Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 3/2017

01-03-2017 | Original Article

Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets

Authors: Peijun Hu, Fa Wu, Jialin Peng, Yuanyuan Bao, Feng Chen, Dexing Kong

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 3/2017

Login to get access

Abstract

Purpose

Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images.

Methods

The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model.

Results

Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency.

Conclusion

A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
Literature
1.
go back to reference Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239CrossRefPubMed Brosch T, Tang LY, Yoo Y, Li DK, Traboulsee A, Tam R (2016) Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239CrossRefPubMed
2.
go back to reference Cha KH, Hadjiiski L, Samala RK, Chan HP, Caoili EM, Cohan RH (2016) Urinary bladder segmentation in ct urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–1896CrossRefPubMed Cha KH, Hadjiiski L, Samala RK, Chan HP, Caoili EM, Cohan RH (2016) Urinary bladder segmentation in ct urography using deep-learning convolutional neural network and level sets. Med Phys 43(4):1882–1896CrossRefPubMed
3.
go back to reference Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2015) Semantic image segmentation with deep convolutional nets and fully connected crfs. In: International conference on learning representations (ICLR) Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2015) Semantic image segmentation with deep convolutional nets and fully connected crfs. In: International conference on learning representations (ICLR)
4.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) International conference on medical image computing and computer-assisted intervention, (MICCAI), Springer, pp 424–432 Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) International conference on medical image computing and computer-assisted intervention, (MICCAI), Springer, pp 424–432
5.
go back to reference Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851 Ciresan D, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in neural information processing systems, pp 2843–2851
6.
go back to reference Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, Siddiqui K (2013) Regression forests for efficient anatomy detection and localization in computed tomography scans. Med Image Anal 17(8):1293–1303CrossRefPubMed Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, Siddiqui K (2013) Regression forests for efficient anatomy detection and localization in computed tomography scans. Med Image Anal 17(8):1293–1303CrossRefPubMed
7.
go back to reference Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3d deeply supervised network for automatic liver segmentation from ct volumes. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 149–157 Dou Q, Chen H, Jin Y, Yu L, Qin J, Heng PA (2016) 3d deeply supervised network for automatic liver segmentation from ct volumes. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 149–157
8.
go back to reference Gauriau R, Cuingnet R, Lesage D, Bloch I (2015) Multi-organ localization with cascaded global-to-local regression and shape prior. Med Image Anal 23(1):70–83CrossRefPubMed Gauriau R, Cuingnet R, Lesage D, Bloch I (2015) Multi-organ localization with cascaded global-to-local regression and shape prior. Med Image Anal 23(1):70–83CrossRefPubMed
9.
go back to reference He B, Huang C, Jia F (2015) Fully automatic multi-organ segmentation based on multi-boost learning and statistical shape model search. VISCERAL@ ISBI 2015 VISCERAL Anatomy3 Organ Segmentation Challenge, p 18 He B, Huang C, Jia F (2015) Fully automatic multi-organ segmentation based on multi-boost learning and statistical shape model search. VISCERAL@ ISBI 2015 VISCERAL Anatomy3 Organ Segmentation Challenge, p 18
10.
go back to reference He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp 1026–1034
11.
go back to reference Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu D, Rau AM, vanRikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265 Heimann T, van Ginneken B, Styner M, Arzhaeva Y, Aurich V, Bauer C, Beck A, Becker C, Beichel R, Bekes G, Bello F, Binnig G, Bischof H, Bornik A, Cashman P, Chi Y, Cordova A, Dawant B, Fidrich M, Furst J, Furukawa D, Grenacher L, Hornegger J, Kainmuller D, Kitney R, Kobatake H, Lamecker H, Lange T, Lee J, Lennon B, Li R, Li S, Meinzer HP, Nemeth G, Raicu D, Rau AM, vanRikxoort E, Rousson M, Rusko L, Saddi K, Schmidt G, Seghers D, Shimizu A, Slagmolen P, Sorantin E, Soza G, Susomboon R, Waite J, Wimmer A, Wolf I (2009) Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans Med Imaging 28(8):1251–1265
12.
13.
go back to reference Jawarneh MS, Mandava R, Ramachandram D, Shuaib IL (2010) Automatic initialization of contour for level set algorithms guided by integration of multiple views to segment abdominal ct scans. In: 2010 Second international conference on computational intelligence, modelling and simulation (CIMSiM). IEEE, pp 315–320 Jawarneh MS, Mandava R, Ramachandram D, Shuaib IL (2010) Automatic initialization of contour for level set algorithms guided by integration of multiple views to segment abdominal ct scans. In: 2010 Second international conference on computational intelligence, modelling and simulation (CIMSiM). IEEE, pp 315–320
14.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105
16.
go back to reference Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS, vol 2, p 6 Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z (2015) Deeply-supervised nets. In: AISTATS, vol 2, p 6
17.
go back to reference Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Statistical 4d graphs for multi-organ abdominal segmentation from multiphase ct. Med Image Anal 16(4):904–914CrossRefPubMedPubMedCentral Linguraru MG, Pura JA, Pamulapati V, Summers RM (2012) Statistical 4d graphs for multi-organ abdominal segmentation from multiphase ct. Med Image Anal 16(4):904–914CrossRefPubMedPubMedCentral
18.
go back to reference Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
19.
go back to reference Lu F, Wu F, Hu P, Peng Z, Kong D. Automatic 3d liver location and segmentation via convolutional neural networks and graph cut. Int J Comput Assist Radiol Surg. doi:10.1007/s11548-016-1467-3 Lu F, Wu F, Hu P, Peng Z, Kong D. Automatic 3d liver location and segmentation via convolutional neural networks and graph cut. Int J Comput Assist Radiol Surg. doi:10.​1007/​s11548-016-1467-3
20.
go back to reference Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. arXiv preprint arXiv:1606.04797 Milletari F, Navab N, Ahmadi SA (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. arXiv preprint arXiv:​1606.​04797
21.
go back to reference Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2015) Abdominal multi-organ segmentation from ct images using conditional shape-location and unsupervised intensity priors. Med Image Anal 26(1):1–18CrossRefPubMedPubMedCentral Okada T, Linguraru MG, Hori M, Summers RM, Tomiyama N, Sato Y (2015) Abdominal multi-organ segmentation from ct images using conditional shape-location and unsupervised intensity priors. Med Image Anal 26(1):1–18CrossRefPubMedPubMedCentral
22.
go back to reference Peng J, Dong F, Chen Y, Kong D (2014) A region-appearance-based adaptive variational model for 3d liver segmentation. Med Phys 41(4):043,502CrossRef Peng J, Dong F, Chen Y, Kong D (2014) A region-appearance-based adaptive variational model for 3d liver segmentation. Med Phys 41(4):043,502CrossRef
23.
go back to reference Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H (2015) 3d liver segmentation using multiple region appearances and graph cuts. Med Phys 42(12):6840–6852CrossRefPubMed Peng J, Hu P, Lu F, Peng Z, Kong D, Zhang H (2015) 3d liver segmentation using multiple region appearances and graph cuts. Med Phys 42(12):6840–6852CrossRefPubMed
24.
go back to reference Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRef Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12(7):629–639CrossRef
25.
go back to reference Potts RB (1952) Some generalized order-disorder transformations. In: Mathematical proceedings of the Cambridge philosophical society, vol 48. Cambridge University Press, pp 106–109 Potts RB (1952) Some generalized order-disorder transformations. In: Mathematical proceedings of the Cambridge philosophical society, vol 48. Cambridge University Press, pp 106–109
26.
go back to reference Rajchl M, Baxter JS, Bae E, Tai XC, Fenster A, Peters TM, Yuan J (2015) Variational time-implicit multiphase level-sets. In: Energy minimization methods in computer vision and pattern recognition. Springer, pp 278–291 Rajchl M, Baxter JS, Bae E, Tai XC, Fenster A, Peters TM, Yuan J (2015) Variational time-implicit multiphase level-sets. In: Energy minimization methods in computer vision and pattern recognition. Springer, pp 278–291
27.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
28.
go back to reference Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Medical image computing and computer-assisted intervention. Springer, pp 556–564 Roth HR, Lu L, Farag A, Shin HC, Liu J, Turkbey EB, Summers RM (2015) Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Medical image computing and computer-assisted intervention. Springer, pp 556–564
29.
go back to reference Saito A, Nawano S, Shimizu A (2016) Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Med Image Anal 28:46–65CrossRefPubMed Saito A, Nawano S, Shimizu A (2016) Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs. Med Image Anal 28:46–65CrossRefPubMed
30.
go back to reference Selver MA (2014) Segmentation of abdominal organs from ct using a multi-level, hierarchical neural network strategy. Comput Methods Programs Biomed 113(3):830–852CrossRefPubMed Selver MA (2014) Segmentation of abdominal organs from ct using a multi-level, hierarchical neural network strategy. Comput Methods Programs Biomed 113(3):830–852CrossRefPubMed
31.
go back to reference Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23(1):92–104CrossRefPubMed Tong T, Wolz R, Wang Z, Gao Q, Misawa K, Fujiwara M, Mori K, Hajnal JV, Rueckert D (2015) Discriminative dictionary learning for abdominal multi-organ segmentation. Med Image Anal 23(1):92–104CrossRefPubMed
32.
go back to reference Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293CrossRef Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293CrossRef
33.
go back to reference Wang C, Smedby O (2014) Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. Proc VISCERAL Chall ISBI 1194:25–31 Wang C, Smedby O (2014) Automatic multi-organ segmentation using fast model based level set method and hierarchical shape priors. Proc VISCERAL Chall ISBI 1194:25–31
34.
go back to reference Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723–1730CrossRefPubMed Wolz R, Chu C, Misawa K, Fujiwara M, Mori K, Rueckert D (2013) Automated abdominal multi-organ segmentation with subject-specific atlas generation. IEEE Trans Med Imaging 32(9):1723–1730CrossRefPubMed
35.
go back to reference Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA (2015) Efficient multi-atlas abdominal segmentation on clinically acquired ct with simple context learning. Med Image Anal 24(1):18–27CrossRefPubMedPubMedCentral Xu Z, Burke RP, Lee CP, Baucom RB, Poulose BK, Abramson RG, Landman BA (2015) Efficient multi-atlas abdominal segmentation on clinically acquired ct with simple context learning. Med Image Anal 24(1):18–27CrossRefPubMedPubMedCentral
36.
go back to reference Yuan J, Bae E, Tai XC, Boykov Y (2010) A continuous max-flow approach to potts model. In: European conference on computer vision. Springer, pp 379–392 Yuan J, Bae E, Tai XC, Boykov Y (2010) A continuous max-flow approach to potts model. In: European conference on computer vision. Springer, pp 379–392
37.
go back to reference Yuan J, Ukwatta E, Tai X, Fenster A, Schnoerr C (2012) A fast global optimization-based approach to evolving contours with generic shape prior. University of California, Los Angeles. Technical report CAM 12, vol 38 Yuan J, Ukwatta E, Tai X, Fenster A, Schnoerr C (2012) A fast global optimization-based approach to evolving contours with generic shape prior. University of California, Los Angeles. Technical report CAM 12, vol 38
38.
go back to reference Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentral Zhang W, Li R, Deng H, Wang L, Lin W, Ji S, Shen D (2015) Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage 108:214–224CrossRefPubMedPubMedCentral
Metadata
Title
Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets
Authors
Peijun Hu
Fa Wu
Jialin Peng
Yuanyuan Bao
Feng Chen
Dexing Kong
Publication date
01-03-2017
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 3/2017
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-016-1501-5

Other articles of this Issue 3/2017

International Journal of Computer Assisted Radiology and Surgery 3/2017 Go to the issue