Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 3/2014

01-04-2014

Vagal Stimulation in Heart Failure

Author: Gaetano M. De Ferrari

Published in: Journal of Cardiovascular Translational Research | Issue 3/2014

Login to get access

Abstract

Heart failure (HF) is accompanied by an autonomic imbalance that is almost always characterized by both increased sympathetic activity and withdrawal of vagal activity. Experimentally, vagal stimulation has been shown to exert profound antiarrhythmic activity and to improve cardiac function and survival in HF models. A open-label pilot clinical study in 32 patients with chronic HF has shown safety and tolerability of chronic vagal stimulation associated with subjective (improved quality of life and 6-min walk test) and objective improvements (reduced left ventricular systolic volumes and improved left ventricular ejection fraction). Three larger clinical studies, including a phase III trial are currently ongoing and will evaluate the clinical role of this new approach.
Literature
1.
go back to reference Brack, K. E., Winter, J., & Ng, G. A. (2013). Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation-tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Failure Reviews, 18, 389–408.PubMedCrossRefPubMedCentral Brack, K. E., Winter, J., & Ng, G. A. (2013). Mechanisms underlying the autonomic modulation of ventricular fibrillation initiation-tentative prophylactic properties of vagus nerve stimulation on malignant arrhythmias in heart failure. Heart Failure Reviews, 18, 389–408.PubMedCrossRefPubMedCentral
2.
go back to reference Floras, J. S. (2009). Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. Journal of the American College of Cardiology, 54, 375–385.PubMedCrossRef Floras, J. S. (2009). Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. Journal of the American College of Cardiology, 54, 375–385.PubMedCrossRef
3.
go back to reference Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 119, e391–e479.PubMedCrossRef Hunt, S. A., Abraham, W. T., Chin, M. H., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 119, e391–e479.PubMedCrossRef
4.
go back to reference Billman, G. E., Schwartz, P. J., & Stone, H. L. (1982). Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation, 66, 874–880.PubMedCrossRef Billman, G. E., Schwartz, P. J., & Stone, H. L. (1982). Baroreceptor reflex control of heart rate: a predictor of sudden cardiac death. Circulation, 66, 874–880.PubMedCrossRef
5.
go back to reference Schwartz, P. J., Vanoli, E., Stramba Badiale, M., De Ferrari, G., Billman, G. E., & Foreman, R. D. (1988). Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation, 78, 969–979.PubMedCrossRef Schwartz, P. J., Vanoli, E., Stramba Badiale, M., De Ferrari, G., Billman, G. E., & Foreman, R. D. (1988). Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation, 78, 969–979.PubMedCrossRef
6.
go back to reference Kleiger, R. E., Miller, J. P., Bigger, J. T., Jr., Moss, A. J., & the Multicenter Post Infarction Research Group. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256–262.PubMedCrossRef Kleiger, R. E., Miller, J. P., Bigger, J. T., Jr., Moss, A. J., & the Multicenter Post Infarction Research Group. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256–262.PubMedCrossRef
7.
go back to reference La Rovere, M. T., Bigger, J. T., Marcus, F., Mortara, A., & Schwartz, P. J. (1998). ATRAMI (autonomic tone and reflexes after myocardial infarction), baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet, 351, 478–484.PubMedCrossRef La Rovere, M. T., Bigger, J. T., Marcus, F., Mortara, A., & Schwartz, P. J. (1998). ATRAMI (autonomic tone and reflexes after myocardial infarction), baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet, 351, 478–484.PubMedCrossRef
8.
go back to reference Schmidt, G., Malik, M., Barthel, P., Schneider, R., Ulm, K., Rolnitzky, L., et al. (1999). Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet, 353, 1390–1396.PubMedCrossRef Schmidt, G., Malik, M., Barthel, P., Schneider, R., Ulm, K., Rolnitzky, L., et al. (1999). Heart-rate turbulence after ventricular premature beats as a predictor of mortality after acute myocardial infarction. Lancet, 353, 1390–1396.PubMedCrossRef
9.
go back to reference De Ferrari, G. M., Sanzo, A., Bertoletti, A., Specchia, G., Vanoli, E., & Schwartz, P. J. (2007). Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. Journal of the American College of Cardiology, 50, 2285–2290.PubMedCrossRef De Ferrari, G. M., Sanzo, A., Bertoletti, A., Specchia, G., Vanoli, E., & Schwartz, P. J. (2007). Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. Journal of the American College of Cardiology, 50, 2285–2290.PubMedCrossRef
10.
go back to reference Eckberg, D. L., Drabinsky, M., & Braunwald, E. (1971). Defective cardiac parasympathetic control in patients with heart disease. New England Journal of Medicine, 285, 877–883.PubMedCrossRef Eckberg, D. L., Drabinsky, M., & Braunwald, E. (1971). Defective cardiac parasympathetic control in patients with heart disease. New England Journal of Medicine, 285, 877–883.PubMedCrossRef
11.
go back to reference Ferguson, D. W., Berg, W. J., Roach, P. J., Oren, R. M., & Mark, A. L. (1992). Effects of heart failure on baroreflex control of sympathetic neural activity. American Journal of Cardiology, 69, 523–531.PubMedCrossRef Ferguson, D. W., Berg, W. J., Roach, P. J., Oren, R. M., & Mark, A. L. (1992). Effects of heart failure on baroreflex control of sympathetic neural activity. American Journal of Cardiology, 69, 523–531.PubMedCrossRef
12.
go back to reference Dibner Dunlap, M. E., Smith, M. L., Kinugawa, T., & Thames, M. D. (1996). Enalapatrilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. Journal of the American College of Cardiology, 27, 358–364.PubMedCrossRef Dibner Dunlap, M. E., Smith, M. L., Kinugawa, T., & Thames, M. D. (1996). Enalapatrilat augments arterial and cardiopulmonary baroreflex control of sympathetic nerve activity in patients with heart failure. Journal of the American College of Cardiology, 27, 358–364.PubMedCrossRef
13.
go back to reference Dibner Dunlap, M. E. (1992). Arterial or cardiopulmonary baroreflex control of sympathetic nerve activity in heart failure? American Journal of Cardiology, 70, 1640–1642.PubMedCrossRef Dibner Dunlap, M. E. (1992). Arterial or cardiopulmonary baroreflex control of sympathetic nerve activity in heart failure? American Journal of Cardiology, 70, 1640–1642.PubMedCrossRef
14.
go back to reference Bibevski, S., & Dunlap, M. E. (2011). Evidence for impaired vagus nerve activity in heart failure. Heart Failure Reviews, 16, 129–135.PubMedCrossRef Bibevski, S., & Dunlap, M. E. (2011). Evidence for impaired vagus nerve activity in heart failure. Heart Failure Reviews, 16, 129–135.PubMedCrossRef
15.
go back to reference Mortara, A., La Rovere, M. T., Pinna, G. D., Prpa, A., Maestri, R., Febo, O., et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation, 96, 3450–3458.PubMedCrossRef Mortara, A., La Rovere, M. T., Pinna, G. D., Prpa, A., Maestri, R., Febo, O., et al. (1997). Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation, 96, 3450–3458.PubMedCrossRef
16.
go back to reference La Rovere, M. T., Pinna, G. D., Maestri, R., Robbi, E., Caporotondi, A., Guazzotti, G., et al. (2009). Prognostic implications of baroreflex senstivity in heart failure patients in the beta-blocking era. Journal of the American College of Cardiology, 53, 193–199.PubMedCrossRef La Rovere, M. T., Pinna, G. D., Maestri, R., Robbi, E., Caporotondi, A., Guazzotti, G., et al. (2009). Prognostic implications of baroreflex senstivity in heart failure patients in the beta-blocking era. Journal of the American College of Cardiology, 53, 193–199.PubMedCrossRef
17.
go back to reference Adamson, P. B., Smith, A. L., Abraham, W. T., Kleckner, K. J., Stadler, R. W., Shih, A., et al. (2004). Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device. Circulation, 110, 2389–2394.PubMedCrossRef Adamson, P. B., Smith, A. L., Abraham, W. T., Kleckner, K. J., Stadler, R. W., Shih, A., et al. (2004). Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device. Circulation, 110, 2389–2394.PubMedCrossRef
18.
go back to reference Einbrodt (1859) Ueber Herzreizung und ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna). Sitzungsberichte 38:345 Einbrodt (1859) Ueber Herzreizung und ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna). Sitzungsberichte 38:345
19.
go back to reference Yoon, M. S., Han, J., Tse, W. W., & Rogers, R. (1977). Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. American Heart Journal, 93, 60–65.PubMedCrossRef Yoon, M. S., Han, J., Tse, W. W., & Rogers, R. (1977). Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. American Heart Journal, 93, 60–65.PubMedCrossRef
20.
go back to reference Kolman, B. S., Verrier, R. L., & Lown, B. (1975). The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of the sympathetic-parasympathetic interactions. Circulation, 52, 578–585.PubMedCrossRef Kolman, B. S., Verrier, R. L., & Lown, B. (1975). The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: role of the sympathetic-parasympathetic interactions. Circulation, 52, 578–585.PubMedCrossRef
21.
go back to reference Scherlag, B. J., Helfant, R. H., Haft, J. I., & Damato, A. N. (1970). Electrophysiology underlying ventricular arrhythmias due to coronary ligation. American Journal of Physiology, 219, 1665–1671.PubMed Scherlag, B. J., Helfant, R. H., Haft, J. I., & Damato, A. N. (1970). Electrophysiology underlying ventricular arrhythmias due to coronary ligation. American Journal of Physiology, 219, 1665–1671.PubMed
22.
go back to reference Kent, K. M., Smith, E. R., Redwood, D. R., & Epstein, S. E. (1973). Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation. Circulation, 47, 291–298.PubMedCrossRef Kent, K. M., Smith, E. R., Redwood, D. R., & Epstein, S. E. (1973). Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation. Circulation, 47, 291–298.PubMedCrossRef
23.
go back to reference Myers, R. W., Pearlman, A. S., Hyman, R. M., Goldstein, R. A., Kent, K. M., Goldstein, R. E., et al. (1974). Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation, 49, 943–947.PubMedCrossRef Myers, R. W., Pearlman, A. S., Hyman, R. M., Goldstein, R. A., Kent, K. M., Goldstein, R. E., et al. (1974). Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation, 49, 943–947.PubMedCrossRef
24.
go back to reference Yoon, M. S., Fondacaro, J. D., & Han, J. (1978). Effects of vagal stimulation and atropine on ventricular arrhythmias during acute coronary occlusion. Journal of Electrocardiology, 11, 27–31.PubMedCrossRef Yoon, M. S., Fondacaro, J. D., & Han, J. (1978). Effects of vagal stimulation and atropine on ventricular arrhythmias during acute coronary occlusion. Journal of Electrocardiology, 11, 27–31.PubMedCrossRef
25.
go back to reference De Ferrari, G. M., Vanoli, E., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with a healed myocardial infarction. American Journal of Physiology, 261, H63–H69.PubMed De Ferrari, G. M., Vanoli, E., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with a healed myocardial infarction. American Journal of Physiology, 261, H63–H69.PubMed
26.
go back to reference Vanoli, E., De Ferrari, G. M., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation Research, 68, 1471–1481.PubMedCrossRef Vanoli, E., De Ferrari, G. M., Stramba-Badiale, M., Hull, S. S., Jr., Foreman, R. D., & Schwartz, P. J. (1991). Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circulation Research, 68, 1471–1481.PubMedCrossRef
27.
go back to reference De Ferrari, G. M., Salvati, P., Grossoni, M., Ukmar, G., Vaga, L., Patrono, C., et al. (1993). Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. Journal of the American College of Cardiology, 22, 283–290.PubMedCrossRef De Ferrari, G. M., Salvati, P., Grossoni, M., Ukmar, G., Vaga, L., Patrono, C., et al. (1993). Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. Journal of the American College of Cardiology, 22, 283–290.PubMedCrossRef
28.
go back to reference Ando, M., Katare, R. G., Kakinuma, Y., Zhang, D., Yamasaki, F., Muramoto, K., et al. (2005). Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation, 112, 164–170.PubMedCrossRef Ando, M., Katare, R. G., Kakinuma, Y., Zhang, D., Yamasaki, F., Muramoto, K., et al. (2005). Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation, 112, 164–170.PubMedCrossRef
29.
go back to reference Murdock, D. K., Loeb, J. M., Euler, D. E., & Randall, W. C. (1980). Electrophysiology of coronary reperfusion. A mechanism for reperfusion arrhythmias. Circulation, 61, 175–182.PubMedCrossRef Murdock, D. K., Loeb, J. M., Euler, D. E., & Randall, W. C. (1980). Electrophysiology of coronary reperfusion. A mechanism for reperfusion arrhythmias. Circulation, 61, 175–182.PubMedCrossRef
30.
go back to reference Zuanetti, G., De Ferrari, G. M., Priori, S. G., & Schwartz, P. J. (1987). Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circulation Research, 61, 429–435.PubMedCrossRef Zuanetti, G., De Ferrari, G. M., Priori, S. G., & Schwartz, P. J. (1987). Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circulation Research, 61, 429–435.PubMedCrossRef
31.
go back to reference Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357, 1121–1135.PubMedCrossRef Yellon, D. M., & Hausenloy, D. J. (2007). Myocardial reperfusion injury. New England Journal of Medicine, 357, 1121–1135.PubMedCrossRef
32.
go back to reference Kakinuma, Y., Ando, M., Kuwabara, M., Katare, R. G., Okudela, K., Kobayashi, M., et al. (2005). Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Letters, 579, 2111–2118.PubMedCrossRef Kakinuma, Y., Ando, M., Kuwabara, M., Katare, R. G., Okudela, K., Kobayashi, M., et al. (2005). Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Letters, 579, 2111–2118.PubMedCrossRef
34.
go back to reference Uemura, K., Zheng, C., Li, M., Kawada, T., & Sugimachi, M. (2010). Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. Journal of Cardiac Failure, 16, 689–699.PubMedCrossRef Uemura, K., Zheng, C., Li, M., Kawada, T., & Sugimachi, M. (2010). Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. Journal of Cardiac Failure, 16, 689–699.PubMedCrossRef
35.
go back to reference Mioni, C., Bazzani, C., Giuliani, D., Altavilla, D., Leone, S., Ferrari, A., et al. (2005). Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Critical Care Medicine, 33, 2621–2628.PubMedCrossRef Mioni, C., Bazzani, C., Giuliani, D., Altavilla, D., Leone, S., Ferrari, A., et al. (2005). Activation of an efferent cholinergic pathway produces strong protection against myocardial ischemia/reperfusion injury in rats. Critical Care Medicine, 33, 2621–2628.PubMedCrossRef
36.
go back to reference Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136.PubMedCrossRef Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74, 1124–1136.PubMedCrossRef
37.
go back to reference Krieg, T., Qin, Q., Philipp, S., Alexeyev, M. F., Cohen, M. V., & Downey, J. M. (2004). Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. American Journal of Physiology - Heart and Circulatory Physiology, 287, H2606–H2611.PubMedCrossRef Krieg, T., Qin, Q., Philipp, S., Alexeyev, M. F., Cohen, M. V., & Downey, J. M. (2004). Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. American Journal of Physiology - Heart and Circulatory Physiology, 287, H2606–H2611.PubMedCrossRef
38.
go back to reference Crimi, G., Pica, S., Raineri, C., Bramucci, E., De Ferrari, G. M., Klersy, C., et al. (2013). Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC. Cardiovascular Interventions, 6, 1055–1063.PubMedCrossRef Crimi, G., Pica, S., Raineri, C., Bramucci, E., De Ferrari, G. M., Klersy, C., et al. (2013). Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic infarct size in anterior myocardial infarction: a randomized controlled trial. JACC. Cardiovascular Interventions, 6, 1055–1063.PubMedCrossRef
39.
go back to reference Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García-Dorado, D., et al. (2013). Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Experimental Physiology, 98, 425–434.PubMedCrossRef Donato, M., Buchholz, B., Rodríguez, M., Pérez, V., Inserte, J., García-Dorado, D., et al. (2013). Role of the parasympathetic nervous system in cardioprotection by remote hindlimb ischaemic preconditioning. Experimental Physiology, 98, 425–434.PubMedCrossRef
40.
go back to reference Shanmuganathan, S., Hausenloy, D. J., Duchen, M. R., & Yellon, D. M. (2005). Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. American Journal of Physiology - Heart and Circulatory Physiology, 289, H237–H242.PubMedCrossRef Shanmuganathan, S., Hausenloy, D. J., Duchen, M. R., & Yellon, D. M. (2005). Mitochondrial permeability transition pore as a target for cardioprotection in the human heart. American Journal of Physiology - Heart and Circulatory Physiology, 289, H237–H242.PubMedCrossRef
41.
go back to reference Katare, R. G., Ando, M., Kakinuma, Y., Arikawa, M., Handa, T., Yamasaki, F., et al. (2009). Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. Journal of Thoracic and Cardiovascular Surgery, 137, 223–231.PubMedCrossRef Katare, R. G., Ando, M., Kakinuma, Y., Arikawa, M., Handa, T., Yamasaki, F., et al. (2009). Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. Journal of Thoracic and Cardiovascular Surgery, 137, 223–231.PubMedCrossRef
42.
go back to reference Calvillo, L., Vanoli, E., Andreoli, E., Besana, A., Omodeo, E., Gnecchi, M., et al. (2011). Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology, 58, 500–507.PubMedCrossRef Calvillo, L., Vanoli, E., Andreoli, E., Besana, A., Omodeo, E., Gnecchi, M., et al. (2011). Vagal stimulation, through its nicotinic action, limits infarct size and the inflammatory response to myocardial ischemia and reperfusion. Journal of Cardiovascular Pharmacology, 58, 500–507.PubMedCrossRef
43.
go back to reference Zhao, M., He, X., Bi, X. Y., Yu, X. J., Gil Wier, W., & Zang, W. J. (2013). Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology, 10, 345.CrossRef Zhao, M., He, X., Bi, X. Y., Yu, X. J., Gil Wier, W., & Zang, W. J. (2013). Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology, 10, 345.CrossRef
44.
go back to reference Shinlapawittayatorn, K., Chinda, K., Palee, S., Surinkaew, S., Thunsiri, K., Weerateerangkul, P., et al. (2013). Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm, 10(11), 1700–1707.PubMedCrossRef Shinlapawittayatorn, K., Chinda, K., Palee, S., Surinkaew, S., Thunsiri, K., Weerateerangkul, P., et al. (2013). Low-amplitude, left vagus nerve stimulation significantly attenuates ventricular dysfunction and infarct size through prevention of mitochondrial dysfunction during acute ischemia-reperfusion injury. Heart Rhythm, 10(11), 1700–1707.PubMedCrossRef
45.
go back to reference Li, M., Zheng, C., Sato, T., Kawada, T., Sugimachi, M., & Sunagawa, K. (2004). Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation, 109, 120–124.PubMedCrossRef Li, M., Zheng, C., Sato, T., Kawada, T., Sugimachi, M., & Sunagawa, K. (2004). Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation, 109, 120–124.PubMedCrossRef
46.
go back to reference Zhang, Y., Popovic, Z. B., Bibevski, S., Fakhry, I., Sica, D. A., Van Wagoner, D. R., et al. (2009). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circulation. Heart Failure, 2, 692–699.PubMedCrossRef Zhang, Y., Popovic, Z. B., Bibevski, S., Fakhry, I., Sica, D. A., Van Wagoner, D. R., et al. (2009). Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circulation. Heart Failure, 2, 692–699.PubMedCrossRef
47.
go back to reference Sabbah, H. N., Stein, P. D., Kono, T., Gheorghiade, M., Levine, T. B., Jafri, S., et al. (1991). A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. American Journal of Physiology, 260, H1379–H1384.PubMed Sabbah, H. N., Stein, P. D., Kono, T., Gheorghiade, M., Levine, T. B., Jafri, S., et al. (1991). A canine model of chronic heart failure produced by multiple sequential coronary microembolizations. American Journal of Physiology, 260, H1379–H1384.PubMed
48.
go back to reference Sabbah, H. N., Ilsar, I., Zaretsky, A., Rastogi, S., Wang, M., & Gupta, R. C. (2011). Vagus nerve stimulation in experimental heart failure. Heart Failure Reviews, 16, 171–178.PubMedCrossRefPubMedCentral Sabbah, H. N., Ilsar, I., Zaretsky, A., Rastogi, S., Wang, M., & Gupta, R. C. (2011). Vagus nerve stimulation in experimental heart failure. Heart Failure Reviews, 16, 171–178.PubMedCrossRefPubMedCentral
49.
go back to reference Hamann, J. J., Ruble, S. B., Stolen, C., Wang, M., Gupta, R. C., Rastogi, S., et al. (2013). Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. European Journal of Heart Failure, 15, 1319–1326.PubMedCrossRef Hamann, J. J., Ruble, S. B., Stolen, C., Wang, M., Gupta, R. C., Rastogi, S., et al. (2013). Vagus nerve stimulation improves left ventricular function in a canine model of chronic heart failure. European Journal of Heart Failure, 15, 1319–1326.PubMedCrossRef
50.
go back to reference Olshansky, B., Sabbah, H. N., Hauptman, P. J., & Colucci, W. S. (2008). Parasympathetic nervous system and heart failure. Pathophysiology and potential implications for therapy. Circulation, 118, 863–871.PubMedCrossRef Olshansky, B., Sabbah, H. N., Hauptman, P. J., & Colucci, W. S. (2008). Parasympathetic nervous system and heart failure. Pathophysiology and potential implications for therapy. Circulation, 118, 863–871.PubMedCrossRef
51.
go back to reference De Ferrari, G. M., & Schwartz, P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Failure Reviews, 16, 195–203.PubMedCrossRef De Ferrari, G. M., & Schwartz, P. J. (2011). Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Failure Reviews, 16, 195–203.PubMedCrossRef
52.
go back to reference De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1994). Vagal activity and ventricular fibrillation. In M. N. Levy & P. J. Schwartz (Eds.), Vagal control of the heart: experimental basis and clinical implications (pp. 613–636). Armonk: Futura. De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1994). Vagal activity and ventricular fibrillation. In M. N. Levy & P. J. Schwartz (Eds.), Vagal control of the heart: experimental basis and clinical implications (pp. 613–636). Armonk: Futura.
53.
go back to reference Böhm, M., Swedberg, K., Komajda, M., Borer, J. S., Ford, I., Dubost-Brama, A., et al. (2010). Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet, 376, 886–894.PubMedCrossRef Böhm, M., Swedberg, K., Komajda, M., Borer, J. S., Ford, I., Dubost-Brama, A., et al. (2010). Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet, 376, 886–894.PubMedCrossRef
54.
go back to reference Lechat, P., Hulot J-S Escolano, S., Mallet, A., Leizorovicz, A., Werhlen-Grandjean, M., Pochmalicki, G., et al. (2001). Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation, 103, 1428–1433.PubMedCrossRef Lechat, P., Hulot J-S Escolano, S., Mallet, A., Leizorovicz, A., Werhlen-Grandjean, M., Pochmalicki, G., et al. (2001). Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation, 103, 1428–1433.PubMedCrossRef
55.
go back to reference Swedberg, K., Komajda, M., Bo¨hm, M., Borer, J. S., Ford, I., Dubost- Brama, A., et al. (2010). Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet, 376, 875–885.PubMedCrossRef Swedberg, K., Komajda, M., Bo¨hm, M., Borer, J. S., Ford, I., Dubost- Brama, A., et al. (2010). Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet, 376, 875–885.PubMedCrossRef
56.
go back to reference Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., & Brown, A. M. (1973). A cardiocardiac sympathovagal reflex in the cat. Circulation Research, 32, 215–220.PubMedCrossRef Schwartz, P. J., Pagani, M., Lombardi, F., Malliani, A., & Brown, A. M. (1973). A cardiocardiac sympathovagal reflex in the cat. Circulation Research, 32, 215–220.PubMedCrossRef
57.
go back to reference De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1995). Cardiac vagal activity, myocardial ischemia and sudden death. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology. From cell to bedside (IIth ed., pp. 422–434). Philadelphia: Saunders. De Ferrari, G. M., Vanoli, E., & Schwartz, P. J. (1995). Cardiac vagal activity, myocardial ischemia and sudden death. In D. P. Zipes & J. Jalife (Eds.), Cardiac electrophysiology. From cell to bedside (IIth ed., pp. 422–434). Philadelphia: Saunders.
58.
go back to reference Mancia, G., Romero, J. C., & Shepherd, J. T. (1975). Continuous inhibition of rennin release in dogs by vagally innervated receptors in the cardiopulmonary region. Circulation Research, 36, 529–535.PubMedCrossRef Mancia, G., Romero, J. C., & Shepherd, J. T. (1975). Continuous inhibition of rennin release in dogs by vagally innervated receptors in the cardiopulmonary region. Circulation Research, 36, 529–535.PubMedCrossRef
59.
go back to reference Elsner, D., Kromer, E. P., & Riegger, G. A. (1990). Effects of vagal blockade on neurohumoral systems in conscious dogs with heart failure. Journal of Cardiovascular Pharmacology, 15, 586–591.PubMedCrossRef Elsner, D., Kromer, E. P., & Riegger, G. A. (1990). Effects of vagal blockade on neurohumoral systems in conscious dogs with heart failure. Journal of Cardiovascular Pharmacology, 15, 586–591.PubMedCrossRef
60.
go back to reference Tsutsumi, T., Ide, T., Yamato, M., Kudou, W., Andou, M., Hirooka, Y., et al. (2008). Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovascular Research, 77, 713–721.PubMedCrossRef Tsutsumi, T., Ide, T., Yamato, M., Kudou, W., Andou, M., Hirooka, Y., et al. (2008). Modulation of the myocardial redox state by vagal nerve stimulation after experimental myocardial infarction. Cardiovascular Research, 77, 713–721.PubMedCrossRef
61.
go back to reference Lu, X., Costantini, T., Lopez, N. E., Wolf, P. L., Hageny, A. M., Putnam, J., et al. (2013). Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. Journal of Cellular and Molecular Medicine, 17, 664–671.PubMedCrossRef Lu, X., Costantini, T., Lopez, N. E., Wolf, P. L., Hageny, A. M., Putnam, J., et al. (2013). Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. Journal of Cellular and Molecular Medicine, 17, 664–671.PubMedCrossRef
63.
go back to reference Li, W., & Olshansky, B. (2011). Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Failure Reviews, 16, 137–145.PubMedCrossRef Li, W., & Olshansky, B. (2011). Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Failure Reviews, 16, 137–145.PubMedCrossRef
64.
go back to reference Sloan, R. P., McCreath, H., Tracey, K. J., Sidney, S., Liu, K., & Seeman, T. (2007). RR interval variability is inversely related to inflammatory markers: the CARDIA study. Molecular Medicine, 13, 178–184.PubMedPubMedCentral Sloan, R. P., McCreath, H., Tracey, K. J., Sidney, S., Liu, K., & Seeman, T. (2007). RR interval variability is inversely related to inflammatory markers: the CARDIA study. Molecular Medicine, 13, 178–184.PubMedPubMedCentral
65.
go back to reference Bo, H., Zhibing, L., & Jiang, H. (2013). Atrial ganglionated plexi stimulation may be an effective therapeutic tool for the treatment of heart failure. Medical Hypotheses, 81, 905–907.CrossRef Bo, H., Zhibing, L., & Jiang, H. (2013). Atrial ganglionated plexi stimulation may be an effective therapeutic tool for the treatment of heart failure. Medical Hypotheses, 81, 905–907.CrossRef
66.
go back to reference Kong, S. S., Liu, J. J., Hwang, T. C., Yu, X. J., Zhao, M., Zhao, M., et al. (2013). Optimizing the parameters of vagus nerve stimulation by uniform design in rats with acute myocardial infarction. PLoS ONE, 7, e42799.CrossRef Kong, S. S., Liu, J. J., Hwang, T. C., Yu, X. J., Zhao, M., Zhao, M., et al. (2013). Optimizing the parameters of vagus nerve stimulation by uniform design in rats with acute myocardial infarction. PLoS ONE, 7, e42799.CrossRef
67.
go back to reference Ardell, J. L., Nier, H., Ardell, C. L., Amurthur, B., Beaumont, E., Southerland, E. M., et al. (2013). Optimum heart rate response to autonomic regulation therapy is frequency dependent. Circulation (Abstract Suppl), 128, A15586. Ardell, J. L., Nier, H., Ardell, C. L., Amurthur, B., Beaumont, E., Southerland, E. M., et al. (2013). Optimum heart rate response to autonomic regulation therapy is frequency dependent. Circulation (Abstract Suppl), 128, A15586.
68.
go back to reference Ben-Menachem, E. (2001). Vagus nerve stimulation, side effects, and long-term safety. Journal of Clinical Neurophysiology, 18, 415–418.PubMedCrossRef Ben-Menachem, E. (2001). Vagus nerve stimulation, side effects, and long-term safety. Journal of Clinical Neurophysiology, 18, 415–418.PubMedCrossRef
69.
go back to reference Schachter, S. C. (2002). Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology, 59, S15–S20.PubMedCrossRef Schachter, S. C. (2002). Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology, 59, S15–S20.PubMedCrossRef
70.
go back to reference Schwartz, P. J., De Ferrari, G. M., Sanzo, A., Landolina, M., Rordorf, R., Raineri, C., et al. (2008). Long term vagal stimulation in patients with advanced heart failure: first experience in man. European Journal of Heart Failure, 10, 884–891.PubMedCrossRef Schwartz, P. J., De Ferrari, G. M., Sanzo, A., Landolina, M., Rordorf, R., Raineri, C., et al. (2008). Long term vagal stimulation in patients with advanced heart failure: first experience in man. European Journal of Heart Failure, 10, 884–891.PubMedCrossRef
71.
go back to reference De Ferrari, G. M., Crijins, H. J., Borggrefe, M., Milasinovic, G., Smid, J., Zabel, M., et al. (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European Heart Journal, 32, 847–855.PubMedCrossRef De Ferrari, G. M., Crijins, H. J., Borggrefe, M., Milasinovic, G., Smid, J., Zabel, M., et al. (2011). Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. European Heart Journal, 32, 847–855.PubMedCrossRef
72.
go back to reference Dennert, R., Crijns, H. J. G. M., Smid, J., Klein, H., Gavazzi, A., Raspopovic, S., et al. (2012). Long-term benefits of vagal nerve stimulation therapy in heart failure. Circulation (Abstract Suppl.), 126, A17001. Dennert, R., Crijns, H. J. G. M., Smid, J., Klein, H., Gavazzi, A., Raspopovic, S., et al. (2012). Long-term benefits of vagal nerve stimulation therapy in heart failure. Circulation (Abstract Suppl.), 126, A17001.
73.
go back to reference Hauptman, P. J., Schwartz, P. J., Gold, M. R., Borggrefe, M., Van Veldhuisen, D. J., Starling, R. C., et al. (2012). Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. American Heart Journal, 163, 954–962.e1.PubMedCrossRef Hauptman, P. J., Schwartz, P. J., Gold, M. R., Borggrefe, M., Van Veldhuisen, D. J., Starling, R. C., et al. (2012). Rationale and study design of the increase of vagal tone in heart failure study: INOVATE-HF. American Heart Journal, 163, 954–962.e1.PubMedCrossRef
74.
go back to reference De Ferrari, G. M., Tuinenburg, A., Ruble, S. B., Brugada, J., Klein, H., Butter, C., et al. (2014) Of rationale and study design of the NEuroCardiac TherApy foR Heart Failure study: NECTAR-HF. European Journal of Heart Failure. in press. De Ferrari, G. M., Tuinenburg, A., Ruble, S. B., Brugada, J., Klein, H., Butter, C., et al. (2014) Of rationale and study design of the NEuroCardiac TherApy foR Heart Failure study: NECTAR-HF. European Journal of Heart Failure. in press.
75.
go back to reference DiCarlo, L., Libbus, I., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2013). Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. Journal of Cardiac Failure, 19, 655–660.PubMedCrossRef DiCarlo, L., Libbus, I., Amurthur, B., Kenknight, B. H., & Anand, I. S. (2013). Autonomic regulation therapy for the improvement of left ventricular function and heart failure symptoms: the ANTHEM-HF study. Journal of Cardiac Failure, 19, 655–660.PubMedCrossRef
77.
Metadata
Title
Vagal Stimulation in Heart Failure
Author
Gaetano M. De Ferrari
Publication date
01-04-2014
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 3/2014
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-014-9540-1

Other articles of this Issue 3/2014

Journal of Cardiovascular Translational Research 3/2014 Go to the issue