Skip to main content
Top
Published in: Gut Pathogens 1/2019

Open Access 01-12-2019 | Campylobacter | Research

Comparison of different technologies for the decipherment of the whole genome sequence of Campylobacter jejuni BfR-CA-14430

Authors: Lennard Epping, Julia C. Golz, Marie-Theres Knüver, Charlotte Huber, Andrea Thürmer, Lothar H. Wieler, Kerstin Stingl, Torsten Semmler

Published in: Gut Pathogens | Issue 1/2019

Login to get access

Abstract

Background

Campylobacter jejuni is a zoonotic pathogen that infects the human gut through the food chain mainly by consumption of undercooked chicken meat, raw chicken cross-contaminated ready-to-eat food or by raw milk. In the last decades, C. jejuni has increasingly become the most common bacterial cause for food-born infections in high income countries, costing public health systems billions of euros each year. Currently, different whole genome sequencing techniques such as short-read bridge amplification and long-read single molecule real-time sequencing techniques are applied for in-depth analysis of bacterial species, in particular, Illumina MiSeq, PacBio and MinION.

Results

In this study, we analyzed a recently isolated C. jejuni strain from chicken meat by short- and long-read data from Illumina, PacBio and MinION sequencing technologies. For comparability, this strain is used in the German PAC-CAMPY research consortium in several studies, including phenotypic analysis of biofilm formation, natural transformation and in vivo colonization models. The complete assembled genome sequence most likely consists of a chromosome of 1,645,980 bp covering 1665 coding sequences as well as a plasmid sequence with 41,772 bp that encodes for 46 genes. Multilocus sequence typing revealed that the strain belongs to the clonal complex CC-21 (ST-44) which is known to be involved in C. jejuni human infections, including outbreaks. Furthermore, we discovered resistance determinants and a point mutation in the DNA gyrase (gyrA) that render the bacterium resistant against ampicillin, tetracycline and (fluoro-)quinolones.

Conclusion

The comparison of Illumina MiSeq, PacBio and MinION sequencing and analyses with different assembly tools enabled us to reconstruct a complete chromosome as well as a circular plasmid sequence of the C. jejuni strain BfR-CA-14430. Illumina short-read sequencing in combination with either PacBio or MinION can substantially improve the quality of the complete chromosome and epichromosomal elements on the level of mismatches and insertions/deletions, depending on the assembly program used.
Appendix
Available only for authorised users
Literature
1.
go back to reference Young KT, Davis LM, DiRita VJ. Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol. 2007;5:665–79.CrossRef Young KT, Davis LM, DiRita VJ. Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol. 2007;5:665–79.CrossRef
2.
go back to reference Humphrey T, O’Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol. 2007;117(3):237–57.CrossRef Humphrey T, O’Brien S, Madsen M. Campylobacters as zoonotic pathogens: a food production perspective. Int J Food Microbiol. 2007;117(3):237–57.CrossRef
3.
go back to reference Food Safety Authority E, Boelaert F, Van der Stede Y, Nagy K, Rizzi V, Garcia Fierro R, et al. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016 Acknowledgements: EFSA and the ECDC wish to thank the members of the Scientific Network for Zoonoses Monitoring Data and the Food and Wat. EFSA J. 2017;15(12):5077. Food Safety Authority E, Boelaert F, Van der Stede Y, Nagy K, Rizzi V, Garcia Fierro R, et al. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016 Acknowledgements: EFSA and the ECDC wish to thank the members of the Scientific Network for Zoonoses Monitoring Data and the Food and Wat. EFSA J. 2017;15(12):5077.
4.
go back to reference Jacobs-Reitsma WF, Jongenburger I, de Boer E, Biesta-Peters EG. Validation by interlaboratory trials of EN ISO 10272—microbiology of the food chain—horizontal method for detection and enumeration of Campylobacter spp.—part 2: Colony-count technique. Int J Food Microbiol. 2019;288:32–8.CrossRef Jacobs-Reitsma WF, Jongenburger I, de Boer E, Biesta-Peters EG. Validation by interlaboratory trials of EN ISO 10272—microbiology of the food chain—horizontal method for detection and enumeration of Campylobacter spp.—part 2: Colony-count technique. Int J Food Microbiol. 2019;288:32–8.CrossRef
5.
go back to reference Mayr AM, Lick S, Bauer J, Thärigen D, Busch U, Huber I. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in food, using multiplex real-time PCR. J Food Protect. 2010;73(2):241–50.CrossRef Mayr AM, Lick S, Bauer J, Thärigen D, Busch U, Huber I. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in food, using multiplex real-time PCR. J Food Protect. 2010;73(2):241–50.CrossRef
6.
go back to reference Wassenaar TM, Newell DG. Genotyping of Campylobacter spp. Appl Environ Microbiol. 2000;66:1–9.CrossRef Wassenaar TM, Newell DG. Genotyping of Campylobacter spp. Appl Environ Microbiol. 2000;66:1–9.CrossRef
7.
go back to reference Clinical and Laboratory Standards Institute. VET06: methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals. 1st ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. Clinical and Laboratory Standards Institute. VET06: methods for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria isolated from animals. 1st ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.
8.
go back to reference Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. {SPAdes}: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.CrossRef Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. {SPAdes}: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.CrossRef
9.
go back to reference Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. PlasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32(22):3380–7.PubMed Antipov D, Hartwick N, Shen M, Raiko M, Lapidus A, Pevzner PA. PlasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32(22):3380–7.PubMed
10.
go back to reference Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10(6):563–9.CrossRef Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10(6):563–9.CrossRef
11.
go back to reference Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6.CrossRef Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–6.CrossRef
12.
go back to reference Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595.CrossRef Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595.CrossRef
14.
go back to reference Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.CrossRef Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.CrossRef
15.
go back to reference Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.CrossRef Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.CrossRef
16.
go back to reference Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE ONE. 2010;5(6):e11147.CrossRef Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE ONE. 2010;5(6):e11147.CrossRef
17.
go back to reference Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.CrossRef Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9.CrossRef
18.
19.
go back to reference Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.CrossRef Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–4.CrossRef
20.
go back to reference Roehr JT, Dieterich C, Reinert K. Flexbar 3.0—{SIMD} and multicore parallelization. Bioinformatics. 2017;33(18):2941–2.CrossRef Roehr JT, Dieterich C, Reinert K. Flexbar 3.0—{SIMD} and multicore parallelization. Bioinformatics. 2017;33(18):2941–2.CrossRef
21.
go back to reference Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.CrossRef Wood DE, Salzberg SL. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15(3):R46.CrossRef
22.
go back to reference Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CrossRef Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CrossRef
23.
go back to reference Sails AD, Swaminathan B, Fields PI. Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. J Clin Microbiol. 2003;41(10):4733–9.CrossRef Sails AD, Swaminathan B, Fields PI. Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. J Clin Microbiol. 2003;41(10):4733–9.CrossRef
24.
go back to reference Griggs DJ, Peake L, Johnson MM, Ghori S, Mott A, Piddock LJV. β-lactamase-mediated β-lactam resistance in Campylobacter species: prevalence of Cj0299 (blaOXA-61) and evidence for a novel β-lactamase in C. jejuni. Antimicrob Agents Chemother. 2009;53(8):3357–64.CrossRef Griggs DJ, Peake L, Johnson MM, Ghori S, Mott A, Piddock LJV. β-lactamase-mediated β-lactam resistance in Campylobacter species: prevalence of Cj0299 (blaOXA-61) and evidence for a novel β-lactamase in C. jejuni. Antimicrob Agents Chemother. 2009;53(8):3357–64.CrossRef
25.
go back to reference Luo N, Sahin O, Lin J, Michel LO, Zhang Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother. 2003;47(1):390–4.CrossRef Luo N, Sahin O, Lin J, Michel LO, Zhang Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone resistance associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob Agents Chemother. 2003;47(1):390–4.CrossRef
26.
go back to reference Guerry P, Ewing CP, Hickey TE, Prendergast MM, Moran AP. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun. 2000;68(12):6656–62.CrossRef Guerry P, Ewing CP, Hickey TE, Prendergast MM, Moran AP. Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun. 2000;68(12):6656–62.CrossRef
27.
go back to reference Godschalk PCR, Heikema AP, Gilbert M, Komagamine T, Wim Ang C, Glerum J, et al. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. J Clin Investig. 2004;114(11):1659–65.CrossRef Godschalk PCR, Heikema AP, Gilbert M, Komagamine T, Wim Ang C, Glerum J, et al. The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barré syndrome. J Clin Investig. 2004;114(11):1659–65.CrossRef
28.
go back to reference Poly F, Serichatalergs O, Schulman M, Ju J, Cates CN, Kanipes M, et al. Discrimination of major capsular types of Campylobacter jejuni by multiplex PCR. J Clin Microbiol. 2011;49(5):1750–7.CrossRef Poly F, Serichatalergs O, Schulman M, Ju J, Cates CN, Kanipes M, et al. Discrimination of major capsular types of Campylobacter jejuni by multiplex PCR. J Clin Microbiol. 2011;49(5):1750–7.CrossRef
29.
go back to reference Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, et al. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol. 2006;60(2):299–311.CrossRef Guerry P, Ewing CP, Schirm M, Lorenzo M, Kelly J, Pattarini D, et al. Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol Microbiol. 2006;60(2):299–311.CrossRef
30.
go back to reference Cao TB, Saier J. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: Organismal distribution, structural constraints and evolutionary conclusions. Microbiol Microbiol Soc. 2001;147:3201–14. Cao TB, Saier J. Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: Organismal distribution, structural constraints and evolutionary conclusions. Microbiol Microbiol Soc. 2001;147:3201–14.
31.
go back to reference Taveirne ME, Dunham DT, Perault A, Beauchamp JM, Huynh S, Parker CT, et al. Complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized Farm-Raised chickens. Genome Announc. 2017;5(4):e01407-16.CrossRef Taveirne ME, Dunham DT, Perault A, Beauchamp JM, Huynh S, Parker CT, et al. Complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized Farm-Raised chickens. Genome Announc. 2017;5(4):e01407-16.CrossRef
32.
go back to reference Day WA, Pepper IL, Joens LA. Use of an arbitrarily primed PCR product in the development of a Campylobacter jejuni-specific PCR. Appl Environ Microbiol. 1997;63:1019–23.PubMedPubMedCentral Day WA, Pepper IL, Joens LA. Use of an arbitrarily primed PCR product in the development of a Campylobacter jejuni-specific PCR. Appl Environ Microbiol. 1997;63:1019–23.PubMedPubMedCentral
33.
go back to reference Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(Web Server issue):W181–W184184.CrossRef Grant JR, Stothard P. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 2008;36(Web Server issue):W181–W184184.CrossRef
Metadata
Title
Comparison of different technologies for the decipherment of the whole genome sequence of Campylobacter jejuni BfR-CA-14430
Authors
Lennard Epping
Julia C. Golz
Marie-Theres Knüver
Charlotte Huber
Andrea Thürmer
Lothar H. Wieler
Kerstin Stingl
Torsten Semmler
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2019
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-019-0340-7

Other articles of this Issue 1/2019

Gut Pathogens 1/2019 Go to the issue