Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Uveitis | Research

Progesterone attenuates Th17-cell pathogenicity in autoimmune uveitis via Id2/Pim1 axis

Authors: Xiuxing Liu, Chenyang Gu, Jianjie Lv, Qi Jiang, Wen Ding, Zhaohao Huang, Yidan Liu, Yuhan Su, Chun Zhang, Zhuping Xu, Xianggui Wang, Wenru Su

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

Autoimmune uveitis (AU) is the most common ophthalmic autoimmune disease (AD) and is characterized by a complex etiology, high morbidity, and high rate of blindness. AU remission has been observed in pregnant female patients. However, the effects of progesterone (PRG), a critical hormone for reproduction, on the treatment of AU and the regulatory mechanisms remain unclear.

Methods

To this end, we established experimental autoimmune uveitis (EAU) animal models and constructed a high-dimensional immune atlas of EAU-model mice undergoing PRG treatment to explore the underlying therapeutic mechanisms of PRG using single-cell RNA sequencing.

Results

We found that PRG ameliorated retinal lesions and inflammatory infiltration in EAU-model mice. Further single-cell analysis indicated that PRG reversed the EAU-induced expression of inflammatory genes (AP-1 family, S100a family, and Cxcr4) and pathological processes related to inflammatory cell migration, activation, and differentiation. Notably, PRG was found to regulate the Th17/Treg imbalance by increasing the reduced regulatory functional mediators of Tregs and diminishing the overactivation of pathological Th17 cells. Moreover, the Id2/Pim1 axis, IL-23/Th17/GM-CSF signaling, and enhanced Th17 pathogenicity during EAU were reversed by PRG treatment, resulting in the alleviation of EAU inflammation and treatment of AD.

Conclusions

Our study provides a comprehensive single-cell map of the immunomodulatory effects of PRG therapy on EAU and elaborates on the possible therapeutic mechanisms, providing novel insights into its application for treating autoimmune diseases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Lee RW, Nicholson LB, Sen HN, Chan CC, Wei L, Nussenblatt RB, Dick AD. Autoimmune and autoinflammatory mechanisms in uveitis. Semin Immunopathol. 2014;36:581–94.PubMedPubMedCentralCrossRef Lee RW, Nicholson LB, Sen HN, Chan CC, Wei L, Nussenblatt RB, Dick AD. Autoimmune and autoinflammatory mechanisms in uveitis. Semin Immunopathol. 2014;36:581–94.PubMedPubMedCentralCrossRef
3.
go back to reference Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis—lessons from experimental rat models. Prog Retin Eye Res. 2018;65:107–26.PubMedCrossRef Diedrichs-Möhring M, Kaufmann U, Wildner G. The immunopathogenesis of chronic and relapsing autoimmune uveitis—lessons from experimental rat models. Prog Retin Eye Res. 2018;65:107–26.PubMedCrossRef
4.
go back to reference Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021;80: 100866.PubMedCrossRef Zhong Z, Su G, Kijlstra A, Yang P. Activation of the interleukin-23/interleukin-17 signalling pathway in autoinflammatory and autoimmune uveitis. Prog Retin Eye Res. 2021;80: 100866.PubMedCrossRef
6.
go back to reference Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev. 2010;9:A387-394.PubMedCrossRef Milo R, Kahana E. Multiple sclerosis: geoepidemiology, genetics and the environment. Autoimmun Rev. 2010;9:A387-394.PubMedCrossRef
7.
go back to reference Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, Svenungsson E, Peterson J, Clarke AE, Ramsey-Goldman R. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17:515–32.PubMedPubMedCentralCrossRef Barber MRW, Drenkard C, Falasinnu T, Hoi A, Mak A, Kow NY, Svenungsson E, Peterson J, Clarke AE, Ramsey-Goldman R. Global epidemiology of systemic lupus erythematosus. Nat Rev Rheumatol. 2021;17:515–32.PubMedPubMedCentralCrossRef
8.
go back to reference Agarwal RK, Chan CC, Wiggert B, Caspi RR. Pregnancy ameliorates induction and expression of experimental autoimmune uveitis. J Immunol. 1999;162:2648–54.PubMedCrossRef Agarwal RK, Chan CC, Wiggert B, Caspi RR. Pregnancy ameliorates induction and expression of experimental autoimmune uveitis. J Immunol. 1999;162:2648–54.PubMedCrossRef
9.
go back to reference Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in multiple sclerosis group. N Engl J Med. 1998;339:285–91.PubMedCrossRef Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in multiple sclerosis group. N Engl J Med. 1998;339:285–91.PubMedCrossRef
12.
go back to reference Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14:353–6.PubMedCrossRef Wegmann TG, Lin H, Guilbert L, Mosmann TR. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today. 1993;14:353–6.PubMedCrossRef
13.
go back to reference Arck P, Hansen PJ, Mulac Jericevic B, Piccinni MP, Szekeres-Bartho J. Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol. 2007;58:268–79.PubMedCrossRef Arck P, Hansen PJ, Mulac Jericevic B, Piccinni MP, Szekeres-Bartho J. Progesterone during pregnancy: endocrine–immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol. 2007;58:268–79.PubMedCrossRef
14.
go back to reference Schumacher M, Liere P, Ghoumari A. Progesterone and fetal-neonatal neuroprotection. Best Pract Res Clin Obstet Gynaecol. 2020;69:50–61.PubMedCrossRef Schumacher M, Liere P, Ghoumari A. Progesterone and fetal-neonatal neuroprotection. Best Pract Res Clin Obstet Gynaecol. 2020;69:50–61.PubMedCrossRef
15.
go back to reference El-Etr M, Rame M, Boucher C, Ghoumari AM, Kumar N, Liere P, Pianos A, Schumacher M, Sitruk-Ware R. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex. Glia. 2015;63:104–17.PubMedCrossRef El-Etr M, Rame M, Boucher C, Ghoumari AM, Kumar N, Liere P, Pianos A, Schumacher M, Sitruk-Ware R. Progesterone and nestorone promote myelin regeneration in chronic demyelinating lesions of corpus callosum and cerebral cortex. Glia. 2015;63:104–17.PubMedCrossRef
16.
go back to reference Merck LH, Yeatts SD, Silbergleit R, Manley GT, Pauls Q, Palesch Y, Conwit R, Le Roux P, Miller J, Frankel M, Wright DW. The effect of goal-directed therapy on patient morbidity and mortality after traumatic brain injury: results from the progesterone for the treatment of traumatic brain injury III clinical trial. Crit Care Med. 2019;47:623–31.PubMedPubMedCentralCrossRef Merck LH, Yeatts SD, Silbergleit R, Manley GT, Pauls Q, Palesch Y, Conwit R, Le Roux P, Miller J, Frankel M, Wright DW. The effect of goal-directed therapy on patient morbidity and mortality after traumatic brain injury: results from the progesterone for the treatment of traumatic brain injury III clinical trial. Crit Care Med. 2019;47:623–31.PubMedPubMedCentralCrossRef
17.
go back to reference Ma J, Huang S, Qin S, You C, Zeng Y. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev. 2016;12: CD008409.PubMed Ma J, Huang S, Qin S, You C, Zeng Y. Progesterone for acute traumatic brain injury. Cochrane Database Syst Rev. 2016;12: CD008409.PubMed
18.
go back to reference De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol. 2009;30:173–87.PubMedCrossRef De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol. 2009;30:173–87.PubMedCrossRef
19.
go back to reference Hellberg S, Raffetseder J, Rundquist O, Magnusson R, Papapavlou G, Jenmalm MC, Ernerudh J, Gustafsson M. Progesterone dampens immune responses in in vitro activated CD4(+) T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front Immunol. 2021;12: 672168.PubMedPubMedCentralCrossRef Hellberg S, Raffetseder J, Rundquist O, Magnusson R, Papapavlou G, Jenmalm MC, Ernerudh J, Gustafsson M. Progesterone dampens immune responses in in vitro activated CD4(+) T cells and affects genes associated with autoimmune diseases that improve during pregnancy. Front Immunol. 2021;12: 672168.PubMedPubMedCentralCrossRef
20.
go back to reference Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156:9–22.PubMedCrossRef Ysrraelit MC, Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156:9–22.PubMedCrossRef
21.
go back to reference Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol. 2015;154:274–84.PubMedCrossRef Labombarda F, Jure I, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, De Nicola AF. A functional progesterone receptor is required for immunomodulation, reduction of reactive gliosis and survival of oligodendrocyte precursors in the injured spinal cord. J Steroid Biochem Mol Biol. 2015;154:274–84.PubMedCrossRef
22.
go back to reference Yates MA, Li Y, Chlebeck P, Proctor T, Vandenbark AA, Offner H. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;220:136–9.PubMedPubMedCentralCrossRef Yates MA, Li Y, Chlebeck P, Proctor T, Vandenbark AA, Offner H. Progesterone treatment reduces disease severity and increases IL-10 in experimental autoimmune encephalomyelitis. J Neuroimmunol. 2010;220:136–9.PubMedPubMedCentralCrossRef
23.
go back to reference Chen Y, Wu Q, Wei J, Hu J, Zheng S. Effects of aspirin, vitamin D3, and progesterone on pregnancy outcomes in an autoimmune recurrent spontaneous abortion model. Braz J Med Biol Res. 2021;54: e9570.PubMedPubMedCentralCrossRef Chen Y, Wu Q, Wei J, Hu J, Zheng S. Effects of aspirin, vitamin D3, and progesterone on pregnancy outcomes in an autoimmune recurrent spontaneous abortion model. Braz J Med Biol Res. 2021;54: e9570.PubMedPubMedCentralCrossRef
24.
go back to reference Gutzeit O, Segal L, Korin B, Iluz R, Khatib N, Dabbah-Assadi F, Ginsberg Y, Fainaru O, Ross MG, Weiner Z, Beloosesky R. Progesterone attenuates brain inflammatory response and inflammation-induced increase in immature myeloid cells in a mouse model. Inflammation. 2021;44:956–64.PubMedCrossRef Gutzeit O, Segal L, Korin B, Iluz R, Khatib N, Dabbah-Assadi F, Ginsberg Y, Fainaru O, Ross MG, Weiner Z, Beloosesky R. Progesterone attenuates brain inflammatory response and inflammation-induced increase in immature myeloid cells in a mouse model. Inflammation. 2021;44:956–64.PubMedCrossRef
25.
go back to reference Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, Huang Z, Chen B, Gao Y, Wei L, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun. 2022;13:5866.PubMedPubMedCentralCrossRef Li H, Xie L, Zhu L, Li Z, Wang R, Liu X, Huang Z, Chen B, Gao Y, Wei L, et al. Multicellular immune dynamics implicate PIM1 as a potential therapeutic target for uveitis. Nat Commun. 2022;13:5866.PubMedPubMedCentralCrossRef
26.
go back to reference Lipski DA, Dewispelaere R, Foucart V, Caspers LE, Defrance M, Bruyns C, Willermain F. MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis. J Neuroinflamm. 2017;14:136.CrossRef Lipski DA, Dewispelaere R, Foucart V, Caspers LE, Defrance M, Bruyns C, Willermain F. MHC class II expression and potential antigen-presenting cells in the retina during experimental autoimmune uveitis. J Neuroinflamm. 2017;14:136.CrossRef
27.
go back to reference Phillips MJ, Needham M, Weller RO. Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol. 1997;182:457–64.PubMedCrossRef Phillips MJ, Needham M, Weller RO. Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol. 1997;182:457–64.PubMedCrossRef
28.
go back to reference Liu X, Chen B, Huang Z, Duan R, Li H, Xie L, Wang R, Li Z, Gao Y, Zheng Y, Su W. Effects of poor sleep on the immune cell landscape as assessed by single-cell analysis. Commun Biol. 2021;4:1325.PubMedPubMedCentralCrossRef Liu X, Chen B, Huang Z, Duan R, Li H, Xie L, Wang R, Li Z, Gao Y, Zheng Y, Su W. Effects of poor sleep on the immune cell landscape as assessed by single-cell analysis. Commun Biol. 2021;4:1325.PubMedPubMedCentralCrossRef
29.
go back to reference Liu X, Jiang Q, Lv J, Yang S, Huang Z, Duan R, Tao T, Li Z, Ju R, Zheng Y, Su W. Insights gained from single-cell analysis of immune cells in tofacitinib treatment of Vogt-Koyanagi-Harada disease. JCI Insight. 2022;7:e162335. Liu X, Jiang Q, Lv J, Yang S, Huang Z, Duan R, Tao T, Li Z, Ju R, Zheng Y, Su W. Insights gained from single-cell analysis of immune cells in tofacitinib treatment of Vogt-Koyanagi-Harada disease. JCI Insight. 2022;7:e162335.
30.
go back to reference Li H, Zhu L, Wang R, Xie L, Chen Y, Duan R, Liu X, Huang Z, Chen B, Li Z, et al. Therapeutic effect of IL-38 on experimental autoimmune uveitis: reprogrammed immune cell landscape and reduced Th17 cell pathogenicity. Invest Ophthalmol Vis Sci. 2021;62:31.PubMedPubMedCentralCrossRef Li H, Zhu L, Wang R, Xie L, Chen Y, Duan R, Liu X, Huang Z, Chen B, Li Z, et al. Therapeutic effect of IL-38 on experimental autoimmune uveitis: reprogrammed immune cell landscape and reduced Th17 cell pathogenicity. Invest Ophthalmol Vis Sci. 2021;62:31.PubMedPubMedCentralCrossRef
31.
go back to reference Gasteiger G, Ataide M, Kastenmüller W. Lymph node—an organ for T-cell activation and pathogen defense. Immunol Rev. 2016;271:200–20.PubMedCrossRef Gasteiger G, Ataide M, Kastenmüller W. Lymph node—an organ for T-cell activation and pathogen defense. Immunol Rev. 2016;271:200–20.PubMedCrossRef
32.
go back to reference Dalloneau E, Pereira PL, Brault V, Nabel EG, Hérault Y. Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages. J Immunol. 2011;187:4826–34.PubMedCrossRef Dalloneau E, Pereira PL, Brault V, Nabel EG, Hérault Y. Prmt2 regulates the lipopolysaccharide-induced responses in lungs and macrophages. J Immunol. 2011;187:4826–34.PubMedCrossRef
33.
go back to reference Zeng SY, Luo JF, Quan HY, Xiao YB, Liu YH, Lu HQ, Qin XP. Protein arginine methyltransferase 2 inhibits angiotensin II-induced proliferation and inflammation in vascular smooth muscle cells. Biomed Res Int. 2018;2018:1547452.PubMedPubMedCentralCrossRef Zeng SY, Luo JF, Quan HY, Xiao YB, Liu YH, Lu HQ, Qin XP. Protein arginine methyltransferase 2 inhibits angiotensin II-induced proliferation and inflammation in vascular smooth muscle cells. Biomed Res Int. 2018;2018:1547452.PubMedPubMedCentralCrossRef
34.
go back to reference Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, Chen J, Yang Y, Xie J. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019;10:345.PubMedPubMedCentralCrossRef Liu F, Qiu H, Xue M, Zhang S, Zhang X, Xu J, Chen J, Yang Y, Xie J. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019;10:345.PubMedPubMedCentralCrossRef
35.
go back to reference Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med. 2021;218:e20210324. Chen Z, Luo J, Li J, Kim G, Chen ES, Xiao S, Snapper SB, Bao B, An D, Blumberg RS, et al. Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. J Exp Med. 2021;218:e20210324.
36.
go back to reference Lu Y, Li Y, Liu Q, Tian N, Du P, Zhu F, Han Y, Liu X, Liu X, Peng X, et al. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology. 2021;161:575-591.e516.PubMedCrossRef Lu Y, Li Y, Liu Q, Tian N, Du P, Zhu F, Han Y, Liu X, Liu X, Peng X, et al. MondoA-thioredoxin-interacting protein axis maintains regulatory T-cell identity and function in colorectal cancer microenvironment. Gastroenterology. 2021;161:575-591.e516.PubMedCrossRef
37.
go back to reference Liu C, Zeng X, Yu S, Ren L, Sun X, Long Y, Wang X, Lu S, Song Y, Sun XH, Zhang Y. Up-regulated DNA-binding inhibitor Id3 promotes differentiation of regulatory T cell to influence antiviral immunity in chronic hepatitis B virus infection. Life Sci. 2021;285: 119991.PubMedCrossRef Liu C, Zeng X, Yu S, Ren L, Sun X, Long Y, Wang X, Lu S, Song Y, Sun XH, Zhang Y. Up-regulated DNA-binding inhibitor Id3 promotes differentiation of regulatory T cell to influence antiviral immunity in chronic hepatitis B virus infection. Life Sci. 2021;285: 119991.PubMedCrossRef
38.
go back to reference Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 2016;37:803–11.PubMedCrossRef Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A. Induced regulatory T cells: their development, stability, and applications. Trends Immunol. 2016;37:803–11.PubMedCrossRef
39.
go back to reference Frischmeyer-Guerrerio PA, Guerrerio AL, Oswald G, Chichester K, Myers L, Halushka MK, Oliva-Hemker M, Wood RA, Dietz HC. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci Transl Med. 2013;5: 195ra194.CrossRef Frischmeyer-Guerrerio PA, Guerrerio AL, Oswald G, Chichester K, Myers L, Halushka MK, Oliva-Hemker M, Wood RA, Dietz HC. TGFβ receptor mutations impose a strong predisposition for human allergic disease. Sci Transl Med. 2013;5: 195ra194.CrossRef
40.
go back to reference Grant FM, Yang J, Nasrallah R, Clarke J, Sadiyah F, Whiteside SK, Imianowski CJ, Kuo P, Vardaka P, Todorov T, et al. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. J Exp Med. 2020;217:e20190711. Grant FM, Yang J, Nasrallah R, Clarke J, Sadiyah F, Whiteside SK, Imianowski CJ, Kuo P, Vardaka P, Todorov T, et al. BACH2 drives quiescence and maintenance of resting Treg cells to promote homeostasis and cancer immunosuppression. J Exp Med. 2020;217:e20190711.
41.
go back to reference Lin YY, Jones-Mason ME, Inoue M, Lasorella A, Iavarone A, Li QJ, Shinohara ML, Zhuang Y. Transcriptional regulator Id2 is required for the CD4 T cell immune response in the development of experimental autoimmune encephalomyelitis. J Immunol. 2012;189:1400–5.PubMedCrossRef Lin YY, Jones-Mason ME, Inoue M, Lasorella A, Iavarone A, Li QJ, Shinohara ML, Zhuang Y. Transcriptional regulator Id2 is required for the CD4 T cell immune response in the development of experimental autoimmune encephalomyelitis. J Immunol. 2012;189:1400–5.PubMedCrossRef
42.
go back to reference Palomer X, Román-Azcona MS, Pizarro-Delgado J, Planavila A, Villarroya F, Valenzuela-Alcaraz B, Crispi F, Sepúlveda-Martínez Á, Miguel-Escalada I, Ferrer J, et al. SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduct Target Ther. 2020;5:14.PubMedPubMedCentralCrossRef Palomer X, Román-Azcona MS, Pizarro-Delgado J, Planavila A, Villarroya F, Valenzuela-Alcaraz B, Crispi F, Sepúlveda-Martínez Á, Miguel-Escalada I, Ferrer J, et al. SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduct Target Ther. 2020;5:14.PubMedPubMedCentralCrossRef
43.
go back to reference Salazar J, Vaquero J, Bravo G. Diagnosis and neurosurgical treatment of intraspinal meningiomas and neurinomas. Arch Neurobiol (Madr). 1987;50:191–205.PubMed Salazar J, Vaquero J, Bravo G. Diagnosis and neurosurgical treatment of intraspinal meningiomas and neurinomas. Arch Neurobiol (Madr). 1987;50:191–205.PubMed
44.
go back to reference Liu Y, Pandey PR, Sharma S, Xing F, Wu K, Chittiboyina A, Wu SY, Tyagi A, Watabe K. ID2 and GJB2 promote early-stage breast cancer progression by regulating cancer stemness. Breast Cancer Res Treat. 2019;175:77–90.PubMedPubMedCentralCrossRef Liu Y, Pandey PR, Sharma S, Xing F, Wu K, Chittiboyina A, Wu SY, Tyagi A, Watabe K. ID2 and GJB2 promote early-stage breast cancer progression by regulating cancer stemness. Breast Cancer Res Treat. 2019;175:77–90.PubMedPubMedCentralCrossRef
45.
go back to reference El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011;12:568–75.PubMedPubMedCentralCrossRef El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A. The encephalitogenicity of T(H)17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat Immunol. 2011;12:568–75.PubMedPubMedCentralCrossRef
46.
go back to reference Liu X, Su Y, Huang Z, Lv J, Gu C, Li Z, Tao T, Liu Y, Jiang Q, Duan R, et al. Sleep loss potentiates Th17-cell pathogenicity and promotes autoimmune uveitis. Clin Transl Med. 2023;13: e1250.PubMedPubMedCentralCrossRef Liu X, Su Y, Huang Z, Lv J, Gu C, Li Z, Tao T, Liu Y, Jiang Q, Duan R, et al. Sleep loss potentiates Th17-cell pathogenicity and promotes autoimmune uveitis. Clin Transl Med. 2023;13: e1250.PubMedPubMedCentralCrossRef
47.
go back to reference Nagy B, Szekeres-Barthó J, Kovács GL, Sulyok E, Farkas B, Várnagy Á, Vértes V, Kovács K, Bódis J. Key to life: physiological role and clinical implications of progesterone. Int J Mol Sci. 2021;22:11039.PubMedPubMedCentralCrossRef Nagy B, Szekeres-Barthó J, Kovács GL, Sulyok E, Farkas B, Várnagy Á, Vértes V, Kovács K, Bódis J. Key to life: physiological role and clinical implications of progesterone. Int J Mol Sci. 2021;22:11039.PubMedPubMedCentralCrossRef
48.
go back to reference Garay L, Gonzalez Deniselle MC, Sitruk-Ware R, Guennoun R, Schumacher M, De Nicola AF. Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;276:89–97.PubMedCrossRef Garay L, Gonzalez Deniselle MC, Sitruk-Ware R, Guennoun R, Schumacher M, De Nicola AF. Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. J Neuroimmunol. 2014;276:89–97.PubMedCrossRef
49.
go back to reference Buggage RR, Matteson DM, Shen DF, Sun B, Tuaillon N, Chan CC. Effect of sex hormones on experimental autoimmune uveoretinitis (EAU). Immunol Invest. 2003;32:259–73.PubMedCrossRef Buggage RR, Matteson DM, Shen DF, Sun B, Tuaillon N, Chan CC. Effect of sex hormones on experimental autoimmune uveoretinitis (EAU). Immunol Invest. 2003;32:259–73.PubMedCrossRef
51.
go back to reference Mao G, Wang J, Kang Y, Tai P, Wen J, Zou Q, Li G, Ouyang H, Xia G, Wang B. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology. 2010;151:5477–88.PubMedCrossRef Mao G, Wang J, Kang Y, Tai P, Wen J, Zou Q, Li G, Ouyang H, Xia G, Wang B. Progesterone increases systemic and local uterine proportions of CD4+CD25+ Treg cells during midterm pregnancy in mice. Endocrinology. 2010;151:5477–88.PubMedCrossRef
52.
go back to reference Wang F, Li S, Meng L, Kuang Y, Liu Z, Ma X. Delayed implantation induced by letrozole in mice. Reprod Sci. 2022;29:2864–75.PubMedCrossRef Wang F, Li S, Meng L, Kuang Y, Liu Z, Ma X. Delayed implantation induced by letrozole in mice. Reprod Sci. 2022;29:2864–75.PubMedCrossRef
53.
go back to reference Zhang L, Chang KK, Li MQ, Li DJ, Yao XY. Mouse endometrial stromal cells and progesterone inhibit the activation and regulate the differentiation and antibody secretion of mouse B cells. Int J Clin Exp Pathol. 2014;7:123–33.PubMed Zhang L, Chang KK, Li MQ, Li DJ, Yao XY. Mouse endometrial stromal cells and progesterone inhibit the activation and regulate the differentiation and antibody secretion of mouse B cells. Int J Clin Exp Pathol. 2014;7:123–33.PubMed
54.
go back to reference Norman JE, Yuan M, Anderson L, Howie F, Harold G, Young A, Jordan F, McInnes I, Harnett MM. Effect of prolonged in vivo administration of progesterone in pregnancy on myometrial gene expression, peripheral blood leukocyte activation, and circulating steroid hormone levels. Reprod Sci. 2011;18:435–46.PubMedCrossRef Norman JE, Yuan M, Anderson L, Howie F, Harold G, Young A, Jordan F, McInnes I, Harnett MM. Effect of prolonged in vivo administration of progesterone in pregnancy on myometrial gene expression, peripheral blood leukocyte activation, and circulating steroid hormone levels. Reprod Sci. 2011;18:435–46.PubMedCrossRef
55.
go back to reference Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–66.PubMedCrossRef Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol. 2020;38:541–66.PubMedCrossRef
56.
go back to reference Paolino M, Koglgruber R, Cronin SJF, Uribesalgo I, Rauscher E, Harreiter J, Schuster M, Bancher-Todesca D, Pranjic B, Novatchkova M, et al. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature. 2021;589:442–7.PubMedCrossRef Paolino M, Koglgruber R, Cronin SJF, Uribesalgo I, Rauscher E, Harreiter J, Schuster M, Bancher-Todesca D, Pranjic B, Novatchkova M, et al. RANK links thymic regulatory T cells to fetal loss and gestational diabetes in pregnancy. Nature. 2021;589:442–7.PubMedCrossRef
57.
go back to reference Petty CS, Tompkins MB, Tompkins WA. Transforming growth factor-beta/transforming growth factor-betaRII signaling may regulate CD4+CD25+ T-regulatory cell homeostasis and suppressor function in feline AIDS lentivirus infection. J Acquir Immune Defic Syndr. 2008;47:148–60.PubMedCrossRef Petty CS, Tompkins MB, Tompkins WA. Transforming growth factor-beta/transforming growth factor-betaRII signaling may regulate CD4+CD25+ T-regulatory cell homeostasis and suppressor function in feline AIDS lentivirus infection. J Acquir Immune Defic Syndr. 2008;47:148–60.PubMedCrossRef
58.
go back to reference Saravia J, Zeng H, Dhungana Y, Bastardo Blanco D, Nguyen TM, Chapman NM, Wang Y, Kanneganti A, Liu S, Raynor JL, et al. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci Adv. 2020;6: eaaw6443.PubMedPubMedCentralCrossRef Saravia J, Zeng H, Dhungana Y, Bastardo Blanco D, Nguyen TM, Chapman NM, Wang Y, Kanneganti A, Liu S, Raynor JL, et al. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci Adv. 2020;6: eaaw6443.PubMedPubMedCentralCrossRef
59.
go back to reference Odobasic D, Oudin V, Ito K, Gan PY, Kitching AR, Holdsworth SR. Tolerogenic dendritic cells attenuate experimental autoimmune antimyeloperoxidase glomerulonephritis. J Am Soc Nephrol. 2019;30:2140–57.PubMedPubMedCentralCrossRef Odobasic D, Oudin V, Ito K, Gan PY, Kitching AR, Holdsworth SR. Tolerogenic dendritic cells attenuate experimental autoimmune antimyeloperoxidase glomerulonephritis. J Am Soc Nephrol. 2019;30:2140–57.PubMedPubMedCentralCrossRef
60.
go back to reference Faget J, Bendriss-Vermare N, Gobert M, Durand I, Olive D, Biota C, Bachelot T, Treilleux I, Goddard-Leon S, Lavergne E, et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res. 2012;72:6130–41.PubMedCrossRef Faget J, Bendriss-Vermare N, Gobert M, Durand I, Olive D, Biota C, Bachelot T, Treilleux I, Goddard-Leon S, Lavergne E, et al. ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells. Cancer Res. 2012;72:6130–41.PubMedCrossRef
61.
go back to reference Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41:283–97.PubMedCrossRef Yasuda K, Takeuchi Y, Hirota K. The pathogenicity of Th17 cells in autoimmune diseases. Semin Immunopathol. 2019;41:283–97.PubMedCrossRef
62.
go back to reference Osborne LM, Brar A, Klein SL. The role of Th17 cells in the pathophysiology of pregnancy and perinatal mood and anxiety disorders. Brain Behav Immun. 2019;76:7–16.PubMedCrossRef Osborne LM, Brar A, Klein SL. The role of Th17 cells in the pathophysiology of pregnancy and perinatal mood and anxiety disorders. Brain Behav Immun. 2019;76:7–16.PubMedCrossRef
63.
go back to reference Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 2021;12: 717808.PubMedPubMedCentralCrossRef Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 2021;12: 717808.PubMedPubMedCentralCrossRef
64.
go back to reference Xu L, Dong B, Wang H, Zeng Z, Liu W, Chen N, Chen J, Yang J, Li D, Duan Y. Progesterone suppresses Th17 cell responses, and enhances the development of regulatory T cells, through thymic stromal lymphopoietin-dependent mechanisms in experimental gonococcal genital tract infection. Microbes Infect. 2013;15:796–805.PubMedCrossRef Xu L, Dong B, Wang H, Zeng Z, Liu W, Chen N, Chen J, Yang J, Li D, Duan Y. Progesterone suppresses Th17 cell responses, and enhances the development of regulatory T cells, through thymic stromal lymphopoietin-dependent mechanisms in experimental gonococcal genital tract infection. Microbes Infect. 2013;15:796–805.PubMedCrossRef
65.
go back to reference Maney NJ, Lemos H, Barron-Millar B, Carey C, Herron I, Anderson AE, Mellor AL, Isaacs JD, Pratt AG. Pim kinases as therapeutic targets in early rheumatoid arthritis. Arthritis Rheumatol. 2021;73:1820–30.PubMedCrossRef Maney NJ, Lemos H, Barron-Millar B, Carey C, Herron I, Anderson AE, Mellor AL, Isaacs JD, Pratt AG. Pim kinases as therapeutic targets in early rheumatoid arthritis. Arthritis Rheumatol. 2021;73:1820–30.PubMedCrossRef
66.
go back to reference Masson F, Ghisi M, Groom JR, Kallies A, Seillet C, Johnstone RW, Nutt SL, Belz GT. Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood. 2014;123:3420–8.PubMedCrossRef Masson F, Ghisi M, Groom JR, Kallies A, Seillet C, Johnstone RW, Nutt SL, Belz GT. Id2 represses E2A-mediated activation of IL-10 expression in T cells. Blood. 2014;123:3420–8.PubMedCrossRef
Metadata
Title
Progesterone attenuates Th17-cell pathogenicity in autoimmune uveitis via Id2/Pim1 axis
Authors
Xiuxing Liu
Chenyang Gu
Jianjie Lv
Qi Jiang
Wen Ding
Zhaohao Huang
Yidan Liu
Yuhan Su
Chun Zhang
Zhuping Xu
Xianggui Wang
Wenru Su
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02829-3

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue