Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2015

Open Access 01-12-2015 | Research

A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40

Authors: Jingtao Chen, Gerard Zurawski, Sandy Zurawski, Zhiqing Wang, Keiko Akagawa, Sangkon Oh, Ueno Hideki, Joseph Fay, Jacques Banchereau, Wenru Song, A Karolina Palucka

Published in: Journal of Hematology & Oncology | Issue 1/2015

Login to get access

Abstract

Background

Mantle cell lymphoma (MCL) is a distinct clinical pathologic subtype of B cell non-Hodgkin’s lymphoma often associated with poor prognosis. New therapeutic approaches based on boosting anti-tumor immunity are needed. MCL is associated with overexpression of cyclin D1 thus rendering this molecule an interesting target for immunotherapy.

Methods

We show here a novel strategy for the development of recombinant vaccines carrying cyclin D1 cancer antigens that can be targeted to dendritic cells (DCs) via CD40.

Results

Healthy individuals and MCL patients have a broad repertoire of cyclin D1-specific CD4+ and CD8+ T cells. Cyclin D1-specific T cells secrete IFN-γ. DCs loaded with whole tumor cells or with selected peptides can elicit cyclin D1-specific CD8+ T cells that kill MCL tumor cells. We developed a recombinant vaccine based on targeting cyclin D1 antigen to human DCs via an anti-CD40 mAb. Targeting monocyte-derived human DCs in vitro with anti-CD40-cyclin D1 fusion protein expanded a broad repertoire of cyclin D1-specific CD4+ and CD8+ T cells.

Conclusions

This study demonstrated that cyclin D1 represents a good target for immunotherapy and targeting cyclin D1 to DCs provides a new strategy for mantle cell lymphoma vaccine.
Appendix
Available only for authorised users
Literature
1.
go back to reference Foran JM, Cunningham D, Coiffier B, Solal-Celigny P, Reyes F, Ghielmini M, et al. Treatment of mantle-cell lymphoma with rituximab (chimeric monoclonal anti-CD20 antibody): analysis of factors associated with response. Ann Oncol. 2000;11 Suppl 1:117–21.CrossRefPubMed Foran JM, Cunningham D, Coiffier B, Solal-Celigny P, Reyes F, Ghielmini M, et al. Treatment of mantle-cell lymphoma with rituximab (chimeric monoclonal anti-CD20 antibody): analysis of factors associated with response. Ann Oncol. 2000;11 Suppl 1:117–21.CrossRefPubMed
2.
go back to reference Chen Y, Wang M, Romaguera J. Current regimens and novel agents for mantle cell lymphoma. Br J Haematol. 2014. Chen Y, Wang M, Romaguera J. Current regimens and novel agents for mantle cell lymphoma. Br J Haematol. 2014.
3.
go back to reference Dreyling, M., et al. Update on the molecular pathogenesis and targeted approaches of mantle cell lymphoma (MCL) - summary of the 12 annual conference of the EUROPEAN MCL NETWORK. Leuk Lymphoma, 2014. p. 1–26. Dreyling, M., et al. Update on the molecular pathogenesis and targeted approaches of mantle cell lymphoma (MCL) - summary of the 12 annual conference of the EUROPEAN MCL NETWORK. Leuk Lymphoma, 2014. p. 1–26.
4.
go back to reference Williams ME, Dreyling MH, Kahl BS, Leonard JP, O'Connor OA, Press OW, et al. Mantle cell lymphoma: report of the 2009 mantle cell lymphoma consortium workshop. Leuk Lymphoma. 2010;51(3):390–8.CrossRefPubMed Williams ME, Dreyling MH, Kahl BS, Leonard JP, O'Connor OA, Press OW, et al. Mantle cell lymphoma: report of the 2009 mantle cell lymphoma consortium workshop. Leuk Lymphoma. 2010;51(3):390–8.CrossRefPubMed
5.
go back to reference Dietrich S et al. Outcome and prognostic factors in patients with mantle-cell lymphoma relapsing after autologous stem-cell transplantation: a retrospective study of the European Group for Blood and Marrow Transplantation (EBMT). Ann Oncol. 2014;25(5):1053–8.CrossRefPubMed Dietrich S et al. Outcome and prognostic factors in patients with mantle-cell lymphoma relapsing after autologous stem-cell transplantation: a retrospective study of the European Group for Blood and Marrow Transplantation (EBMT). Ann Oncol. 2014;25(5):1053–8.CrossRefPubMed
6.
go back to reference Qi CF, Xiang S, Shin MS, Hao X, Lee CH, Zhou JX, et al. Expression of the cyclin-dependent kinase inhibitor p27 and its deregulation in mouse B cell lymphomas. Leuk Res. 2006;30(2):153–63.CrossRefPubMed Qi CF, Xiang S, Shin MS, Hao X, Lee CH, Zhou JX, et al. Expression of the cyclin-dependent kinase inhibitor p27 and its deregulation in mouse B cell lymphomas. Leuk Res. 2006;30(2):153–63.CrossRefPubMed
7.
go back to reference Jares P, Campo E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142(2):149–65.CrossRefPubMed Jares P, Campo E. Advances in the understanding of mantle cell lymphoma. Br J Haematol. 2008;142(2):149–65.CrossRefPubMed
8.
go back to reference Salaverria I, Royo C, Carvajal-Cuenca A, Clot G, Navarro A, Valera A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121(8):1394–402.CrossRefPubMedCentralPubMed Salaverria I, Royo C, Carvajal-Cuenca A, Clot G, Navarro A, Valera A, et al. CCND2 rearrangements are the most frequent genetic events in cyclin D1(−) mantle cell lymphoma. Blood. 2013;121(8):1394–402.CrossRefPubMedCentralPubMed
9.
go back to reference Chuang SS, Huang WT, Hsieh PP, Tseng HH, Campo E, Colomer D, et al. Mantle cell lymphoma in Taiwan: clinicopathological and molecular study of 21 cases including one cyclin D1-negative tumor expressing cyclin D2. Pathol Int. 2006;56(8):440–8.CrossRefPubMed Chuang SS, Huang WT, Hsieh PP, Tseng HH, Campo E, Colomer D, et al. Mantle cell lymphoma in Taiwan: clinicopathological and molecular study of 21 cases including one cyclin D1-negative tumor expressing cyclin D2. Pathol Int. 2006;56(8):440–8.CrossRefPubMed
10.
go back to reference Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106(13):4315–21.CrossRefPubMedCentralPubMed Fu K, Weisenburger DD, Greiner TC, Dave S, Wright G, Rosenwald A, et al. Cyclin D1-negative mantle cell lymphoma: a clinicopathologic study based on gene expression profiling. Blood. 2005;106(13):4315–21.CrossRefPubMedCentralPubMed
12.
go back to reference Bacher U et al. Cyclin D1 (CCND1) messenger RNA expression as assessed by real-time PCR contributes to diagnosis and follow-up control in patients with mantle cell lymphoma. Exp Hematol. 2013 Bacher U et al. Cyclin D1 (CCND1) messenger RNA expression as assessed by real-time PCR contributes to diagnosis and follow-up control in patients with mantle cell lymphoma. Exp Hematol. 2013
13.
go back to reference Soverini S et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood. 2003;102(5):1588–94.CrossRefPubMed Soverini S et al. Cyclin D1 overexpression is a favorable prognostic variable for newly diagnosed multiple myeloma patients treated with high-dose chemotherapy and single or double autologous transplantation. Blood. 2003;102(5):1588–94.CrossRefPubMed
14.
go back to reference Sauerbrey A, Häfer R, Zintl F, Volm M. Analysis of cyclin D1 in de novo and relapsed childhood acute lymphoblastic leukemia. Anticancer Res. 1999;19(1B):645–9.PubMed Sauerbrey A, Häfer R, Zintl F, Volm M. Analysis of cyclin D1 in de novo and relapsed childhood acute lymphoblastic leukemia. Anticancer Res. 1999;19(1B):645–9.PubMed
15.
go back to reference Bosch F, Campo E, Jares P, Pittaluga S, Muñoz J, Nayach I, et al. Increased expression of the PRAD-1/CCND1 gene in hairy cell leukaemia. Br J Haematol. 1995;91(4):1025–30.CrossRefPubMed Bosch F, Campo E, Jares P, Pittaluga S, Muñoz J, Nayach I, et al. Increased expression of the PRAD-1/CCND1 gene in hairy cell leukaemia. Br J Haematol. 1995;91(4):1025–30.CrossRefPubMed
16.
go back to reference Arber N et al. Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 1996;5(6):457–9.PubMed Arber N et al. Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev. 1996;5(6):457–9.PubMed
17.
go back to reference Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110(3):669–74.CrossRefPubMed Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M, et al. Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology. 1996;110(3):669–74.CrossRefPubMed
18.
go back to reference Ratschiller D, Heighway J, Gugger M, Kappeler A, Pirnia F, Schmid RA, et al. Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol. 2003;21(11):2085–93.CrossRefPubMed Ratschiller D, Heighway J, Gugger M, Kappeler A, Pirnia F, Schmid RA, et al. Cyclin D1 overexpression in bronchial epithelia of patients with lung cancer is associated with smoking and predicts survival. J Clin Oncol. 2003;21(11):2085–93.CrossRefPubMed
19.
go back to reference Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 2002;62(20):5818–27.PubMed Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, et al. Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 2002;62(20):5818–27.PubMed
20.
go back to reference Gladden AB, Diehl JA. Location, location, location: the role of cyclin D1 nuclear localization in cancer. J Cell Biochem. 2005;96(5):906–13.CrossRefPubMed Gladden AB, Diehl JA. Location, location, location: the role of cyclin D1 nuclear localization in cancer. J Cell Biochem. 2005;96(5):906–13.CrossRefPubMed
21.
go back to reference Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer. 2007;55(1):1–14.CrossRefPubMed Gautschi O, Ratschiller D, Gugger M, Betticher DC, Heighway J. Cyclin D1 in non-small cell lung cancer: a key driver of malignant transformation. Lung Cancer. 2007;55(1):1–14.CrossRefPubMed
22.
go back to reference Dengjel J, Decker P, Schoor O, Altenberend F, Weinschenk T, Rammensee HG, et al. Identification of a naturally processed cyclin D1 T-helper epitope by a novel combination of HLA class II targeting and differential mass spectrometry. Eur J Immunol. 2004;34(12):3644–51.CrossRefPubMed Dengjel J, Decker P, Schoor O, Altenberend F, Weinschenk T, Rammensee HG, et al. Identification of a naturally processed cyclin D1 T-helper epitope by a novel combination of HLA class II targeting and differential mass spectrometry. Eur J Immunol. 2004;34(12):3644–51.CrossRefPubMed
23.
go back to reference Kondo E, Maecker B, Weihrauch MR, Wickenhauser C, Zeng W, Nadler LM, et al. Cyclin D1-specific cytotoxic T lymphocytes are present in the repertoire of cancer patients: implications for cancer immunotherapy. Clin Cancer Res. 2008;14(20):6574–9.CrossRefPubMed Kondo E, Maecker B, Weihrauch MR, Wickenhauser C, Zeng W, Nadler LM, et al. Cyclin D1-specific cytotoxic T lymphocytes are present in the repertoire of cancer patients: implications for cancer immunotherapy. Clin Cancer Res. 2008;14(20):6574–9.CrossRefPubMed
24.
go back to reference Dao T, Korontsvit T, Zakhaleva V, Haro K, Packin J, Scheinberg DA. Identification of a human cyclin D1-derived peptide that induces human cytotoxic CD4 T cells. PLoS One. 2009;4(8), e6730.CrossRefPubMedCentralPubMed Dao T, Korontsvit T, Zakhaleva V, Haro K, Packin J, Scheinberg DA. Identification of a human cyclin D1-derived peptide that induces human cytotoxic CD4 T cells. PLoS One. 2009;4(8), e6730.CrossRefPubMedCentralPubMed
25.
go back to reference Armstrong MJ, Robins GG, Howdle PD. Recent advances in coeliac disease. Curr Opin Gastroenterol. 2009;25(2):100–9.CrossRefPubMed Armstrong MJ, Robins GG, Howdle PD. Recent advances in coeliac disease. Curr Opin Gastroenterol. 2009;25(2):100–9.CrossRefPubMed
26.
go back to reference Wang M, Sun L, Qian J, Han X, Zhang L, Lin P, et al. Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia. 2009;23(7):1320–8.CrossRefPubMed Wang M, Sun L, Qian J, Han X, Zhang L, Lin P, et al. Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia. 2009;23(7):1320–8.CrossRefPubMed
27.
go back to reference Dougan, M, Dranoff G. The immune response to tumors. Curr Protoc Immunol. 2009. Chapter 20: p. Unit 20 11 Dougan, M, Dranoff G. The immune response to tumors. Curr Protoc Immunol. 2009. Chapter 20: p. Unit 20 11
28.
go back to reference Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.CrossRefPubMed Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev. 2007;220:129–50.CrossRefPubMed
29.
go back to reference Flacher V, Tripp CH, Stoitzner P, Haid B, Ebner S, Del Frari B, et al. Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J Invest Dermatol. 2010;130(3):755–62.CrossRefPubMedCentralPubMed Flacher V, Tripp CH, Stoitzner P, Haid B, Ebner S, Del Frari B, et al. Epidermal Langerhans cells rapidly capture and present antigens from C-type lectin-targeting antibodies deposited in the dermis. J Invest Dermatol. 2010;130(3):755–62.CrossRefPubMedCentralPubMed
30.
go back to reference Sancho D, Mourão-Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel DC-restricted C-type lectin. J Clin Invest. 2008;118(6):2098–110.CrossRefPubMedCentralPubMed Sancho D, Mourão-Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, et al. Tumor therapy in mice via antigen targeting to a novel DC-restricted C-type lectin. J Clin Invest. 2008;118(6):2098–110.CrossRefPubMedCentralPubMed
31.
go back to reference Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, et al. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood. 2010;116(13):2277–85.CrossRefPubMed Birkholz K, Schwenkert M, Kellner C, Gross S, Fey G, Schuler-Thurner B, et al. Targeting of DEC-205 on human dendritic cells results in efficient MHC class II-restricted antigen presentation. Blood. 2010;116(13):2277–85.CrossRefPubMed
32.
go back to reference Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M, Carrington M, et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci U S A. 2007;104(4):1289–94.CrossRefPubMedCentralPubMed Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M, Carrington M, et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci U S A. 2007;104(4):1289–94.CrossRefPubMedCentralPubMed
33.
go back to reference Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O'Bar A, et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood. 2010;116(10):1685–97.CrossRefPubMedCentralPubMed Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O'Bar A, et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood. 2010;116(10):1685–97.CrossRefPubMedCentralPubMed
34.
go back to reference Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity. 2002;17(3):353–62.CrossRefPubMed Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity. 2002;17(3):353–62.CrossRefPubMed
35.
go back to reference Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol. 2002;2(2):77–84.CrossRefPubMed Figdor CG, van Kooyk Y, Adema GJ. C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol. 2002;2(2):77–84.CrossRefPubMed
36.
go back to reference Geijtenbeek TB, van Vliet SJ, Engering A, 't Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol. 2004;22:33–54.CrossRefPubMed Geijtenbeek TB, van Vliet SJ, Engering A, 't Hart BA, van Kooyk Y. Self- and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol. 2004;22:33–54.CrossRefPubMed
37.
go back to reference Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6(1):33–43.CrossRefPubMed Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6(1):33–43.CrossRefPubMed
38.
go back to reference Singh J, Garber E, Van Vlijmen H, Karpusas M, Hsu YM, Zheng Z, et al. The role of polar interactions in the molecular recognition of CD40L with its receptor CD40. Protein Sci. 1998;7(5):1124–35.CrossRefPubMedCentralPubMed Singh J, Garber E, Van Vlijmen H, Karpusas M, Hsu YM, Zheng Z, et al. The role of polar interactions in the molecular recognition of CD40L with its receptor CD40. Protein Sci. 1998;7(5):1124–35.CrossRefPubMedCentralPubMed
39.
go back to reference van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.PubMed van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67(1):2–17.PubMed
40.
go back to reference Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.CrossRefPubMed Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.CrossRefPubMed
41.
go back to reference Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184(2):747–52.CrossRefPubMed Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184(2):747–52.CrossRefPubMed
42.
go back to reference Xu H, Zhao G, Huang X, Ding Z, Wang J, Wang X, et al. CD40-expressing plasmid induces anti-CD40 antibody and enhances immune responses to DNA vaccination. J Gene Med. 2010;12(1):97–106.CrossRefPubMed Xu H, Zhao G, Huang X, Ding Z, Wang J, Wang X, et al. CD40-expressing plasmid induces anti-CD40 antibody and enhances immune responses to DNA vaccination. J Gene Med. 2010;12(1):97–106.CrossRefPubMed
43.
go back to reference Schjetne KW, Fredriksen AB, Bogen B. Delivery of antigen to CD40 induces protective immune responses against tumors. J Immunol. 2007;178(7):4169–76.CrossRefPubMed Schjetne KW, Fredriksen AB, Bogen B. Delivery of antigen to CD40 induces protective immune responses against tumors. J Immunol. 2007;178(7):4169–76.CrossRefPubMed
44.
go back to reference Flamar AL et al. Targeting concatenated HIV antigens to human CD40 expands a broad repertoire of multifunctional CD4+ and CD8+ T cells. AIDS. 2013. Flamar AL et al. Targeting concatenated HIV antigens to human CD40 expands a broad repertoire of multifunctional CD4+ and CD8+ T cells. AIDS. 2013.
46.
go back to reference Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.PubMedCentralPubMed Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immun. 2013;13:15.PubMedCentralPubMed
47.
go back to reference Uram JN, Black CM, Flynn E, Huang L, Armstrong TD, Jaffee EM. Nondominant CD8 T cells are active players in the vaccine-induced antitumor immune response. J Immunol. 2011;186(7):3847–57.CrossRefPubMedCentralPubMed Uram JN, Black CM, Flynn E, Huang L, Armstrong TD, Jaffee EM. Nondominant CD8 T cells are active players in the vaccine-induced antitumor immune response. J Immunol. 2011;186(7):3847–57.CrossRefPubMedCentralPubMed
48.
go back to reference Hu X, Chakraborty NG, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B. Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with the MAGE-1 peptide loaded antigen presenting cell-based vaccine. Cancer Res. 1996;56(11):2479–83.PubMed Hu X, Chakraborty NG, Sporn JR, Kurtzman SH, Ergin MT, Mukherji B. Enhancement of cytolytic T lymphocyte precursor frequency in melanoma patients following immunization with the MAGE-1 peptide loaded antigen presenting cell-based vaccine. Cancer Res. 1996;56(11):2479–83.PubMed
49.
go back to reference Noguchi M, Sasada T, Itoh K. Personalized peptide vaccination: a new approach for advanced cancer as therapeutic cancer vaccine. Cancer Immunol Immunother. 2013;62(5):919–29.CrossRefPubMed Noguchi M, Sasada T, Itoh K. Personalized peptide vaccination: a new approach for advanced cancer as therapeutic cancer vaccine. Cancer Immunol Immunother. 2013;62(5):919–29.CrossRefPubMed
50.
go back to reference Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 2013;104(1):15–21.CrossRefPubMed Yamada A, Sasada T, Noguchi M, Itoh K. Next-generation peptide vaccines for advanced cancer. Cancer Sci. 2013;104(1):15–21.CrossRefPubMed
51.
go back to reference Bonifaz L et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.CrossRefPubMedCentralPubMed Bonifaz L et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.CrossRefPubMedCentralPubMed
52.
go back to reference Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med. 2004;199(6):815–24.CrossRefPubMedCentralPubMed Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med. 2004;199(6):815–24.CrossRefPubMedCentralPubMed
53.
go back to reference Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194(6):769–79.CrossRefPubMedCentralPubMed Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194(6):769–79.CrossRefPubMedCentralPubMed
54.
go back to reference Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol. 1998;28(1):193–200.CrossRefPubMed Sadovnikova E, Jopling LA, Soo KS, Stauss HJ. Generation of human tumor-reactive cytotoxic T cells against peptides presented by non-self HLA class I molecules. Eur J Immunol. 1998;28(1):193–200.CrossRefPubMed
55.
go back to reference Li D, Romain G, Flamar AL, Duluc D, Dullaers M, Li XH, et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med. 2012;209(1):109–21.CrossRefPubMedCentralPubMed Li D, Romain G, Flamar AL, Duluc D, Dullaers M, Li XH, et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med. 2012;209(1):109–21.CrossRefPubMedCentralPubMed
56.
go back to reference Fan J, Hall P. On curve estimation by minimizing mean absolute deviation and its implications. Ann Stat. 1994;22(2):867–85.CrossRef Fan J, Hall P. On curve estimation by minimizing mean absolute deviation and its implications. Ann Stat. 1994;22(2):867–85.CrossRef
Metadata
Title
A novel vaccine for mantle cell lymphoma based on targeting cyclin D1 to dendritic cells via CD40
Authors
Jingtao Chen
Gerard Zurawski
Sandy Zurawski
Zhiqing Wang
Keiko Akagawa
Sangkon Oh
Ueno Hideki
Joseph Fay
Jacques Banchereau
Wenru Song
A Karolina Palucka
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2015
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-015-0131-7

Other articles of this Issue 1/2015

Journal of Hematology & Oncology 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine