Skip to main content
Top
Published in: Breast Cancer Research and Treatment 2/2012

01-04-2012 | Preclinical Study

A prognostic model for lymph node-negative breast cancer patients based on the integration of proliferation and immunity

Authors: Ensel Oh, Yoon-La Choi, Taesung Park, Seungyeoun Lee, Seok Jin Nam, Young Kee Shin

Published in: Breast Cancer Research and Treatment | Issue 2/2012

Login to get access

Abstract

A model for a more precise prognosis of the risk of relapse is needed to avoid overtreatment of lymph node-negative breast cancer patients. A large derivation data set (n = 684) was generated by pooling three independent breast cancer expression microarray data sets. Two major prognostic factors, proliferation and immune response, were identified among genes showing significant differential expression levels between the good outcome and poor outcome groups. For each factor, four proliferation-related genes (p-genes) and four immunity-related genes (i-genes) were selected as prognostic genes, and a prognostic model for lymph node-negative breast cancer patients was developed using a parametric survival analysis based on the lognormal distribution. The p-genes showed a predominantly negative correlation (coefficient: −0.603) with survival time, while the i-genes showed a positive correlation (coefficient: 0.243), reflecting the beneficial effect of the immune response against deleterious proliferative activity. The prognostic model shows that approximately 54% of lymph node-negative breast cancer patients were predicted to be distant metastasis-free for more than 5 years with at least 85% survival probability. The prognostic model showed a robust and high prognostic performance (HR 2.85–3.45) through three external validation data sets. Based on the integration of proliferation and immunity, the new prognostic model is expected to improve clinical decision making by providing easily interpretable survival probabilities at any time point and functional causality of the predicted prognosis with respect to proliferation and immune response.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7PubMedCrossRef Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7PubMedCrossRef
2.
go back to reference van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRef van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRef
3.
go back to reference van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef van ‘t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536CrossRef
4.
go back to reference Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed
5.
go back to reference Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMedCrossRef Buyse M, Loi S, van’t Veer L, Viale G, Delorenzi M et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMedCrossRef
6.
go back to reference Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12:631–635PubMedCrossRef Paik S (2007) Development and clinical utility of a 21-gene recurrence score prognostic assay in patients with early breast cancer treated with tamoxifen. Oncologist 12:631–635PubMedCrossRef
7.
go back to reference Paik S, Shak S, Tang G, Kim C, Baker J et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRef Paik S, Shak S, Tang G, Kim C, Baker J et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRef
8.
go back to reference Sotiriou C, Wirapati P, Loi S, Harris A, Fox S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedCrossRef Sotiriou C, Wirapati P, Loi S, Harris A, Fox S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedCrossRef
9.
go back to reference Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964PubMedCrossRef Pawitan Y, Bjohle J, Amler L, Borg AL, Egyhazi S et al (2005) Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 7:R953–R964PubMedCrossRef
10.
go back to reference Miller LD, Smeds J, George J, Vega VB, Vergara L et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555PubMedCrossRef Miller LD, Smeds J, George J, Vega VB, Vergara L et al (2005) An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102:13550–13555PubMedCrossRef
11.
go back to reference Bild AH, Yao G, Chang JT, Wang Q, Potti A et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357PubMedCrossRef Bild AH, Yao G, Chang JT, Wang Q, Potti A et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439:353–357PubMedCrossRef
12.
go back to reference Teschendorff AE, Naderi A, Barbosa-Morais NL, Pinder SE, Ellis IO et al (2006) A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol 7:R101PubMedCrossRef Teschendorff AE, Naderi A, Barbosa-Morais NL, Pinder SE, Ellis IO et al (2006) A consensus prognostic gene expression classifier for ER positive breast cancer. Genome Biol 7:R101PubMedCrossRef
13.
go back to reference Desmedt C, Piette F, Loi S, Wang Y, Lallemand F et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214PubMedCrossRef Desmedt C, Piette F, Loi S, Wang Y, Lallemand F et al (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series. Clin Cancer Res 13:3207–3214PubMedCrossRef
14.
go back to reference Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26:721–728PubMedCrossRef Sparano JA, Paik S (2008) Development of the 21-gene assay and its application in clinical practice and clinical trials. J Clin Oncol 26:721–728PubMedCrossRef
15.
go back to reference Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S et al (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26:729–735PubMedCrossRef Cardoso F, Van’t Veer L, Rutgers E, Loi S, Mook S et al (2008) Clinical application of the 70-gene profile: the MINDACT trial. J Clin Oncol 26:729–735PubMedCrossRef
16.
go back to reference Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178PubMedCrossRef Ein-Dor L, Kela I, Getz G, Givol D, Domany E (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21:171–178PubMedCrossRef
17.
go back to reference Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492PubMedCrossRef Michiels S, Koscielny S, Hill C (2005) Prediction of cancer outcome with microarrays: a multiple random validation strategy. Lancet 365:488–492PubMedCrossRef
18.
go back to reference Kim SY (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10:147PubMedCrossRef Kim SY (2009) Effects of sample size on robustness and prediction accuracy of a prognostic gene signature. BMC Bioinformatics 10:147PubMedCrossRef
19.
go back to reference Hummel M, Metzeler KH, Buske C, Bohlander SK, Mansmann U (2008) Association between a prognostic gene signature and functional gene sets. Bioinformatics Biol Insights 2:329–341 Hummel M, Metzeler KH, Buske C, Bohlander SK, Mansmann U (2008) Association between a prognostic gene signature and functional gene sets. Bioinformatics Biol Insights 2:329–341
20.
go back to reference Pfeffer U, Romeo F, Noonan DM, Albini A (2009) Prediction of breast cancer metastasis by genomic profiling: where do we stand? Clin Exp Metastasis 26:547–558PubMedCrossRef Pfeffer U, Romeo F, Noonan DM, Albini A (2009) Prediction of breast cancer metastasis by genomic profiling: where do we stand? Clin Exp Metastasis 26:547–558PubMedCrossRef
21.
go back to reference Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103:5923–5928PubMedCrossRef Ein-Dor L, Zuk O, Domany E (2006) Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA 103:5923–5928PubMedCrossRef
22.
go back to reference van Vliet MH, Reyal F, Horlings HM, van de Vijver MJ, Reinders MJ et al (2008) Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability. BMC Genomics 9:375PubMedCrossRef van Vliet MH, Reyal F, Horlings HM, van de Vijver MJ, Reinders MJ et al (2008) Pooling breast cancer datasets has a synergetic effect on classification performance and improves signature stability. BMC Genomics 9:375PubMedCrossRef
23.
go back to reference Yasrebi H, Sperisen P, Praz V, Bucher P (2009) Can survival prediction be improved by merging gene expression data sets? PLoS One 4:e7431PubMedCrossRef Yasrebi H, Sperisen P, Praz V, Bucher P (2009) Can survival prediction be improved by merging gene expression data sets? PLoS One 4:e7431PubMedCrossRef
24.
go back to reference Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569PubMedCrossRef Fan C, Oh DS, Wessels L, Weigelt B, Nuyten DS et al (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355:560–569PubMedCrossRef
25.
go back to reference Reyal F, van Vliet MH, Armstrong NJ, Horlings HM, de Visser KE et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10:R93PubMedCrossRef Reyal F, van Vliet MH, Armstrong NJ, Horlings HM, de Visser KE et al (2008) A comprehensive analysis of prognostic signatures reveals the high predictive capacity of the proliferation, immune response and RNA splicing modules in breast cancer. Breast Cancer Res 10:R93PubMedCrossRef
26.
go back to reference Yu JX, Sieuwerts AM, Zhang Y, Martens JW, Smid M et al (2007) Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7:182PubMedCrossRef Yu JX, Sieuwerts AM, Zhang Y, Martens JW, Smid M et al (2007) Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7:182PubMedCrossRef
27.
go back to reference Kim SY, Kim YS (2008) A gene sets approach for identifying prognostic gene signatures for outcome prediction. BMC Genomics 9:177PubMedCrossRef Kim SY, Kim YS (2008) A gene sets approach for identifying prognostic gene signatures for outcome prediction. BMC Genomics 9:177PubMedCrossRef
28.
go back to reference Thomassen M, Tan Q, Kruse TA (2008) Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer. BMC Cancer 8:394PubMedCrossRef Thomassen M, Tan Q, Kruse TA (2008) Gene expression meta-analysis identifies metastatic pathways and transcription factors in breast cancer. BMC Cancer 8:394PubMedCrossRef
29.
go back to reference Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68:5405–5413PubMedCrossRef Schmidt M, Bohm D, von Torne C, Steiner E, Puhl A et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68:5405–5413PubMedCrossRef
30.
go back to reference Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246PubMedCrossRef Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt AM et al (2007) Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade. J Clin Oncol 25:1239–1246PubMedCrossRef
31.
go back to reference Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F et al (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9:239PubMedCrossRef Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F et al (2008) Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genomics 9:239PubMedCrossRef
32.
go back to reference Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T et al (2009) The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat 116:303–309PubMedCrossRef Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T et al (2009) The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat 116:303–309PubMedCrossRef
33.
go back to reference Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F et al (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 28:4111–4119PubMedCrossRef Symmans WF, Hatzis C, Sotiriou C, Andre F, Peintinger F et al (2010) Genomic index of sensitivity to endocrine therapy for breast cancer. J Clin Oncol 28:4111–4119PubMedCrossRef
34.
go back to reference Dai M, Wang P, Boyd AD, Kostov G, Athey B et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175PubMedCrossRef Dai M, Wang P, Boyd AD, Kostov G, Athey B et al (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33:e175PubMedCrossRef
35.
go back to reference Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B et al (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15PubMedCrossRef Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B et al (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31:e15PubMedCrossRef
36.
go back to reference Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRef Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRef
38.
go back to reference Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef
39.
go back to reference Garidou L, Laffont S, Douin-Echinard V, Coureau C, Krust A et al (2004) Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 173:2435–2442PubMed Garidou L, Laffont S, Douin-Echinard V, Coureau C, Krust A et al (2004) Estrogen receptor alpha signaling in inflammatory leukocytes is dispensable for 17beta-estradiol-mediated inhibition of experimental autoimmune encephalomyelitis. J Immunol 173:2435–2442PubMed
40.
go back to reference Schmidt M, Hengstler JG, von Torne C, Koelbl H, Gehrmann MC (2009) Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69:2695–2698PubMedCrossRef Schmidt M, Hengstler JG, von Torne C, Koelbl H, Gehrmann MC (2009) Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69:2695–2698PubMedCrossRef
41.
go back to reference Calabro A, Beissbarth T, Kuner R, Stojanov M, Benner A et al (2009) Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res Treat 116:69–77PubMedCrossRef Calabro A, Beissbarth T, Kuner R, Stojanov M, Benner A et al (2009) Effects of infiltrating lymphocytes and estrogen receptor on gene expression and prognosis in breast cancer. Breast Cancer Res Treat 116:69–77PubMedCrossRef
42.
go back to reference Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRef Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRef
43.
go back to reference Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7PubMedCrossRef Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:R7PubMedCrossRef
44.
go back to reference Mould RF, Boag JW (1975) A test of several parametric statistical models for estimating success rate in the treatment of carcinoma cervix uteri. Br J Cancer 32:529–550PubMedCrossRef Mould RF, Boag JW (1975) A test of several parametric statistical models for estimating success rate in the treatment of carcinoma cervix uteri. Br J Cancer 32:529–550PubMedCrossRef
45.
go back to reference Rutqvist LE, Wallgren A, Nilsson B (1984) Is breast cancer a curable disease? A study of 14,731 women with breast cancer from the Cancer Registry of Norway. Cancer 53:1793–1800PubMedCrossRef Rutqvist LE, Wallgren A, Nilsson B (1984) Is breast cancer a curable disease? A study of 14,731 women with breast cancer from the Cancer Registry of Norway. Cancer 53:1793–1800PubMedCrossRef
46.
go back to reference Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J Royal Stat Soc 11:15–44 Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J Royal Stat Soc 11:15–44
47.
go back to reference Tai P, Yu E, Shiels R, Tonita J (2005) Long-term survival rates of laryngeal cancer patients treated by radiation and surgery, radiation alone, and surgery alone: studied by lognormal and Kaplan-Meier survival methods. BMC Cancer 5:13PubMedCrossRef Tai P, Yu E, Shiels R, Tonita J (2005) Long-term survival rates of laryngeal cancer patients treated by radiation and surgery, radiation alone, and surgery alone: studied by lognormal and Kaplan-Meier survival methods. BMC Cancer 5:13PubMedCrossRef
48.
go back to reference Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP et al (2009) Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol 27:4103–4108PubMedCrossRef Claret L, Girard P, Hoff PM, Van Cutsem E, Zuideveld KP et al (2009) Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics. J Clin Oncol 27:4103–4108PubMedCrossRef
49.
go back to reference Potti A, Dressman HK, Bild A, Riedel RF, Chan G et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300PubMedCrossRef Potti A, Dressman HK, Bild A, Riedel RF, Chan G et al (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12:1294–1300PubMedCrossRef
50.
go back to reference Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01 clinical trial. Lancet Oncol 8:1071–1078PubMedCrossRef Bonnefoi H, Potti A, Delorenzi M, Mauriac L, Campone M et al (2007) Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01 clinical trial. Lancet Oncol 8:1071–1078PubMedCrossRef
51.
go back to reference Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A et al (2006) A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355:570–580PubMedCrossRef Potti A, Mukherjee S, Petersen R, Dressman HK, Bild A et al (2006) A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355:570–580PubMedCrossRef
52.
go back to reference Hsu DS, Balakumaran BS, Acharya CR, Vlahovic V, Walters KS et al (2007) Pharmacogenomic strategies provide a rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 25:4350–4357PubMedCrossRef Hsu DS, Balakumaran BS, Acharya CR, Vlahovic V, Walters KS et al (2007) Pharmacogenomic strategies provide a rational approach to the treatment of cisplatin-resistant patients with advanced cancer. J Clin Oncol 25:4350–4357PubMedCrossRef
Metadata
Title
A prognostic model for lymph node-negative breast cancer patients based on the integration of proliferation and immunity
Authors
Ensel Oh
Yoon-La Choi
Taesung Park
Seungyeoun Lee
Seok Jin Nam
Young Kee Shin
Publication date
01-04-2012
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 2/2012
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-011-1626-8

Other articles of this Issue 2/2012

Breast Cancer Research and Treatment 2/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine