatment. Sleep. 1991;14:478–85.PubMedCrossRef
44.
go back to reference Hatfield CF, Herbert J, van Someren EJW, Hodges JR, Hastings MH. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain. 2004;127:1061–74.PubMedCrossRef Hatfield CF, Herbert J, van Someren EJW, Hodges JR, Hastings MH. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain. 2004;127:1061–74.PubMedCrossRef
45.
go back to reference Homolak J, Mudrovčić M, Vukić B, Toljan K. Circadian rhythm and Alzheimer’s disease. Med Sci (Basel). 2018;6:52.PubMed Homolak J, Mudrovčić M, Vukić B, Toljan K. Circadian rhythm and Alzheimer’s disease. Med Sci (Basel). 2018;6:52.PubMed
46.
go back to reference Winer JR, Morehouse A, Fenton L, Harrison TM, Ayangma L, Reed M, et al. Tau and β-amyloid burden predict Actigraphy-measured and self-reported impairment and misperception of human sleep. J Neurosci. 2021;41:7687–96.PubMedPubMedCentralCrossRef Winer JR, Morehouse A, Fenton L, Harrison TM, Ayangma L, Reed M, et al. Tau and β-amyloid burden predict Actigraphy-measured and self-reported impairment and misperception of human sleep. J Neurosci. 2021;41:7687–96.PubMedPubMedCentralCrossRef
47.
go back to reference Walsh CM, Ruoff L, Varbel J, Walker K, Grinberg LT, Boxer AL, et al. Rest-activity rhythm disruption in progressive supranuclear palsy. Sleep Med. 2016;22:50–6.PubMedPubMedCentralCrossRef Walsh CM, Ruoff L, Varbel J, Walker K, Grinberg LT, Boxer AL, et al. Rest-activity rhythm disruption in progressive supranuclear palsy. Sleep Med. 2016;22:50–6.PubMedPubMedCentralCrossRef
48.
go back to reference Suzuki K, Miyamoto T, Miyamoto M, Hirata K. The core body temperature rhythm is altered in progressive supranuclear palsy. Clin Auton Res. 2009;19:65–8.PubMedCrossRef Suzuki K, Miyamoto T, Miyamoto M, Hirata K. The core body temperature rhythm is altered in progressive supranuclear palsy. Clin Auton Res. 2009;19:65–8.PubMedCrossRef
49.
go back to reference Schmidt C, Berg D, Herting PS, Junghanns S, Schweitzer K, et al. Loss of nocturnal blood pressure fall in various extrapyramidal syndromes. Mov Disord. 2009;24:2136–42.PubMedCrossRef Schmidt C, Berg D, Herting PS, Junghanns S, Schweitzer K, et al. Loss of nocturnal blood pressure fall in various extrapyramidal syndromes. Mov Disord. 2009;24:2136–42.PubMedCrossRef
50.
go back to reference Blessing EM, Parekh A, Betensky RA, Babb J, Saba N, Debure L, et al. Association between lower body temperature and increased tau pathology in cognitively normal older adults. Neurobiol Dis. 2022;171:105748.PubMedPubMedCentralCrossRef Blessing EM, Parekh A, Betensky RA, Babb J, Saba N, Debure L, et al. Association between lower body temperature and increased tau pathology in cognitively normal older adults. Neurobiol Dis. 2022;171:105748.PubMedPubMedCentralCrossRef
51.
go back to reference Maywood ES, Chesham JE, Winsky-Sommerer R, Hastings MH. Restoring the molecular clockwork within the Suprachiasmatic hypothalamus of an otherwise Clockless mouse enables circadian phasing and stabilization of sleep-wake cycles and reverses memory deficits. J Neurosci. 2021;41:8562–76.PubMedPubMedCentralCrossRef Maywood ES, Chesham JE, Winsky-Sommerer R, Hastings MH. Restoring the molecular clockwork within the Suprachiasmatic hypothalamus of an otherwise Clockless mouse enables circadian phasing and stabilization of sleep-wake cycles and reverses memory deficits. J Neurosci. 2021;41:8562–76.PubMedPubMedCentralCrossRef
52.
go back to reference Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun. 2020;11:4410.PubMedPubMedCentralCrossRef Todd WD, Venner A, Anaclet C, Broadhurst RY, De Luca R, Bandaru SS, et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nat Commun. 2020;11:4410.PubMedPubMedCentralCrossRef
53.
go back to reference Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat. 2003;25:293–310.PubMedCrossRef Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD. Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat. 2003;25:293–310.PubMedCrossRef
54.
go back to reference Meyer-Bernstein EL, Morin LP. Differential serotonergic innervation of the Suprachiasmatic nucleus and the lntergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci. 1996;16. Meyer-Bernstein EL, Morin LP. Differential serotonergic innervation of the Suprachiasmatic nucleus and the lntergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci. 1996;16.
55.
go back to reference Cermakian N, Waddington Lamont E, Boudreau P, Boivin DB. Circadian clock gene expression in brain regions of Alzheimer ‘s disease patients and control subjects. J Biol Rhythm. 2011;26:160–70.CrossRef Cermakian N, Waddington Lamont E, Boudreau P, Boivin DB. Circadian clock gene expression in brain regions of Alzheimer ‘s disease patients and control subjects. J Biol Rhythm. 2011;26:160–70.CrossRef
56.
go back to reference Dai J, Swaab DF, Van Der Vliet J, Buijs RM. Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol. 1998;400:87–102.PubMedCrossRef Dai J, Swaab DF, Van Der Vliet J, Buijs RM. Postmortem tracing reveals the organization of hypothalamic projections of the suprachiasmatic nucleus in the human brain. J Comp Neurol. 1998;400:87–102.PubMedCrossRef
57.
go back to reference Simerly RB, Swanson LW. The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol. 1986;246:312–42.PubMedCrossRef Simerly RB, Swanson LW. The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol. 1986;246:312–42.PubMedCrossRef
58.
go back to reference Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987;258:204–29.PubMedCrossRef Watts AG, Swanson LW, Sanchez-Watts G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol. 1987;258:204–29.PubMedCrossRef
59.
go back to reference Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978;192:423–35.PubMedCrossRef Buijs RM. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res. 1978;192:423–35.PubMedCrossRef
60.
go back to reference Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:11–28.PubMedCrossRef Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb Symp Quant Biol. 1960;25:11–28.PubMedCrossRef
63.
go back to reference Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, et al. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron. 2021;109:3268–3282.e6.PubMedPubMedCentralCrossRef Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, et al. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron. 2021;109:3268–3282.e6.PubMedPubMedCentralCrossRef
64.
go back to reference Wen S, Ma D, Zhao M, Xie L, Wu Q, Gou L, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci. 2020;23:456–67.PubMedCrossRef Wen S, Ma D, Zhao M, Xie L, Wu Q, Gou L, et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat Neurosci. 2020;23:456–67.PubMedCrossRef
65.
go back to reference Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84.PubMedCrossRef Patke A, Young MW, Axelrod S. Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol. 2020;21:67–84.PubMedCrossRef
66.
go back to reference Eser RA, Ehrenberg AJ, Petersen C, Dunlop S, Mejia MB, Suemoto CK, et al. Selective vulnerability of brainstem nuclei in distinct Tauopathies: a postmortem study. J Neuropathol Exp Neurol. 2018;77:149–61.PubMedPubMedCentralCrossRef Eser RA, Ehrenberg AJ, Petersen C, Dunlop S, Mejia MB, Suemoto CK, et al. Selective vulnerability of brainstem nuclei in distinct Tauopathies: a postmortem study. J Neuropathol Exp Neurol. 2018;77:149–61.PubMedPubMedCentralCrossRef
67.
go back to reference Diodati D, Cyn-Ang L, Kertesz A, Finger E. Pathologic evaluation of the Supraoptic and paraventricular nuclei in dementia. Can J Neurol Sci. 2012;39:213–9.PubMedCrossRef Diodati D, Cyn-Ang L, Kertesz A, Finger E. Pathologic evaluation of the Supraoptic and paraventricular nuclei in dementia. Can J Neurol Sci. 2012;39:213–9.PubMedCrossRef
68.
go back to reference Roemer SF, Grinberg LT, Crary JF, Seeley WW, McKee AC, Kovacs GG, et al. Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of progressive supranuclear palsy. Acta Neuropathol. 2022;144:603–14.PubMedPubMedCentralCrossRef Roemer SF, Grinberg LT, Crary JF, Seeley WW, McKee AC, Kovacs GG, et al. Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of progressive supranuclear palsy. Acta Neuropathol. 2022;144:603–14.PubMedPubMedCentralCrossRef
69.
go back to reference Han SM, Jang YJ, Kim EY, Park SA. The change in circadian rhythms in P301S transgenic mice is linked to variability in Hsp70-related tau disaggregation. Exp Neurobiol. 2022;31:196–207.PubMedPubMedCentralCrossRef Han SM, Jang YJ, Kim EY, Park SA. The change in circadian rhythms in P301S transgenic mice is linked to variability in Hsp70-related tau disaggregation. Exp Neurobiol. 2022;31:196–207.PubMedPubMedCentralCrossRef
70.
go back to reference Stevanovic K, Yunus A, Joly-Amado A, Gordon M, Morgan D, Gulick D, et al. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp Neurol. 2017;294:58–67.PubMedCrossRef Stevanovic K, Yunus A, Joly-Amado A, Gordon M, Morgan D, Gulick D, et al. Disruption of normal circadian clock function in a mouse model of tauopathy. Exp Neurol. 2017;294:58–67.PubMedCrossRef
72.
go back to reference Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, et al. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol. 2021;23:1255–70.PubMedPubMedCentralCrossRef Juste YR, Kaushik S, Bourdenx M, Aflakpui R, Bandyopadhyay S, Garcia F, et al. Reciprocal regulation of chaperone-mediated autophagy and the circadian clock. Nat Cell Biol. 2021;23:1255–70.PubMedPubMedCentralCrossRef
74.
go back to reference Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SIH, et al. SCF Fbxl3 controls the oscillation of the circadian clock by directing the degradation of Cryptochrome proteins. Science. 2007;316:900–4.PubMedCrossRef Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SIH, et al. SCF Fbxl3 controls the oscillation of the circadian clock by directing the degradation of Cryptochrome proteins. Science. 2007;316:900–4.PubMedCrossRef
75.
go back to reference Lu R, Dong Y, Li JD. Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery. Nucleic Acids Res. 2020;48:7944–57.PubMedPubMedCentralCrossRef Lu R, Dong Y, Li JD. Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery. Nucleic Acids Res. 2020;48:7944–57.PubMedPubMedCentralCrossRef
77.
go back to reference Hight K, Hallett H, Churchill L, De A, Boucher A, Krueger JM. Time of day differences in the number of cytokine-, neurotrophin- and NeuN-immunoreactive cells in the rat somatosensory or visual cortex. Brain Res. 2010;1337:32–40.PubMedPubMedCentralCrossRef Hight K, Hallett H, Churchill L, De A, Boucher A, Krueger JM. Time of day differences in the number of cytokine-, neurotrophin- and NeuN-immunoreactive cells in the rat somatosensory or visual cortex. Brain Res. 2010;1337:32–40.PubMedPubMedCentralCrossRef
78.
go back to reference Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian rhythms and astrocytes: the good, the bad, and the ugly. Annu Rev Neurosci. 2023;46 null. Hastings MH, Brancaccio M, Gonzalez-Aponte MF, Herzog ED. Circadian rhythms and astrocytes: the good, the bad, and the ugly. Annu Rev Neurosci. 2023;46 null.
79.
go back to reference Patton AP, Smyllie NJ, Chesham JE, Hastings MH. Astrocytes sustain circadian oscillation and Bidirectionally determine circadian period, but do not regulate circadian phase in the Suprachiasmatic nucleus. J Neurosci. 2022;42:5522–37.PubMedPubMedCentralCrossRef Patton AP, Smyllie NJ, Chesham JE, Hastings MH. Astrocytes sustain circadian oscillation and Bidirectionally determine circadian period, but do not regulate circadian phase in the Suprachiasmatic nucleus. J Neurosci. 2022;42:5522–37.PubMedPubMedCentralCrossRef
80.
go back to reference Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr Biol. 2017;27:1055–61.PubMedPubMedCentralCrossRef Tso CF, Simon T, Greenlaw AC, Puri T, Mieda M, Herzog ED. Astrocytes regulate daily rhythms in the suprachiasmatic nucleus and behavior. Curr Biol. 2017;27:1055–61.PubMedPubMedCentralCrossRef
81.
go back to reference Leone MJ, Marpegan L, Bekinschtein TA, Costas MA, Golombek DA. Suprachiasmatic astrocytes as an interface for immune-circadian signalling. J Neurosci Res. 2006;84:1521–7.PubMedCrossRef Leone MJ, Marpegan L, Bekinschtein TA, Costas MA, Golombek DA. Suprachiasmatic astrocytes as an interface for immune-circadian signalling. J Neurosci Res. 2006;84:1521–7.PubMedCrossRef
82.
go back to reference Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science. 2019;363:187–92.PubMedPubMedCentralCrossRef Brancaccio M, Edwards MD, Patton AP, Smyllie NJ, Chesham JE, Maywood ES, et al. Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science. 2019;363:187–92.PubMedPubMedCentralCrossRef
83.
go back to reference Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the Suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93:1420–1435.e5.PubMedPubMedCentralCrossRef Brancaccio M, Patton AP, Chesham JE, Maywood ES, Hastings MH. Astrocytes control circadian timekeeping in the Suprachiasmatic nucleus via glutamatergic signaling. Neuron. 2017;93:1420–1435.e5.PubMedPubMedCentralCrossRef
84.
go back to reference Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, et al. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci. 2023;120:e2301330120.PubMedPubMedCentralCrossRef Patton AP, Morris EL, McManus D, Wang H, Li Y, Chin JW, et al. Astrocytic control of extracellular GABA drives circadian timekeeping in the suprachiasmatic nucleus. Proc Natl Acad Sci. 2023;120:e2301330120.PubMedPubMedCentralCrossRef
85.
go back to reference Coomans C, Saaltink D-J, Deboer T, Tersteeg M, Lanooij S, Schneider AF, et al. Doublecortin-like expressing astrocytes of the suprachiasmatic nucleus are implicated in the biosynthesis of vasopressin and influences circadian rhythms. Glia. 2021;69:2752–66.PubMedPubMedCentralCrossRef Coomans C, Saaltink D-J, Deboer T, Tersteeg M, Lanooij S, Schneider AF, et al. Doublecortin-like expressing astrocytes of the suprachiasmatic nucleus are implicated in the biosynthesis of vasopressin and influences circadian rhythms. Glia. 2021;69:2752–66.PubMedPubMedCentralCrossRef
86.
go back to reference Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease. J Neurochem. 2021;157:42–52.PubMedCrossRef Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease. J Neurochem. 2021;157:42–52.PubMedCrossRef
87.
go back to reference McKee CA, Lananna BV, Musiek ES. Circadian regulation of astrocyte function: implications for Alzheimer’s disease. Cell Mol Life Sci. 2020;77:1049–58.PubMedCrossRef McKee CA, Lananna BV, Musiek ES. Circadian regulation of astrocyte function: implications for Alzheimer’s disease. Cell Mol Life Sci. 2020;77:1049–58.PubMedCrossRef
88.
go back to reference Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med. 2020;12. Lananna BV, McKee CA, King MW, Del-Aguila JL, Dimitry JM, Farias FHG, et al. Chi3l1/YKL-40 is controlled by the astrocyte circadian clock and regulates neuroinflammation and Alzheimer’s disease pathogenesis. Sci Transl Med. 2020;12.
89.
go back to reference Gerstner JR, Perron IJ, Riedy SM, Yoshikawa T, Kadotani H, Owada Y, et al. Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci Adv. 2017;3:e1602663.PubMedPubMedCentralCrossRef Gerstner JR, Perron IJ, Riedy SM, Yoshikawa T, Kadotani H, Owada Y, et al. Normal sleep requires the astrocyte brain-type fatty acid binding protein FABP7. Sci Adv. 2017;3:e1602663.PubMedPubMedCentralCrossRef
90.
go back to reference Gerstner JR, Bremer QZ, Vander Heyden WM, Lavaute TM, Yin JC, Landry CF. Brain fatty acid binding protein (Fabp7) is diurnally regulated in astrocytes and hippocampal granule cell precursors in adult rodent brain. PLoS One. 2008;3:e1631.PubMedPubMedCentralCrossRef Gerstner JR, Bremer QZ, Vander Heyden WM, Lavaute TM, Yin JC, Landry CF. Brain fatty acid binding protein (Fabp7) is diurnally regulated in astrocytes and hippocampal granule cell precursors in adult rodent brain. PLoS One. 2008;3:e1631.PubMedPubMedCentralCrossRef
91.
go back to reference Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol [Internet]. 2023; [cited 2023 Apr 3];14. Available from: 10.3389/fimmu.2023.1106515 . Muthukumarasamy I, Buel SM, Hurley JM, Dordick JS. NOX2 inhibition enables retention of the circadian clock in BV2 microglia and primary macrophages. Front Immunol [Internet]. 2023; [cited 2023 Apr 3];14. Available from: 10.3389/fimmu.2023.1106515 .
92.
go back to reference Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:171–9.PubMedCrossRef Fonken LK, Frank MG, Kitt MM, Barrientos RM, Watkins LR, Maier SF. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:171–9.PubMedCrossRef
93.
go back to reference Liu H, Wang X, Chen L, Chen L, Tsirka SE, Ge S, et al. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nat Commun. 2021;12:4646.PubMedPubMedCentralCrossRef Liu H, Wang X, Chen L, Chen L, Tsirka SE, Ge S, et al. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice. Nat Commun. 2021;12:4646.PubMedPubMedCentralCrossRef
94.
go back to reference Deng X-H, Bertini G, Palomba M, Xu Y-Z, Bonaconsa M, Nygård M, et al. Glial transcripts and immune-challenged glia in the Suprachiasmatic nucleus of Young and aged mice. Chronobiol Int. 2010;27:742–67.PubMedCrossRef Deng X-H, Bertini G, Palomba M, Xu Y-Z, Bonaconsa M, Nygård M, et al. Glial transcripts and immune-challenged glia in the Suprachiasmatic nucleus of Young and aged mice. Chronobiol Int. 2010;27:742–67.PubMedCrossRef
95.
go back to reference Matsui F, Yamaguchi ST, Kobayashi R, Ito S, Nagashima S, Zhou Z, et al. Ablation of microglia does not alter circadian rhythm of locomotor activity. Mol Brain. 2023;16:34.PubMedPubMedCentralCrossRef Matsui F, Yamaguchi ST, Kobayashi R, Ito S, Nagashima S, Zhou Z, et al. Ablation of microglia does not alter circadian rhythm of locomotor activity. Mol Brain. 2023;16:34.PubMedPubMedCentralCrossRef
96.
go back to reference Sominsky L, Dangel T, Malik S, De Luca SN, Singewald N, Spencer SJ. Microglial ablation in rats disrupts the circadian system. FASEB J. 2021;35:e21195.PubMedCrossRef Sominsky L, Dangel T, Malik S, De Luca SN, Singewald N, Spencer SJ. Microglial ablation in rats disrupts the circadian system. FASEB J. 2021;35:e21195.PubMedCrossRef
97.
go back to reference Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron. 2007;53:337–51.PubMedCrossRef Yoshiyama Y, Higuchi M, Zhang B, Huang S-M, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model. Neuron. 2007;53:337–51.PubMedCrossRef
98.
go back to reference Song H, Moon M, Choe HK, Han D-H, Jang C, Kim A, et al. Aβ-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol Neurodegener. 2015;10:13.PubMedPubMedCentralCrossRef Song H, Moon M, Choe HK, Han D-H, Jang C, Kim A, et al. Aβ-induced degradation of BMAL1 and CBP leads to circadian rhythm disruption in Alzheimer’s disease. Mol Neurodegener. 2015;10:13.PubMedPubMedCentralCrossRef
99.
go back to reference Nam Y, Kim S, Kim J, Hoe H-S, Moon M. Mesoscopic mapping of visual pathway in a female 5XFAD mouse model of Alzheimer’s disease. Cells. 2022;11:3901.PubMedPubMedCentralCrossRef Nam Y, Kim S, Kim J, Hoe H-S, Moon M. Mesoscopic mapping of visual pathway in a female 5XFAD mouse model of Alzheimer’s disease. Cells. 2022;11:3901.PubMedPubMedCentralCrossRef
100.
go back to reference Paul JR, Munir HA, van Groen T, Gamble KL. Behavioral and SCN neurophysiological disruption in the Tg-SwDI mouse model of Alzheimer’s disease. Neurobiol Dis. 2018;114:194–200.PubMedPubMedCentralCrossRef Paul JR, Munir HA, van Groen T, Gamble KL. Behavioral and SCN neurophysiological disruption in the Tg-SwDI mouse model of Alzheimer’s disease. Neurobiol Dis. 2018;114:194–200.PubMedPubMedCentralCrossRef
101.
go back to reference Parhizkar S, Gent G, Chen Y, Rensing N, Gratuze M, Strout G, et al. Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice. Sci Transl Med. 2023;15:eade6285.PubMedCrossRef Parhizkar S, Gent G, Chen Y, Rensing N, Gratuze M, Strout G, et al. Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice. Sci Transl Med. 2023;15:eade6285.PubMedCrossRef
102.
go back to reference den Haan J, Morrema THJ, Verbraak FD, de Boer JF, Scheltens P, Rozemuller AJ, et al. Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol Commun. 2018;6:147.CrossRef den Haan J, Morrema THJ, Verbraak FD, de Boer JF, Scheltens P, Rozemuller AJ, et al. Amyloid-beta and phosphorylated tau in post-mortem Alzheimer’s disease retinas. Acta Neuropathol Commun. 2018;6:147.CrossRef
103.
go back to reference La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, et al. Melanopsin retinal ganglion cell loss in A lzheimer disease. Ann Neurol. 2016;79:90–109.PubMedCrossRef La Morgia C, Ross-Cisneros FN, Koronyo Y, Hannibal J, Gallassi R, Cantalupo G, et al. Melanopsin retinal ganglion cell loss in A lzheimer disease. Ann Neurol. 2016;79:90–109.PubMedCrossRef
105.
go back to reference Hart de Ruyter FJ, Morrema THJ, den Haan J, Twisk JWR, de Boer JF, Scheltens P, et al. Phosphorylated tau in the retina correlates with tau pathology in the brain in Alzheimer’s disease and primary tauopathies. Acta Neuropathol. 2023;145:197–218.PubMedCrossRef Hart de Ruyter FJ, Morrema THJ, den Haan J, Twisk JWR, de Boer JF, Scheltens P, et al. Phosphorylated tau in the retina correlates with tau pathology in the brain in Alzheimer’s disease and primary tauopathies. Acta Neuropathol. 2023;145:197–218.PubMedCrossRef
106.
go back to reference Koronyo Y, Rentsendorj A, Mirzaei N, Regis GC, Sheyn J, Shi H, et al. Retinal pathological features and proteome signatures of Alzheimer’s disease. Acta Neuropathol. 2023;145:409–38.PubMedPubMedCentralCrossRef Koronyo Y, Rentsendorj A, Mirzaei N, Regis GC, Sheyn J, Shi H, et al. Retinal pathological features and proteome signatures of Alzheimer’s disease. Acta Neuropathol. 2023;145:409–38.PubMedPubMedCentralCrossRef
107.
go back to reference Schön C, Hoffmann NA, Ochs SM, Burgold S, Filser S, Steinbach S, et al. Long-term in vivo imaging of Fibrillar tau in the retina of P301S transgenic mice. PLoS One. 2012;7:e53547.PubMedPubMedCentralCrossRef Schön C, Hoffmann NA, Ochs SM, Burgold S, Filser S, Steinbach S, et al. Long-term in vivo imaging of Fibrillar tau in the retina of P301S transgenic mice. PLoS One. 2012;7:e53547.PubMedPubMedCentralCrossRef
108.
go back to reference Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, et al. National Institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123:1–11.PubMedCrossRef Montine TJ, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Dickson DW, et al. National Institute on Aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol. 2012;123:1–11.PubMedCrossRef
109.
go back to reference Kovacs GG, Lukic MJ, Irwin DJ, Arzberger T, Respondek G, Lee EB, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020;140:99–119.PubMedPubMedCentralCrossRef Kovacs GG, Lukic MJ, Irwin DJ, Arzberger T, Respondek G, Lee EB, et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 2020;140:99–119.PubMedPubMedCentralCrossRef
110.
go back to reference Mckee AC, Abdolmohammadi B, Stein TD. The neuropathology of chronic traumatic encephalopathy. Handb Clin Neurol. 2018;158:297–307.PubMedCrossRef Mckee AC, Abdolmohammadi B, Stein TD. The neuropathology of chronic traumatic encephalopathy. Handb Clin Neurol. 2018;158:297–307.PubMedCrossRef
111.
go back to reference Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease--a double-edged sword. Neuron. 2002;35:419–32.PubMedCrossRef Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease--a double-edged sword. Neuron. 2002;35:419–32.PubMedCrossRef
112.
go back to reference Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacol. 2020;45:104–20.CrossRef Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacol. 2020;45:104–20.CrossRef
113.
114.
go back to reference Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer’s disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener. 2022;17:35.PubMedPubMedCentralCrossRef Hoyt KR, Obrietan K. Circadian clocks, cognition, and Alzheimer’s disease: synaptic mechanisms, signaling effectors, and chronotherapeutics. Mol Neurodegener. 2022;17:35.PubMedPubMedCentralCrossRef
Metadata
Title
Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models
Authors
Gowoon Son
Thomas C. Neylan
Lea T. Grinberg
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Molecular Neurodegeneration / Issue 1/2024
Electronic ISSN: 1750-1326
DOI
https://doi.org/10.1186/s13024-023-00695-4

Other articles of this Issue 1/2024

Molecular Neurodegeneration 1/2024 Go to the issue