Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 11/2021

01-10-2021 | Original Article

A novel deep-learning–based approach for automatic reorientation of 3D cardiac SPECT images

Authors: Duo Zhang, P. Hendrik Pretorius, Kaixian Lin, Weibing Miao, Jingsong Li, Michael A. King, Wentao Zhu

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 11/2021

Login to get access

Abstract

Purpose

Reconstructed transaxial cardiac SPECT images need to be reoriented into standard short-axis slices for subsequent accurate processing and analysis. We proposed a novel deep-learning–based method for fully automatic reorientation of cardiac SPECT images and evaluated its performance on data from two clinical centers.

Methods

We used a convolutional neural network to predict the 6 rigid-body transformation parameters and a spatial transformation network was then implemented to apply these parameters on the input images for image reorientation. A novel compound loss function which balanced the parametric similarity and penalized discrepancy of the prediction and training dataset was utilized in the training stage. Data from a set of 322 patients underwent data augmentation to 6440 groups of images for the network training, and a dataset of 52 patients from the same center and 23 patients from another center were used for evaluation. Similarity of the 6 parameters was analyzed between the proposed and the manual methods. Polar maps were generated from the output images and the averaged count values of the 17 segments were computed from polar maps to evaluate the quantitative accuracy of the proposed method.

Results

All the testing patients achieved automatic reorientation successfully. Linear regression results showed the 6 predicted rigid parameters and the average count value of the 17 segments having good agreement with the reference manual method. No significant difference by paired t-test was noticed between the rigid parameters of our method and the manual method (p > 0.05). Average count values of the 17 segments show a smaller difference of the proposed and manual methods than those between the existing and manual methods.

Conclusion

The results strongly indicate the feasibility of our method in accurate automatic cardiac SPECT reorientation. This deep-learning–based reorientation method has great promise for clinical application and warrants further investigation.
Literature
1.
go back to reference Slomka PJ, Berman DS, Germano G. New imaging protocols for new single photon emission CT technologies. Curr Cardiovasc Imaging Rep. 2010;3(3):162–70.CrossRef Slomka PJ, Berman DS, Germano G. New imaging protocols for new single photon emission CT technologies. Curr Cardiovasc Imaging Rep. 2010;3(3):162–70.CrossRef
2.
go back to reference Kostkiewicz M. Myocardial perfusion imaging in coronary artery disease. Cor et Vasa. 2015;57(6):e446–e52.CrossRef Kostkiewicz M. Myocardial perfusion imaging in coronary artery disease. Cor et Vasa. 2015;57(6):e446–e52.CrossRef
3.
go back to reference Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3(3):299–308.CrossRef Hoffman EJ, Huang S-C, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr. 1979;3(3):299–308.CrossRef
4.
go back to reference Senda M, Yonekura Y, Tamaki N, Saji H, Koide H, Nohara R, et al. Interpolating scan and oblique-angle tomograms in myocardial PET using Nitrogen-13 ammonia. J Nucl Med. 1986;27(12):1830–6.PubMed Senda M, Yonekura Y, Tamaki N, Saji H, Koide H, Nohara R, et al. Interpolating scan and oblique-angle tomograms in myocardial PET using Nitrogen-13 ammonia. J Nucl Med. 1986;27(12):1830–6.PubMed
5.
go back to reference Kuhle WG, Porenta G, Huang SC, Phelps ME, Schelbert HR. Issues in the quantitation of reoriented cardiac PET images. J Nucl Med. 1992;33(6):1235–42.PubMed Kuhle WG, Porenta G, Huang SC, Phelps ME, Schelbert HR. Issues in the quantitation of reoriented cardiac PET images. J Nucl Med. 1992;33(6):1235–42.PubMed
6.
go back to reference Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein AJ, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol. 2018;25(5):1784–846.CrossRef Dorbala S, Ananthasubramaniam K, Armstrong IS, Chareonthaitawee P, DePuey EG, Einstein AJ, et al. Single photon emission computed tomography (SPECT) myocardial perfusion imaging guidelines: instrumentation, acquisition, processing, and interpretation. J Nucl Cardiol. 2018;25(5):1784–846.CrossRef
7.
go back to reference Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;42(12):1929–40.CrossRef Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging. 2015;42(12):1929–40.CrossRef
8.
go back to reference Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med. 1985;26(1):17–26.PubMed Garcia EV, Van Train K, Maddahi J, Prigent F, Friedman J, Areeda J, et al. Quantification of rotational thallium-201 myocardial tomography. J Nucl Med. 1985;26(1):17–26.PubMed
9.
go back to reference Lancaster JL, Starling MR, Kopp DT, Lasher JC, Blumhardt R. Effect of errors in reangulation on planar and tomographic thallium-201 washout profile curves. J Nucl Med. 1985;26(12):1445–55.PubMed Lancaster JL, Starling MR, Kopp DT, Lasher JC, Blumhardt R. Effect of errors in reangulation on planar and tomographic thallium-201 washout profile curves. J Nucl Med. 1985;26(12):1445–55.PubMed
10.
go back to reference Lin GS, Hines HH, Grant G, Taylor K, Ryals C. Automated quantification of myocardial ischemia and wall motion defects by use of cardiac SPECT polar mapping and 4-dimensional surface rendering. J Nucl Med Technol. 2006;34(1):3–17.PubMed Lin GS, Hines HH, Grant G, Taylor K, Ryals C. Automated quantification of myocardial ischemia and wall motion defects by use of cardiac SPECT polar mapping and 4-dimensional surface rendering. J Nucl Med Technol. 2006;34(1):3–17.PubMed
11.
go back to reference Mullick R, Ezquerra NF. Automatic determination of LV orientation from SPECT data. IEEE Trans Med Imaging. 1995;14(1):88–99.CrossRef Mullick R, Ezquerra NF. Automatic determination of LV orientation from SPECT data. IEEE Trans Med Imaging. 1995;14(1):88–99.CrossRef
12.
go back to reference Germano G, Kavanagh PB, Su H-T, Mazzanti M, Kiat H, Hachamovitch R, et al. Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images. J Nucl Med. 1995;36(6):1107–14.PubMed Germano G, Kavanagh PB, Su H-T, Mazzanti M, Kiat H, Hachamovitch R, et al. Automatic reorientation of three-dimensional, transaxial myocardial perfusion SPECT images. J Nucl Med. 1995;36(6):1107–14.PubMed
13.
go back to reference Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm. J Nucl Med. 1995;36(6):1115–22.PubMed Slomka PJ, Hurwitz GA, Stephenson J, Cradduck T. Automated alignment and sizing of myocardial stress and rest scans to three-dimensional normal templates using an image registration algorithm. J Nucl Med. 1995;36(6):1115–22.PubMed
14.
go back to reference Germano G, Kavanagh PB, Chen J, Waechter P, Su H-T, Kiat H, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med. 1995;36(11):2127–32.PubMed Germano G, Kavanagh PB, Chen J, Waechter P, Su H-T, Kiat H, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med. 1995;36(11):2127–32.PubMed
15.
go back to reference deKemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron tomography. Physiol Meas. 1996;17(2):95–108.CrossRef deKemp RA, Nahmias C. Automated determination of the left ventricular long axis in cardiac positron tomography. Physiol Meas. 1996;17(2):95–108.CrossRef
16.
go back to reference Danilouchkine MG, Westenberg JJM, Lamb HJ, Reiber JHC, Lelieveldt BPF, editors. Accuracy of fully automatic vs. manual planning of cardiac MR acquisitions. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003; 2003; Berlin, Heidelberg: Springer Berlin Heidelberg. Danilouchkine MG, Westenberg JJM, Lamb HJ, Reiber JHC, Lelieveldt BPF, editors. Accuracy of fully automatic vs. manual planning of cardiac MR acquisitions. Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003; 2003; Berlin, Heidelberg: Springer Berlin Heidelberg.
17.
go back to reference Lelieveldt BPF, Sonka M, Bolinger L, Scholz TD, Kayser H, van der Geest R, et al. Anatomical modeling with fuzzy implicit surface templates: application to automated localization of the heart and lungs in thoracic MR volumes. Comput Vis Image Underst. 2000;80(1):1–20.CrossRef Lelieveldt BPF, Sonka M, Bolinger L, Scholz TD, Kayser H, van der Geest R, et al. Anatomical modeling with fuzzy implicit surface templates: application to automated localization of the heart and lungs in thoracic MR volumes. Comput Vis Image Underst. 2000;80(1):1–20.CrossRef
18.
go back to reference Lelieveldt BP, van der Geest RJ, Lamb HJ, Kayser HW, Reiber JH. Automated observer-independent acquisition of cardiac short-axis MR images: a pilot study. Radiology. 2001;221(2):537–42.CrossRef Lelieveldt BP, van der Geest RJ, Lamb HJ, Kayser HW, Reiber JH. Automated observer-independent acquisition of cardiac short-axis MR images: a pilot study. Radiology. 2001;221(2):537–42.CrossRef
19.
go back to reference Jackson CE, Robson MD, Francis JM, Noble JA. Computerised planning of the acquisition of cardiac MR images. Comput Med Imaging Graph. 2004;28(7):411–8.CrossRef Jackson CE, Robson MD, Francis JM, Noble JA. Computerised planning of the acquisition of cardiac MR images. Comput Med Imaging Graph. 2004;28(7):411–8.CrossRef
20.
go back to reference Lu X, Jolly M-P, Georgescu B, Hayes C, Speier P, Schmidt M et al., editors. Automatic view planning for cardiac MRI acquisition. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011; 2011; Berlin, Heidelberg: Springer Berlin Heidelberg. Lu X, Jolly M-P, Georgescu B, Hayes C, Speier P, Schmidt M et al., editors. Automatic view planning for cardiac MRI acquisition. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011; 2011; Berlin, Heidelberg: Springer Berlin Heidelberg.
21.
go back to reference Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg. 2017;12(3):399–411.CrossRef Hu P, Wu F, Peng J, Bao Y, Chen F, Kong D. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg. 2017;12(3):399–411.CrossRef
22.
go back to reference Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Išgum I. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med Image Anal. 2019;51:46–60.CrossRef Wolterink JM, van Hamersvelt RW, Viergever MA, Leiner T, Išgum I. Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med Image Anal. 2019;51:46–60.CrossRef
23.
go back to reference Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Ω-Net (Omega-Net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal. 2018;48:95–106.CrossRef Vigneault DM, Xie W, Ho CY, Bluemke DA, Noble JA. Ω-Net (Omega-Net): fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks. Med Image Anal. 2018;48:95–106.CrossRef
24.
go back to reference Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol. 2020;27:80–95.CrossRef Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol. 2020;27:80–95.CrossRef
25.
go back to reference Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205.CrossRef Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. elastix: a toolbox for intensity-based medical image registration. IEEE Trans Med Imaging. 2010;29(1):196–205.CrossRef
26.
go back to reference Jaderberg M, Simonyan K, Zisserman A, editors. Spatial transformer networks. Advances in neural information processing systems. Montreal: MIT Press; 2015. Jaderberg M, Simonyan K, Zisserman A, editors. Spatial transformer networks. Advances in neural information processing systems. Montreal: MIT Press; 2015.
27.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105.
28.
go back to reference Townsend D, Benefield T, Perrin S, Ryan K, Lattanze R, Wong T. Multi-center assessment of infiltration rates in FDG-PET/CT scans: detection, incidence, and contributing factors. J Nucl Med. 2018;59(supplement 1):520. Townsend D, Benefield T, Perrin S, Ryan K, Lattanze R, Wong T. Multi-center assessment of infiltration rates in FDG-PET/CT scans: detection, incidence, and contributing factors. J Nucl Med. 2018;59(supplement 1):520.
Metadata
Title
A novel deep-learning–based approach for automatic reorientation of 3D cardiac SPECT images
Authors
Duo Zhang
P. Hendrik Pretorius
Kaixian Lin
Weibing Miao
Jingsong Li
Michael A. King
Wentao Zhu
Publication date
01-10-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 11/2021
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-021-05319-x

Other articles of this Issue 11/2021

European Journal of Nuclear Medicine and Molecular Imaging 11/2021 Go to the issue