Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2023

Open Access 01-12-2023 | Alzheimer's Disease | Review

Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease

Authors: Drew A. Gillett, Rebecca L. Wallings, Oihane Uriarte Huarte, Malú Gámez Tansey

Published in: Journal of Neuroinflammation | Issue 1/2023

Login to get access

Abstract

Background

Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer’s disease (AD), Parkinson’s disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB).

Main body

It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs.

Short conclusion

PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Literature
1.
go back to reference Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinson’s Dis. 2018;8(s1):S3-8.CrossRef Dorsey ER, Sherer T, Okun MS, Bloem BR. The emerging evidence of the Parkinson pandemic. J Parkinson’s Dis. 2018;8(s1):S3-8.CrossRef
2.
go back to reference Logroscino G, Piccininni M, Marin B, Nichols E, Abd-Allah F, Abdelalim A, et al. Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(12):1083–97.CrossRef Logroscino G, Piccininni M, Marin B, Nichols E, Abd-Allah F, Abdelalim A, et al. Global, regional, and national burden of motor neuron diseases 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018;17(12):1083–97.CrossRef
3.
go back to reference Matthews KA, Xu W, Gaglioti AH, Holt JB, Croft JB, Mack D, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimer’s & Dementia. 2019;15(1):17–24.CrossRef Matthews KA, Xu W, Gaglioti AH, Holt JB, Croft JB, Mack D, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015–2060) in adults aged ≥65 years. Alzheimer’s & Dementia. 2019;15(1):17–24.CrossRef
4.
go back to reference Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106.CrossRef Nichols E, Szoeke CEI, Vollset SE, Abbasi N, Abd-Allah F, Abdela J, et al. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(1):88–106.CrossRef
5.
go back to reference Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson’s disease in the U.S. npj Parkinson’s Dis. 2020;6(1). Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL, et al. Current and projected future economic burden of Parkinson’s disease in the U.S. npj Parkinson’s Dis. 2020;6(1).
6.
go back to reference Nalls MA, Blauwendraat C, Sargent L, Vitale D, Leonard H, Iwaki H, et al. Evidence for GRN connecting multiple neurodegenerative diseases. Brain Commun. 2021;3(2). Nalls MA, Blauwendraat C, Sargent L, Vitale D, Leonard H, Iwaki H, et al. Evidence for GRN connecting multiple neurodegenerative diseases. Brain Commun. 2021;3(2).
7.
go back to reference Brouwers N, Nuytemans K, Julie Z, Gijselinck I, Engelborghs S, Theuns J, et al. Alzheimer and Parkinson diagnoses in progranulin null mutation carriers in an extended founder family. Arch Neurol. 2007;64(10):1436–46.PubMedCrossRef Brouwers N, Nuytemans K, Julie Z, Gijselinck I, Engelborghs S, Theuns J, et al. Alzheimer and Parkinson diagnoses in progranulin null mutation carriers in an extended founder family. Arch Neurol. 2007;64(10):1436–46.PubMedCrossRef
8.
go back to reference Brouwers N, Sleegers K, Engelborghs S, Maurer-Stroh S, Gijselinck I, van der Zee J, et al. Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology. 2008;71(9):656–64.PubMedCrossRef Brouwers N, Sleegers K, Engelborghs S, Maurer-Stroh S, Gijselinck I, van der Zee J, et al. Genetic variability in progranulin contributes to risk for clinically diagnosed Alzheimer disease. Neurology. 2008;71(9):656–64.PubMedCrossRef
9.
go back to reference Cortini F, Fenoglio C, Guidi I, Venturelli E, Pomati S, Marcone A, et al. Novel exon 1 progranulin gene variant in Alzheimer’s disease. Eur J Neurol. 2008;15(10):1111–7.PubMedCrossRef Cortini F, Fenoglio C, Guidi I, Venturelli E, Pomati S, Marcone A, et al. Novel exon 1 progranulin gene variant in Alzheimer’s disease. Eur J Neurol. 2008;15(10):1111–7.PubMedCrossRef
10.
go back to reference Fenoglio C, Galimberti D, Cortini F, Kauwe JSK, Cruchaga C, Venturelli E, et al. Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer’s disease. J Alzheimer’s Dis. 2009;18(3):603–12.CrossRef Fenoglio C, Galimberti D, Cortini F, Kauwe JSK, Cruchaga C, Venturelli E, et al. Rs5848 variant influences GRN mRNA levels in brain and peripheral mononuclear cells in patients with Alzheimer’s disease. J Alzheimer’s Dis. 2009;18(3):603–12.CrossRef
11.
go back to reference Kämäläinen A, Viswanathan J, Natunen T, Helisalmi S, Kauppinen T, Pikkarainen M, et al. GRN variant rs5848 reduces plasma and brain levels of granulin in Alzheimer’s disease patients. J Alzheimer’s Dis. 2012;33(1):23–7.CrossRef Kämäläinen A, Viswanathan J, Natunen T, Helisalmi S, Kauppinen T, Pikkarainen M, et al. GRN variant rs5848 reduces plasma and brain levels of granulin in Alzheimer’s disease patients. J Alzheimer’s Dis. 2012;33(1):23–7.CrossRef
12.
go back to reference Lee MJ, Chen TF, Cheng TH, Chiu MJ. rs5848 variant of progranulin gene is a risk of Alzheimer’s disease in the Taiwanese population. Neurodegener Dis. 2011;8(4):216–20.PubMedCrossRef Lee MJ, Chen TF, Cheng TH, Chiu MJ. rs5848 variant of progranulin gene is a risk of Alzheimer’s disease in the Taiwanese population. Neurodegener Dis. 2011;8(4):216–20.PubMedCrossRef
13.
go back to reference Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, et al. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain. 2007;130(5):1360–74.PubMedCrossRef Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, et al. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain. 2007;130(5):1360–74.PubMedCrossRef
14.
go back to reference Yongdui C, Li S, Su L, Sheng J, Wen L, Chen G, et al. Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J Neurol. 2015;262(4):814–22.CrossRef Yongdui C, Li S, Su L, Sheng J, Wen L, Chen G, et al. Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis. J Neurol. 2015;262(4):814–22.CrossRef
15.
go back to reference Murthy M, Blauwendraat C, Ukbec GS, Ipdgc HJ, et al. Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson’s disease on chromosome 7p15.3. Neurogenetics. 2017;18(3):121–33.PubMedPubMedCentralCrossRef Murthy M, Blauwendraat C, Ukbec GS, Ipdgc HJ, et al. Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson’s disease on chromosome 7p15.3. Neurogenetics. 2017;18(3):121–33.PubMedPubMedCentralCrossRef
16.
go back to reference Kumaran R, Cookson MR. Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Hum Mol Genet. 2015;24(R1):R32-44.PubMedPubMedCentralCrossRef Kumaran R, Cookson MR. Pathways to Parkinsonism Redux: convergent pathobiological mechanisms in genetics of Parkinson’s disease. Hum Mol Genet. 2015;24(R1):R32-44.PubMedPubMedCentralCrossRef
17.
go back to reference Huang M, Modeste E, Dammer E, Merino P, Taylor G, Duong DM, et al. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathol Commun. 2020;8(1). Huang M, Modeste E, Dammer E, Merino P, Taylor G, Duong DM, et al. Network analysis of the progranulin-deficient mouse brain proteome reveals pathogenic mechanisms shared in human frontotemporal dementia caused by GRN mutations. Acta Neuropathol Commun. 2020;8(1).
18.
go back to reference Lui H, Zhang J, Makinson Stefanie R, Cahill Michelle K, Kelley Kevin W, Huang HY, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165(4):921–35.PubMedPubMedCentralCrossRef Lui H, Zhang J, Makinson Stefanie R, Cahill Michelle K, Kelley Kevin W, Huang HY, et al. Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell. 2016;165(4):921–35.PubMedPubMedCentralCrossRef
19.
go back to reference Hrabal R, Chen Z, James S, Bennett, Ni F. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Mol Biol. 1996;3(9):747–52.CrossRef Hrabal R, Chen Z, James S, Bennett, Ni F. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Mol Biol. 1996;3(9):747–52.CrossRef
20.
go back to reference Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, et al. Targeted manipulation of the sortilin–progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet. 2013;23(6):1467–78.PubMedPubMedCentralCrossRef Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, et al. Targeted manipulation of the sortilin–progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet. 2013;23(6):1467–78.PubMedPubMedCentralCrossRef
21.
go back to reference Zhou X, Sullivan PM, Sun L, Hu F. The interaction between progranulin and prosaposin is mediated by granulins and the linker region between saposin B and C. J Neurochem. 2017;143(2):236–43.PubMedPubMedCentralCrossRef Zhou X, Sullivan PM, Sun L, Hu F. The interaction between progranulin and prosaposin is mediated by granulins and the linker region between saposin B and C. J Neurochem. 2017;143(2):236–43.PubMedPubMedCentralCrossRef
22.
go back to reference Lee CW, Stankowski JN, Chew J, Cook CN, Lam YW, Almeida S, et al. The lysosomal protein cathepsin L is a progranulin protease. Mol Neurodegeneration. 2017;12(1). Lee CW, Stankowski JN, Chew J, Cook CN, Lam YW, Almeida S, et al. The lysosomal protein cathepsin L is a progranulin protease. Mol Neurodegeneration. 2017;12(1).
23.
go back to reference Zhou X, Paushter DH, Feng T, Sun L, Reinheckel T, Hu F. Lysosomal processing of progranulin. Mol Neurodegeneration. 2017;12(1). Zhou X, Paushter DH, Feng T, Sun L, Reinheckel T, Hu F. Lysosomal processing of progranulin. Mol Neurodegeneration. 2017;12(1).
24.
go back to reference Holler CJ, Taylor G, Deng Q, Kukar T. Intracellular proteolysis of progranulin generates stable, lysosomal granulins that are haploinsufficient in patients with frontotemporal dementia caused by GRN mutations. eneuro. 2017;4(4):ENEURO.0100-17.2017. Holler CJ, Taylor G, Deng Q, Kukar T. Intracellular proteolysis of progranulin generates stable, lysosomal granulins that are haploinsufficient in patients with frontotemporal dementia caused by GRN mutations. eneuro. 2017;4(4):ENEURO.0100-17.2017.
25.
go back to reference Suh HS, Choi N, Tarassishin L, Lee SC. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS ONE. 2012;7(4):e35115.PubMedPubMedCentralCrossRef Suh HS, Choi N, Tarassishin L, Lee SC. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12). PLoS ONE. 2012;7(4):e35115.PubMedPubMedCentralCrossRef
26.
go back to reference Guo FJ, Lai Y, Tian Q, Lin E, Kong L, Liu C. Granulin-epithelin precursor (GEP) binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein. Arthritis Rheumatism. 2010;62(7):2023.PubMedCrossRef Guo FJ, Lai Y, Tian Q, Lin E, Kong L, Liu C. Granulin-epithelin precursor (GEP) binds directly to ADAMTS-7 and ADAMTS-12 and inhibits their degradation of cartilage oligomeric matrix protein. Arthritis Rheumatism. 2010;62(7):2023.PubMedCrossRef
27.
go back to reference Kessenbrock K, Fröhlich LF, Sixt M, Lämmermann T, Pfister H, Bateman A, et al. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest. 2008;118(7). Kessenbrock K, Fröhlich LF, Sixt M, Lämmermann T, Pfister H, Bateman A, et al. Proteinase 3 and neutrophil elastase enhance inflammation in mice by inactivating antiinflammatory progranulin. J Clin Invest. 2008;118(7).
28.
go back to reference Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, et al. Conversion of proepithelin to epithelins. Cell. 2002;111(6):867–78.PubMedCrossRef Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, et al. Conversion of proepithelin to epithelins. Cell. 2002;111(6):867–78.PubMedCrossRef
29.
go back to reference Du H, Zhou X, Feng T, Hu F. Regulation of lysosomal trafficking of progranulin by sortilin and prosaposin. Brain Commun. 2022;4(1). Du H, Zhou X, Feng T, Hu F. Regulation of lysosomal trafficking of progranulin by sortilin and prosaposin. Brain Commun. 2022;4(1).
30.
go back to reference Nguyen A, Nguyen T, Basar Cenik YuG, Herz J, Walther TC, et al. Secreted progranulin is a homodimer and is not a component of high density lipoproteins (HDL). J Biol Chem. 2013;288(12):8627–35.PubMedPubMedCentralCrossRef Nguyen A, Nguyen T, Basar Cenik YuG, Herz J, Walther TC, et al. Secreted progranulin is a homodimer and is not a component of high density lipoproteins (HDL). J Biol Chem. 2013;288(12):8627–35.PubMedPubMedCentralCrossRef
31.
go back to reference Galimberti D, Fumagalli G, Fenoglio C, Cioffi S, Arighi A, Serpente M, et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiol Aging. 2018;62(245):e9-12. Galimberti D, Fumagalli G, Fenoglio C, Cioffi S, Arighi A, Serpente M, et al. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiol Aging. 2018;62(245):e9-12.
32.
go back to reference Sellami L, Rucheton B, Younes IB, Camuzat A, Saracino D, Rinaldi D, et al. Plasma progranulin levels for frontotemporal dementia in clinical practice: a 10-year French experience. Neurobiol Aging. 2020;91:167.CrossRef Sellami L, Rucheton B, Younes IB, Camuzat A, Saracino D, Rinaldi D, et al. Plasma progranulin levels for frontotemporal dementia in clinical practice: a 10-year French experience. Neurobiol Aging. 2020;91:167.CrossRef
33.
go back to reference Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2021;154: 105360.PubMedPubMedCentralCrossRef Root J, Merino P, Nuckols A, Johnson M, Kukar T. Lysosome dysfunction as a cause of neurodegenerative diseases: lessons from frontotemporal dementia and amyotrophic lateral sclerosis. Neurobiol Dis. 2021;154: 105360.PubMedPubMedCentralCrossRef
34.
go back to reference Yao YN, Wang MD, Tang XC, Wu B, Sun HM. Reduced plasma progranulin levels are associated with the severity of Parkinson’s disease. Neurosci Lett. 2020;725: 134873.PubMedCrossRef Yao YN, Wang MD, Tang XC, Wu B, Sun HM. Reduced plasma progranulin levels are associated with the severity of Parkinson’s disease. Neurosci Lett. 2020;725: 134873.PubMedCrossRef
35.
go back to reference Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL, et al. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun. 2017;8(1). Zhou X, Sun L, Bracko O, Choi JW, Jia Y, Nana AL, et al. Impaired prosaposin lysosomal trafficking in frontotemporal lobar degeneration due to progranulin mutations. Nat Commun. 2017;8(1).
36.
go back to reference Ong C, He Z, Kriazhev L, Shan X, Roger BA. Regulation of progranulin expression in myeloid cells. Am J Physiol Regul Integr Comp Physiol. 2006;291(6):R1602–12.PubMedCrossRef Ong C, He Z, Kriazhev L, Shan X, Roger BA. Regulation of progranulin expression in myeloid cells. Am J Physiol Regul Integr Comp Physiol. 2006;291(6):R1602–12.PubMedCrossRef
37.
go back to reference Kawashima K, Ishiuchi Y, Konnai M, Komatsu S, Sato H, Kawaguchi H, et al. Glucose deprivation regulates the progranulin-sortilin axis in PC12 cells. FEBS Open Bio. 2016;7(2):149–59.PubMedPubMedCentralCrossRef Kawashima K, Ishiuchi Y, Konnai M, Komatsu S, Sato H, Kawaguchi H, et al. Glucose deprivation regulates the progranulin-sortilin axis in PC12 cells. FEBS Open Bio. 2016;7(2):149–59.PubMedPubMedCentralCrossRef
38.
go back to reference Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2016;65(2):278–92.PubMedCrossRef Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2016;65(2):278–92.PubMedCrossRef
39.
go back to reference Chen-Plotkin A, Martinez-Lage M, Patrick, Hu WT, Greene R, Wood EM, et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch Neurol. 2011;68(4):488–98.PubMedPubMedCentralCrossRef Chen-Plotkin A, Martinez-Lage M, Patrick, Hu WT, Greene R, Wood EM, et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch Neurol. 2011;68(4):488–98.PubMedPubMedCentralCrossRef
40.
go back to reference Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B, et al. Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem. 2007;283(3):1744–53.PubMedCrossRef Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B, et al. Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem. 2007;283(3):1744–53.PubMedCrossRef
41.
go back to reference Puoti G, Lerza MC, Ferretti MG, Bugiani O, Tagliavini F, Rossi G. A Mutation in the 5′-UTR of GRN gene associated with frontotemporal lobar degeneration: phenotypic variability and possible pathogenetic mechanisms. J Alzheimer’s Dis. 2014;42(3):939–47.CrossRef Puoti G, Lerza MC, Ferretti MG, Bugiani O, Tagliavini F, Rossi G. A Mutation in the 5′-UTR of GRN gene associated with frontotemporal lobar degeneration: phenotypic variability and possible pathogenetic mechanisms. J Alzheimer’s Dis. 2014;42(3):939–47.CrossRef
42.
go back to reference Capell A, Fellerer K, Haass C. Progranulin transcripts with short and long 5′ untranslated regions (UTRs) are differentially expressed via posttranscriptional and translational repression. J Biol Chem. 2014;289(37):25879–89.PubMedPubMedCentralCrossRef Capell A, Fellerer K, Haass C. Progranulin transcripts with short and long 5′ untranslated regions (UTRs) are differentially expressed via posttranscriptional and translational repression. J Biol Chem. 2014;289(37):25879–89.PubMedPubMedCentralCrossRef
43.
go back to reference Banzhaf-Strathmann J, Claus R, Mücke O, Rentzsch K, van der Zee J, Engelborghs S, et al. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun. 2013;1(1). Banzhaf-Strathmann J, Claus R, Mücke O, Rentzsch K, van der Zee J, Engelborghs S, et al. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun. 2013;1(1).
44.
go back to reference Jiao J, Herl L, Farese RV, Gao FB. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE. 2010;5(5):e10551–61.PubMedPubMedCentralCrossRef Jiao J, Herl L, Farese RV, Gao FB. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS ONE. 2010;5(5):e10551–61.PubMedPubMedCentralCrossRef
45.
go back to reference Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln S, et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008;17(23):3631–42.PubMedPubMedCentralCrossRef Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln S, et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008;17(23):3631–42.PubMedPubMedCentralCrossRef
46.
go back to reference Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, et al. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol. 2010;177(1):334–45.PubMedPubMedCentralCrossRef Wang WX, Wilfred BR, Madathil SK, Tang G, Hu Y, Dimayuga J, et al. miR-107 regulates granulin/progranulin with implications for traumatic brain injury and neurodegenerative disease. Am J Pathol. 2010;177(1):334–45.PubMedPubMedCentralCrossRef
47.
go back to reference Weterman MAJ, Ajubi N, van Dinter IMR, Degen WGJ, van Muijen GNP, Ruiter DJ, et al. nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer. 1995;60(1):73–81.PubMedCrossRef Weterman MAJ, Ajubi N, van Dinter IMR, Degen WGJ, van Muijen GNP, Ruiter DJ, et al. nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer. 1995;60(1):73–81.PubMedCrossRef
48.
go back to reference Liguori M, Digifico E, Vacchini A, Avigni R, Colombo F, Borroni EM, et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol. 2020;18(3):711–22.PubMedPubMedCentralCrossRef Liguori M, Digifico E, Vacchini A, Avigni R, Colombo F, Borroni EM, et al. The soluble glycoprotein NMB (GPNMB) produced by macrophages induces cancer stemness and metastasis via CD44 and IL-33. Cell Mol Immunol. 2020;18(3):711–22.PubMedPubMedCentralCrossRef
49.
go back to reference Rose AAN, Pepin F, Russo C, Khalil JG, Hallett M, Siegel PH. Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res. 2007;5(10):1001–14.PubMedCrossRef Rose AAN, Pepin F, Russo C, Khalil JG, Hallett M, Siegel PH. Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res. 2007;5(10):1001–14.PubMedCrossRef
52.
go back to reference Kuan CT, Wakiya K, Dowell JM, Herndon JE, Reardon DA, Graner MW, et al. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res. 2006;12(7):1970–82.PubMedCrossRef Kuan CT, Wakiya K, Dowell JM, Herndon JE, Reardon DA, Graner MW, et al. Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res. 2006;12(7):1970–82.PubMedCrossRef
53.
go back to reference Hoashi T, Sato S, Yamaguchi Y, Passeron T, Tamaki K, Hearing VJ. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. The FASEB J. 2010;24(5):1616–29.PubMedCrossRef Hoashi T, Sato S, Yamaguchi Y, Passeron T, Tamaki K, Hearing VJ. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. The FASEB J. 2010;24(5):1616–29.PubMedCrossRef
54.
go back to reference Rose AAN, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5(8):e12093.PubMedPubMedCentralCrossRef Rose AAN, Annis MG, Dong Z, Pepin F, Hallett M, Park M, et al. ADAM10 releases a soluble form of the GPNMB/osteoactivin extracellular domain with angiogenic properties. PLoS ONE. 2010;5(8):e12093.PubMedPubMedCentralCrossRef
55.
go back to reference Kramer GJ, Wegdam W, Donker-Koopman WE, Ottenhoff R, Gaspar P, Verhoek M, et al. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. FEBS Open Bio. 2016;6(9):902–13.PubMedPubMedCentralCrossRef Kramer GJ, Wegdam W, Donker-Koopman WE, Ottenhoff R, Gaspar P, Verhoek M, et al. Elevation of glycoprotein nonmetastatic melanoma protein B in type 1 Gaucher disease patients and mouse models. FEBS Open Bio. 2016;6(9):902–13.PubMedPubMedCentralCrossRef
56.
go back to reference Lin J, Zhang P, Huang Y, Wei X, Guo D, Liu J, et al. Elevated circulating Gpnmb levels are associated with hyperthyroidism. Endocr Connect. 2020;9(8):783–92.PubMedPubMedCentralCrossRef Lin J, Zhang P, Huang Y, Wei X, Guo D, Liu J, et al. Elevated circulating Gpnmb levels are associated with hyperthyroidism. Endocr Connect. 2020;9(8):783–92.PubMedPubMedCentralCrossRef
57.
go back to reference Conway BR, Manoharan D, Manoharan D, Jenks S, Dear JW, McLachlan S, et al. Measuring urinary tubular biomarkers in type 2 diabetes does not add prognostic value beyond established risk factors. Kidney Int. 2012;82(7):812–8.PubMedCrossRef Conway BR, Manoharan D, Manoharan D, Jenks S, Dear JW, McLachlan S, et al. Measuring urinary tubular biomarkers in type 2 diabetes does not add prognostic value beyond established risk factors. Kidney Int. 2012;82(7):812–8.PubMedCrossRef
58.
go back to reference Murugesan V, Liu J, Yang R, Lin H, Lischuk A, Pastores GM, et al. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease. Blood Cells Mol Dis. 2018;1(68):47–53.CrossRef Murugesan V, Liu J, Yang R, Lin H, Lischuk A, Pastores GM, et al. Validating glycoprotein non-metastatic melanoma B (gpNMB, osteoactivin), a new biomarker of Gaucher disease. Blood Cells Mol Dis. 2018;1(68):47–53.CrossRef
59.
go back to reference Tanaka H, Shimazawa M, Kimura M, Takata M, Tsuruma K, Yamada M, et al. The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci Rep. 2012;2(1). Tanaka H, Shimazawa M, Kimura M, Takata M, Tsuruma K, Yamada M, et al. The potential of GPNMB as novel neuroprotective factor in amyotrophic lateral sclerosis. Sci Rep. 2012;2(1).
60.
go back to reference Zigdon H, Savidor A, Levin Y, Meshcheriakova A, Schiffmann R, Futerman AH. Identification of a biomarker in cerebrospinal fluid for neuronopathic forms of gaucher disease. PLoS ONE. 2015;10(3):e0120194.PubMedPubMedCentralCrossRef Zigdon H, Savidor A, Levin Y, Meshcheriakova A, Schiffmann R, Futerman AH. Identification of a biomarker in cerebrospinal fluid for neuronopathic forms of gaucher disease. PLoS ONE. 2015;10(3):e0120194.PubMedPubMedCentralCrossRef
61.
go back to reference Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-γ and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol. 2007;178(10):6557–66.PubMedCrossRef Ripoll VM, Irvine KM, Ravasi T, Sweet MJ, Hume DA. Gpnmb is induced in macrophages by IFN-γ and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol. 2007;178(10):6557–66.PubMedCrossRef
62.
go back to reference Zhou L, Zhuo H, Ouyang H, Liu Y, Yuan F, Sun L, et al. Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell Immunol. 2017;316:53–60.PubMedCrossRef Zhou L, Zhuo H, Ouyang H, Liu Y, Yuan F, Sun L, et al. Glycoprotein non-metastatic melanoma protein b (Gpnmb) is highly expressed in macrophages of acute injured kidney and promotes M2 macrophages polarization. Cell Immunol. 2017;316:53–60.PubMedCrossRef
63.
go back to reference Shi F, Duan S, Cui J, Yan X, Li H, Wang Y, et al. Induction of matrix metalloproteinase-3 (MMP-3) expression in the microglia by lipopolysaccharide (LPS) via upregulation of glycoprotein nonmetastatic melanoma B (GPNMB) expression. J Mol Neurosci. 2014;54(2):234–42.PubMedCrossRef Shi F, Duan S, Cui J, Yan X, Li H, Wang Y, et al. Induction of matrix metalloproteinase-3 (MMP-3) expression in the microglia by lipopolysaccharide (LPS) via upregulation of glycoprotein nonmetastatic melanoma B (GPNMB) expression. J Mol Neurosci. 2014;54(2):234–42.PubMedCrossRef
64.
go back to reference Aichholzer F, Klafki HW, Ogorek I, Vogelgsang J, Wiltfang J, Scherbaum N, et al. Evaluation of cerebrospinal fluid glycoprotein NMB (GPNMB) as a potential biomarker for Alzheimer’s disease. Alzheimer’s Res Therapy. 2021;13(1). Aichholzer F, Klafki HW, Ogorek I, Vogelgsang J, Wiltfang J, Scherbaum N, et al. Evaluation of cerebrospinal fluid glycoprotein NMB (GPNMB) as a potential biomarker for Alzheimer’s disease. Alzheimer’s Res Therapy. 2021;13(1).
65.
go back to reference Gabriel TL, Tol MJ, Ottenhof R, van Roomen C, Aten J, Claessen N, et al. Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent gpnmb induction. Diabetes. 2014;63(10):3310–23.PubMedCrossRef Gabriel TL, Tol MJ, Ottenhof R, van Roomen C, Aten J, Claessen N, et al. Lysosomal stress in obese adipose tissue macrophages contributes to MITF-dependent gpnmb induction. Diabetes. 2014;63(10):3310–23.PubMedCrossRef
66.
go back to reference Gutknecht M, Geiger J, Joas S, Dörfel D, Salih HR, Müller M, et al. The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Commun Signaling. 2015;13(1). Gutknecht M, Geiger J, Joas S, Dörfel D, Salih HR, Müller M, et al. The transcription factor MITF is a critical regulator of GPNMB expression in dendritic cells. Cell Commun Signaling. 2015;13(1).
67.
go back to reference Ripoll VM, Meadows NA, Raggatt LJ, Chang MK, Pettit AR, Cassady AI, et al. Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene. 2008;413(1–2):32–41.PubMedCrossRef Ripoll VM, Meadows NA, Raggatt LJ, Chang MK, Pettit AR, Cassady AI, et al. Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene. 2008;413(1–2):32–41.PubMedCrossRef
69.
go back to reference Jiang SS, Chen CH, Tseng KY, Tsai FY, Wang MJ, Chang IS, et al. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging. 2011;3(7):672–84.PubMedPubMedCentralCrossRef Jiang SS, Chen CH, Tseng KY, Tsai FY, Wang MJ, Chang IS, et al. Gene expression profiling suggests a pathological role of human bone marrow-derived mesenchymal stem cells in aging-related skeletal diseases. Aging. 2011;3(7):672–84.PubMedPubMedCentralCrossRef
70.
go back to reference Krasniewski LK, Chakraborty P, Cui CY, Mazan-Mamczarz K, Dunn CA, Piao Y, et al. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations. eLife. 2022;11. Krasniewski LK, Chakraborty P, Cui CY, Mazan-Mamczarz K, Dunn CA, Piao Y, et al. Single-cell analysis of skeletal muscle macrophages reveals age-associated functional subpopulations. eLife. 2022;11.
71.
go back to reference Suda M, Shimizu I, Katsuumi G, Yoshida Y, Hayashi Y, Ikegami R, et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021;1–10. Suda M, Shimizu I, Katsuumi G, Yoshida Y, Hayashi Y, Ikegami R, et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021;1–10.
72.
go back to reference Hasan S, Fernandopulle MS, Humble SW, Frankenfield AM, Li H, Prestil R, et al. Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons. bioRxiv (Cold Spring Harbor Laboratory). 2023. Hasan S, Fernandopulle MS, Humble SW, Frankenfield AM, Li H, Prestil R, et al. Multi-modal proteomic characterization of lysosomal function and proteostasis in progranulin-deficient neurons. bioRxiv (Cold Spring Harbor Laboratory). 2023.
73.
go back to reference Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach TG, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26(5):ddx011.CrossRef Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach TG, et al. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes. Hum Mol Genet. 2017;26(5):ddx011.CrossRef
74.
go back to reference Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet. 2017;26(15):2850–63.PubMedPubMedCentralCrossRef Beel S, Moisse M, Damme M, De Muynck L, Robberecht W, Van Den Bosch L, et al. Progranulin functions as a cathepsin D chaperone to stimulate axonal outgrowth in vivo. Hum Mol Genet. 2017;26(15):2850–63.PubMedPubMedCentralCrossRef
75.
go back to reference Butler V, Cortopassi WA, Argouarch A, Ivry SL, Craik CS, Jacobson MP, et al. Progranulin stimulates the in vitro maturation of pro-cathepsin D at Acidic pH. J Mol Biol. 2019;431(5):1038–47.PubMedPubMedCentralCrossRef Butler V, Cortopassi WA, Argouarch A, Ivry SL, Craik CS, Jacobson MP, et al. Progranulin stimulates the in vitro maturation of pro-cathepsin D at Acidic pH. J Mol Biol. 2019;431(5):1038–47.PubMedPubMedCentralCrossRef
76.
go back to reference Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D. Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet. 2017;26(24):4861–72.PubMedPubMedCentralCrossRef Valdez C, Wong YC, Schwake M, Bu G, Wszolek ZK, Krainc D. Progranulin-mediated deficiency of cathepsin D results in FTD and NCL-like phenotypes in neurons derived from FTD patients. Hum Mol Genet. 2017;26(24):4861–72.PubMedPubMedCentralCrossRef
77.
go back to reference Zhou X, Paushter DH, Feng T, Pardon CM, Mendoza CS, Hu F. Regulation of cathepsin D activity by the FTLD protein progranulin. Acta Neuropathol. 2017;134(1):151–3.PubMedPubMedCentralCrossRef Zhou X, Paushter DH, Feng T, Pardon CM, Mendoza CS, Hu F. Regulation of cathepsin D activity by the FTLD protein progranulin. Acta Neuropathol. 2017;134(1):151–3.PubMedPubMedCentralCrossRef
78.
go back to reference Arrant AE, Roth JR, Boyle NR, Kashyap SN, Hoffmann MQ, Murchison CF, et al. Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathol Commun. 2019;7(1). Arrant AE, Roth JR, Boyle NR, Kashyap SN, Hoffmann MQ, Murchison CF, et al. Impaired β-glucocerebrosidase activity and processing in frontotemporal dementia due to progranulin mutations. Acta Neuropathol Commun. 2019;7(1).
79.
go back to reference Valdez C, Ysselstein D, Young T, Zheng J, Krainc D. Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet. 2019;29(5):716–26.PubMedCentralCrossRef Valdez C, Ysselstein D, Young T, Zheng J, Krainc D. Progranulin mutations result in impaired processing of prosaposin and reduced glucocerebrosidase activity. Hum Mol Genet. 2019;29(5):716–26.PubMedCentralCrossRef
80.
go back to reference Zhou X, Paushter DH, Pagan MD, Kim D, Santos MN, Lieberman RL, et al. Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS ONE. 2019;14(7):e02123822.CrossRef Zhou X, Paushter DH, Pagan MD, Kim D, Santos MN, Lieberman RL, et al. Progranulin deficiency leads to reduced glucocerebrosidase activity. PLoS ONE. 2019;14(7):e02123822.CrossRef
81.
go back to reference Chen Y, Jian J, Hettinghouse A, Zhao X, Setchell KDR, Sun Y, et al. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med. 2018;96(12):1359–73.PubMedCrossRef Chen Y, Jian J, Hettinghouse A, Zhao X, Setchell KDR, Sun Y, et al. Progranulin associates with hexosaminidase A and ameliorates GM2 ganglioside accumulation and lysosomal storage in Tay-Sachs disease. J Mol Med. 2018;96(12):1359–73.PubMedCrossRef
82.
go back to reference Boland S, Swarup S, Ambaw YA, Malia PC, Richards RC, Fischer AW, et al. Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. Nat Commun. 2022;13(1):5924.PubMedPubMedCentralCrossRef Boland S, Swarup S, Ambaw YA, Malia PC, Richards RC, Fischer AW, et al. Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. Nat Commun. 2022;13(1):5924.PubMedPubMedCentralCrossRef
83.
go back to reference Evers BM, Rodriguez-Navas C, Tesla RJ, Prange-Kiel J, Wasser CR, Yoo KS, et al. Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Rep. 2017;20(11):2565–74.PubMedPubMedCentralCrossRef Evers BM, Rodriguez-Navas C, Tesla RJ, Prange-Kiel J, Wasser CR, Yoo KS, et al. Lipidomic and transcriptomic basis of lysosomal dysfunction in progranulin deficiency. Cell Rep. 2017;20(11):2565–74.PubMedPubMedCentralCrossRef
84.
go back to reference Vandevrede L, Rojas JC, Wang P, Heuer HW, Karydas AM, Ljubenkov PA, et al. Lipid metabolism dysfunction in progranulin mutation carriers: Unbiased metabolomics reveals strong relationship to clinical status in FTLD. Alzheimer’s & Dementia. 2020;16(S5). Vandevrede L, Rojas JC, Wang P, Heuer HW, Karydas AM, Ljubenkov PA, et al. Lipid metabolism dysfunction in progranulin mutation carriers: Unbiased metabolomics reveals strong relationship to clinical status in FTLD. Alzheimer’s & Dementia. 2020;16(S5).
86.
go back to reference Remmel N, Locatelli-Hoops S, Breiden B, Schwarzmann G, Sandhoff K. Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. FEBS J. 2007;274(13):3405–20.PubMedCrossRef Remmel N, Locatelli-Hoops S, Breiden B, Schwarzmann G, Sandhoff K. Saposin B mobilizes lipids from cholesterol-poor and bis(monoacylglycero)phosphate-rich membranes at acidic pH. FEBS J. 2007;274(13):3405–20.PubMedCrossRef
87.
88.
go back to reference Wilkening G, Linke T, Sandhoff K. Lysosomal degradation on vesicular membrane surfaces. J Biol Chem. 1998;273(46):30271–8.PubMedCrossRef Wilkening G, Linke T, Sandhoff K. Lysosomal degradation on vesicular membrane surfaces. J Biol Chem. 1998;273(46):30271–8.PubMedCrossRef
89.
go back to reference Chevallier J, Chamoun Z, Jiang G, Prestwich G, Sakai N, Matile S, et al. Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem. 2008;283(41):27871–80.PubMedCrossRef Chevallier J, Chamoun Z, Jiang G, Prestwich G, Sakai N, Matile S, et al. Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem. 2008;283(41):27871–80.PubMedCrossRef
90.
go back to reference Kirkegaard T, Roth AG, Petersen NHT, Mahalka AK, Olsen OD, Moilanen I, et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53.PubMedCrossRef Kirkegaard T, Roth AG, Petersen NHT, Mahalka AK, Olsen OD, Moilanen I, et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature. 2010;463(7280):549–53.PubMedCrossRef
91.
go back to reference Matsuo H, Chevallier J, Mayran N, Blanc IL, Ferguson C, Fauré J, et al. Role of LBPA and alix in multivesicular liposome formation and endosome organization. Science. 2004;303(5657):531–4.PubMedCrossRef Matsuo H, Chevallier J, Mayran N, Blanc IL, Ferguson C, Fauré J, et al. Role of LBPA and alix in multivesicular liposome formation and endosome organization. Science. 2004;303(5657):531–4.PubMedCrossRef
92.
go back to reference Giray E, Mikkolainen H, Gungor B, Ikonen E, Vattulainen I. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Compuat Biol. 2017;13(10):e1005831-1. Giray E, Mikkolainen H, Gungor B, Ikonen E, Vattulainen I. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin. PLoS Compuat Biol. 2017;13(10):e1005831-1.
93.
go back to reference Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: implications in pathology. Prostaglandins Leukotrienes Essential Fatty Acids. 2009;81(5–6):313–24.PubMedCrossRef Hullin-Matsuda F, Luquain-Costaz C, Bouvier J, Delton-Vandenbroucke I. Bis(monoacylglycero)phosphate, a peculiar phospholipid to control the fate of cholesterol: implications in pathology. Prostaglandins Leukotrienes Essential Fatty Acids. 2009;81(5–6):313–24.PubMedCrossRef
94.
go back to reference Sun S, Zhou J, Li Z, Wu Y, Wang H, Zheng Q, et al. Progranulin promotes hippocampal neurogenesis and alleviates anxiety-like behavior and cognitive impairment in adult mice subjected to cerebral ischemia. CNS Neurosci Ther. 2022;28(5):775–87.PubMedPubMedCentralCrossRef Sun S, Zhou J, Li Z, Wu Y, Wang H, Zheng Q, et al. Progranulin promotes hippocampal neurogenesis and alleviates anxiety-like behavior and cognitive impairment in adult mice subjected to cerebral ischemia. CNS Neurosci Ther. 2022;28(5):775–87.PubMedPubMedCentralCrossRef
95.
go back to reference Beel S, Herdewyn S, Fazal R, De Decker M, Moisse M, Robberecht W, et al. Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice. Mol Neurodegeneration. 2018;13(1). Beel S, Herdewyn S, Fazal R, De Decker M, Moisse M, Robberecht W, et al. Progranulin reduces insoluble TDP-43 levels, slows down axonal degeneration and prolongs survival in mutant TDP-43 mice. Mol Neurodegeneration. 2018;13(1).
96.
go back to reference Philips T, De Muynck L, Thu HNT, Weynants B, Vanacker P, Dhondt J, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol. 2010;69(12):1191–200.PubMedCrossRef Philips T, De Muynck L, Thu HNT, Weynants B, Vanacker P, Dhondt J, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol. 2010;69(12):1191–200.PubMedCrossRef
97.
go back to reference Irwin D, Lippa CF, Rosso A. Progranulin (PGRN) expression in ALS: an immunohistochemical study. J Neurol Sci. 2009;276(1–2):9–13.PubMedCrossRef Irwin D, Lippa CF, Rosso A. Progranulin (PGRN) expression in ALS: an immunohistochemical study. J Neurol Sci. 2009;276(1–2):9–13.PubMedCrossRef
98.
go back to reference Ljubenkov PA, Miller ZA, Mumford P, Zhang J, Allen Isabel Elaine, Mitic LL, et al. Peripheral innate immune activation correlates with disease severity in GRN haploinsufficiency. Front Neurol. 2019;10. Ljubenkov PA, Miller ZA, Mumford P, Zhang J, Allen Isabel Elaine, Mitic LL, et al. Peripheral innate immune activation correlates with disease severity in GRN haploinsufficiency. Front Neurol. 2019;10.
99.
go back to reference Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2009;207(1):117–28.PubMedCrossRef Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2009;207(1):117–28.PubMedCrossRef
100.
go back to reference Houser MC, Uriarte Huarte O, Wallings R, Keating CE, MacPherson KP, Herrick MK, et al. Progranulin loss results in sex-dependent dysregulation of the peripheral and central immune system. Front Immunol. 2022;22:13. Houser MC, Uriarte Huarte O, Wallings R, Keating CE, MacPherson KP, Herrick MK, et al. Progranulin loss results in sex-dependent dysregulation of the peripheral and central immune system. Front Immunol. 2022;22:13.
101.
go back to reference Suzuki M, Lee HC, Kayasuga Y, Chiba S, Nedachi T, Matsuwaki T, et al. Roles of progranulin in sexual differentiation of the developing brain and adult neurogenesis. J Reprod Dev. 2009;55(4):351–5.PubMedCrossRef Suzuki M, Lee HC, Kayasuga Y, Chiba S, Nedachi T, Matsuwaki T, et al. Roles of progranulin in sexual differentiation of the developing brain and adult neurogenesis. J Reprod Dev. 2009;55(4):351–5.PubMedCrossRef
102.
go back to reference Curtis AF, Masellis M, Hsiung GYR, Moineddin R, Zhang K, Au B, et al. Sex differences in the prevalence of genetic mutations in FTD and ALS: a meta-analysis. Neurology. 2017;89(15):1633–42.PubMedPubMedCentralCrossRef Curtis AF, Masellis M, Hsiung GYR, Moineddin R, Zhang K, Au B, et al. Sex differences in the prevalence of genetic mutations in FTD and ALS: a meta-analysis. Neurology. 2017;89(15):1633–42.PubMedPubMedCentralCrossRef
103.
go back to reference Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, et al. Sex differences in Alzheimer disease—the gateway to precision medicine. Nat Rev Neurol. 2018;14(8):457–69.PubMedCrossRef Ferretti MT, Iulita MF, Cavedo E, Chiesa PA, Schumacher Dimech A, Santuccione Chadha A, et al. Sex differences in Alzheimer disease—the gateway to precision medicine. Nat Rev Neurol. 2018;14(8):457–69.PubMedCrossRef
104.
go back to reference Reekes TH, Higginson CI, Ledbetter CR, Sathivadivel N, Zweig RM, Disbrow EA. Sex specific cognitive differences in Parkinson disease. npj Parkinson’s Dis. 2020;6(1). Reekes TH, Higginson CI, Ledbetter CR, Sathivadivel N, Zweig RM, Disbrow EA. Sex specific cognitive differences in Parkinson disease. npj Parkinson’s Dis. 2020;6(1).
105.
go back to reference Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332(6028):478–84.PubMedPubMedCentralCrossRef Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332(6028):478–84.PubMedPubMedCentralCrossRef
106.
go back to reference Chen X, Chang J, Deng Q, Xu J, Nguyen TA, Martens LH, et al. Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J Neurosci. 2013;33(21):9202–13.PubMedPubMedCentralCrossRef Chen X, Chang J, Deng Q, Xu J, Nguyen TA, Martens LH, et al. Progranulin does not bind tumor necrosis factor (TNF) receptors and is not a direct regulator of TNF-dependent signaling or bioactivity in immune or neuronal cells. J Neurosci. 2013;33(21):9202–13.PubMedPubMedCentralCrossRef
107.
go back to reference Etemadi N, Webb A, Bankovacki A, Silke J, Nachbur U. Progranulin does not inhibit TNF and lymphotoxin-α signalling through TNF receptor 1. Immunol Cell Biol. 2013;91(10):661–4.PubMedCrossRef Etemadi N, Webb A, Bankovacki A, Silke J, Nachbur U. Progranulin does not inhibit TNF and lymphotoxin-α signalling through TNF receptor 1. Immunol Cell Biol. 2013;91(10):661–4.PubMedCrossRef
108.
go back to reference Lang I, Füllsack S, Wajant H. Lack of evidence for a direct interaction of progranulin and tumor necrosis factor receptor-1 and tumor necrosis factor receptor-2 from cellular binding studies. Front Immunol. 2018;23:9. Lang I, Füllsack S, Wajant H. Lack of evidence for a direct interaction of progranulin and tumor necrosis factor receptor-1 and tumor necrosis factor receptor-2 from cellular binding studies. Front Immunol. 2018;23:9.
109.
go back to reference Hessman CL, Hildebrandt J, Shah A, Brandt S, Bock A, Frye BC, et al. YB-1 interferes with TNFα–TNFR binding and modulates progranulin-mediated inhibition of TNFα signaling. Int J Mol Sci. 2020;21(19):7076–86.PubMedPubMedCentralCrossRef Hessman CL, Hildebrandt J, Shah A, Brandt S, Bock A, Frye BC, et al. YB-1 interferes with TNFα–TNFR binding and modulates progranulin-mediated inhibition of TNFα signaling. Int J Mol Sci. 2020;21(19):7076–86.PubMedPubMedCentralCrossRef
110.
go back to reference Frye BC, Halfter S, Djudjaj S, Muehlenberg P, Weber S, Raffetseder U, et al. Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep. 2009;10(7):783–9.PubMedPubMedCentralCrossRef Frye BC, Halfter S, Djudjaj S, Muehlenberg P, Weber S, Raffetseder U, et al. Y-box protein-1 is actively secreted through a non-classical pathway and acts as an extracellular mitogen. EMBO Rep. 2009;10(7):783–9.PubMedPubMedCentralCrossRef
111.
go back to reference Rauen T, Raffetseder U, Frye B, Djudjaj S, Mühlenberg PJT, Eitner F, et al. YB-1 acts as a ligand for notch-3 receptors and modulates receptor activation. J Biol Chem. 2009;284(39):26928–40.PubMedPubMedCentralCrossRef Rauen T, Raffetseder U, Frye B, Djudjaj S, Mühlenberg PJT, Eitner F, et al. YB-1 acts as a ligand for notch-3 receptors and modulates receptor activation. J Biol Chem. 2009;284(39):26928–40.PubMedPubMedCentralCrossRef
112.
go back to reference Li B, Castano AP, Hudson TE, Nowlin BT, Lin SL, Bonventre JV, et al. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. FASEB J. 2010;24(12):4767–81.PubMedPubMedCentral Li B, Castano AP, Hudson TE, Nowlin BT, Lin SL, Bonventre JV, et al. The melanoma-associated transmembrane glycoprotein Gpnmb controls trafficking of cellular debris for degradation and is essential for tissue repair. FASEB J. 2010;24(12):4767–81.PubMedPubMedCentral
113.
go back to reference Okita Y, Kimura M, Xie R, Chen C, Shen LTW, Kojima Y, et al. The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Sci Signaling. 2017;10(474). Okita Y, Kimura M, Xie R, Chen C, Shen LTW, Kojima Y, et al. The transcription factor MAFK induces EMT and malignant progression of triple-negative breast cancer cells through its target GPNMB. Sci Signaling. 2017;10(474).
114.
go back to reference Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J, et al. Epithelial-mesenchymal transition (EMT): the Type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells. 2021;10(7):1587.PubMedPubMedCentralCrossRef Marconi GD, Fonticoli L, Rajan TS, Pierdomenico SD, Trubiani O, Pizzicannella J, et al. Epithelial-mesenchymal transition (EMT): the Type-2 EMT in wound healing, tissue regeneration and organ fibrosis. Cells. 2021;10(7):1587.PubMedPubMedCentralCrossRef
115.
go back to reference Xie R, Okita Y, Ichikawa Y, Muhammad AF, Tuyen K, PhuongDung ST, et al. Role of the kringle-like domain in glycoprotein NMB for its tumorigenic potential. Cancer Sci. 2019;110(7):2237–46.PubMedPubMedCentralCrossRef Xie R, Okita Y, Ichikawa Y, Muhammad AF, Tuyen K, PhuongDung ST, et al. Role of the kringle-like domain in glycoprotein NMB for its tumorigenic potential. Cancer Sci. 2019;110(7):2237–46.PubMedPubMedCentralCrossRef
117.
go back to reference Marshall J, Nietupski JB, Park H, Cao J, Bangari DS, Silvescu C, et al. Substrate reduction therapy for sandhoff disease through inhibition of glucosylceramide synthase activity. Mol Ther. 2019;27(8):1495–506.PubMedPubMedCentralCrossRef Marshall J, Nietupski JB, Park H, Cao J, Bangari DS, Silvescu C, et al. Substrate reduction therapy for sandhoff disease through inhibition of glucosylceramide synthase activity. Mol Ther. 2019;27(8):1495–506.PubMedPubMedCentralCrossRef
118.
go back to reference Di Liberto G, Egervari K, Kreutzfeldt M, Schürch CM, Hewer E, Wagner I, et al. Neurodegenerative phagocytes mediate synaptic stripping in Neuro-HIV. Brain. 2022;145(8):2730.PubMedPubMedCentralCrossRef Di Liberto G, Egervari K, Kreutzfeldt M, Schürch CM, Hewer E, Wagner I, et al. Neurodegenerative phagocytes mediate synaptic stripping in Neuro-HIV. Brain. 2022;145(8):2730.PubMedPubMedCentralCrossRef
119.
go back to reference Ariizumi K, Chung JS, Dougherty I, Cruz P. Function of DC-HIL on T cell activation syndecan-4 mediates the coinhibitory. J Immunol References. 2007;179(9):5778–84. Ariizumi K, Chung JS, Dougherty I, Cruz P. Function of DC-HIL on T cell activation syndecan-4 mediates the coinhibitory. J Immunol References. 2007;179(9):5778–84.
120.
121.
go back to reference Ramani V, Chung JS, Ariizumi K, Cruz PD. Soluble DC-HIL/Gpnmb modulates T-lymphocyte extravasation to inflamed skin. J Investig Dermatol. 2022;142(5):1372–80.PubMedCrossRef Ramani V, Chung JS, Ariizumi K, Cruz PD. Soluble DC-HIL/Gpnmb modulates T-lymphocyte extravasation to inflamed skin. J Investig Dermatol. 2022;142(5):1372–80.PubMedCrossRef
122.
go back to reference Prabata A, Ikeda K, Rahardini EP, Hirata KI, Emoto N. GPNMB plays a protective role against obesity-related metabolic disorders by reducing macrophage inflammatory capacity. J Biol Chem. 2021;297(5): 101232.PubMedPubMedCentralCrossRef Prabata A, Ikeda K, Rahardini EP, Hirata KI, Emoto N. GPNMB plays a protective role against obesity-related metabolic disorders by reducing macrophage inflammatory capacity. J Biol Chem. 2021;297(5): 101232.PubMedPubMedCentralCrossRef
123.
go back to reference Neal ML, Boyle AM, Budge KM, Safadi FF, Richardson JR. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J Neuroinflammation. 2018;15(1). Neal ML, Boyle AM, Budge KM, Safadi FF, Richardson JR. The glycoprotein GPNMB attenuates astrocyte inflammatory responses through the CD44 receptor. J Neuroinflammation. 2018;15(1).
124.
go back to reference Ono Y, Kazuhiro Tsuruma, Takata M, Masamitsu Shimazawa, Hara H. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep. 2016;6(1). Ono Y, Kazuhiro Tsuruma, Takata M, Masamitsu Shimazawa, Hara H. Glycoprotein nonmetastatic melanoma protein B extracellular fragment shows neuroprotective effects and activates the PI3K/Akt and MEK/ERK pathways via the Na+/K+-ATPase. Sci Rep. 2016;6(1).
125.
go back to reference Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med. 2017;9(385). Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, et al. Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med. 2017;9(385).
126.
go back to reference Mackenzie IRA. The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol. 2007;114(1):49–54.PubMedCrossRef Mackenzie IRA. The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol. 2007;114(1):49–54.PubMedCrossRef
127.
go back to reference Rademakers R, Baker M, Gass J, Adamson J, Huey ED, Momeni P, et al. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol. 2007;6(10):857–68.PubMedCrossRef Rademakers R, Baker M, Gass J, Adamson J, Huey ED, Momeni P, et al. Phenotypic variability associated with progranulin haploinsufficiency in patients with the common 1477C→T (Arg493X) mutation: an international initiative. Lancet Neurol. 2007;6(10):857–68.PubMedCrossRef
128.
go back to reference Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z, Lee WP, et al. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med. 2017;214(9):2611–28.PubMedPubMedCentralCrossRef Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z, Lee WP, et al. Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med. 2017;214(9):2611–28.PubMedPubMedCentralCrossRef
129.
go back to reference Ward ME, Taubes A, Chen R, Miller BL, Sephton CF, Gelfand JM, et al. Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. J Exp Med. 2014;211(10):1937–45.PubMedPubMedCentralCrossRef Ward ME, Taubes A, Chen R, Miller BL, Sephton CF, Gelfand JM, et al. Early retinal neurodegeneration and impaired Ran-mediated nuclear import of TDP-43 in progranulin-deficient FTLD. J Exp Med. 2014;211(10):1937–45.PubMedPubMedCentralCrossRef
130.
go back to reference Marques ARA, Gabriel TL, Aten J, van Roomen CPAA, Ottenhoff R, Claessen N, et al. Gpnmb is a potential marker for the visceral pathology in niemann-pick type C disease. PLoS ONE. 2016;11(1):e0147208.PubMedPubMedCentralCrossRef Marques ARA, Gabriel TL, Aten J, van Roomen CPAA, Ottenhoff R, Claessen N, et al. Gpnmb is a potential marker for the visceral pathology in niemann-pick type C disease. PLoS ONE. 2016;11(1):e0147208.PubMedPubMedCentralCrossRef
131.
go back to reference Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4(1). Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Primers. 2018;4(1).
132.
go back to reference La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on genomics applications for lysosomal storage diseases. Cells. 2020;9(8). La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on genomics applications for lysosomal storage diseases. Cells. 2020;9(8).
133.
go back to reference Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–9.PubMedCrossRef Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–9.PubMedCrossRef
134.
go back to reference Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4.PubMedCrossRef Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4.PubMedCrossRef
135.
go back to reference Sassi C, Capozzo R, Hammer M, Zecca C, Federoff M, Cornelis Blauwendraat, et al. Exploring dementia and neuronal ceroid lipofuscinosis genes in 100 FTD-like patients from 6 towns and rural villages on the Adriatic Sea cost of Apulia. Sci Rep. 2021;11(1). Sassi C, Capozzo R, Hammer M, Zecca C, Federoff M, Cornelis Blauwendraat, et al. Exploring dementia and neuronal ceroid lipofuscinosis genes in 100 FTD-like patients from 6 towns and rural villages on the Adriatic Sea cost of Apulia. Sci Rep. 2021;11(1).
136.
go back to reference Smith Katherine R, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Human Genet. 2012;90(6):1102–7.CrossRef Smith Katherine R, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Human Genet. 2012;90(6):1102–7.CrossRef
137.
go back to reference Benussi L, Binetti G, Sina E, Gigola L, Meitinger T, Ghidoni R. A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neuobiol Aging. 2008;29(3):427–35.CrossRef Benussi L, Binetti G, Sina E, Gigola L, Meitinger T, Ghidoni R. A novel deletion in progranulin gene is associated with FTDP-17 and CBS. Neuobiol Aging. 2008;29(3):427–35.CrossRef
138.
go back to reference Le Ber I, Camuzat A, Hannequin D, Pasquier F, Guedj E, Rovelet-Lecrux A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain J Neurol. 2008;131(Pt 3):732–46.CrossRef Le Ber I, Camuzat A, Hannequin D, Pasquier F, Guedj E, Rovelet-Lecrux A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain J Neurol. 2008;131(Pt 3):732–46.CrossRef
139.
go back to reference Yu CE, Bird TD, Bekris LM, Montine TJ, Leverenz JB, Steinbart E, et al. The spectrum of mutations in progranulin. Arch Neurol. 2010;67(2). Yu CE, Bird TD, Bekris LM, Montine TJ, Leverenz JB, Steinbart E, et al. The spectrum of mutations in progranulin. Arch Neurol. 2010;67(2).
140.
go back to reference Almeida MR, Macário MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging. 2016;41(200):e1-5. Almeida MR, Macário MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging. 2016;41(200):e1-5.
141.
go back to reference Bossolasco P, Cimini S, Maderna E, Bardelli D, Canafoglia L, Cavallaro T, et al. GRN-/- iPSC-derived cortical neurons recapitulate the pathological findings of both frontotemporal lobar degeneration and neuronal ceroidolipofuscinosis. Neurobiol Dis. 2022;175:105891.PubMedCrossRef Bossolasco P, Cimini S, Maderna E, Bardelli D, Canafoglia L, Cavallaro T, et al. GRN-/- iPSC-derived cortical neurons recapitulate the pathological findings of both frontotemporal lobar degeneration and neuronal ceroidolipofuscinosis. Neurobiol Dis. 2022;175:105891.PubMedCrossRef
142.
go back to reference Siintola E. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(6):1438–45.PubMedCrossRef Siintola E. Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain. 2006;129(6):1438–45.PubMedCrossRef
143.
go back to reference Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Brück W, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Human Genet. 2006;78(6):988–98.CrossRef Steinfeld R, Reinhardt K, Schreiber K, Hillebrand M, Kraetzner R, Brück W, et al. Cathepsin D deficiency is associated with a human neurodegenerative disorder. Am J Human Genet. 2006;78(6):988–98.CrossRef
144.
go back to reference Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. Biochimica et Biophysica Acta (BBA) Mol Basis Dis. 2006;1762(10):920–33.CrossRef Kyttälä A, Lahtinen U, Braulke T, Hofmann SL. Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. Biochimica et Biophysica Acta (BBA) Mol Basis Dis. 2006;1762(10):920–33.CrossRef
145.
go back to reference Ahmed Z, Sheng H, Xu Y, Lin WL, Innes AE, Gass J, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177(1):311–24.PubMedPubMedCentralCrossRef Ahmed Z, Sheng H, Xu Y, Lin WL, Innes AE, Gass J, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177(1):311–24.PubMedPubMedCentralCrossRef
146.
go back to reference Ghoshal N, Dearborn JT, Wozniak DF, Cairns NJ. Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis. 2012;45(1):395–408.PubMedCrossRef Ghoshal N, Dearborn JT, Wozniak DF, Cairns NJ. Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis. 2012;45(1):395–408.PubMedCrossRef
147.
go back to reference Petkau TL, Hill A, Leavitt BR. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds. Neuroscience. 2016;315:175–95.PubMedCrossRef Petkau TL, Hill A, Leavitt BR. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds. Neuroscience. 2016;315:175–95.PubMedCrossRef
148.
go back to reference Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 2010;24(12):4639–47.PubMedPubMedCentral Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 2010;24(12):4639–47.PubMedPubMedCentral
149.
go back to reference Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D, et al. Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol. 2012;228(1):67–76.PubMedCrossRef Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D, et al. Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol. 2012;228(1):67–76.PubMedCrossRef
150.
go back to reference Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Investig. 2012;122(11):3955–9.PubMedPubMedCentralCrossRef Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Investig. 2012;122(11):3955–9.PubMedPubMedCentralCrossRef
151.
go back to reference Arrant AE, Filiano AJ, Warmus BA, Hall AM, Roberson ED. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test. Genes Brain Behav. 2016;15(6):588–603.PubMedCrossRef Arrant AE, Filiano AJ, Warmus BA, Hall AM, Roberson ED. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test. Genes Brain Behav. 2016;15(6):588–603.PubMedCrossRef
152.
go back to reference Filiano AJ, Martens LH, Young AJ, Warmus BA, Zhou P, Diaz-Ramirez G, et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci. 2013;33(12):5352–61.PubMedPubMedCentralCrossRef Filiano AJ, Martens LH, Young AJ, Warmus BA, Zhou P, Diaz-Ramirez G, et al. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci. 2013;33(12):5352–61.PubMedPubMedCentralCrossRef
153.
go back to reference Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Karydas AM, et al. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci. 2018;115(12). Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Karydas AM, et al. Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci. 2018;115(12).
154.
go back to reference Frew J, Nygaard HB. Neuropathological and behavioral characterization of aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. Acta Neuropathol Commun. 2021;9(1). Frew J, Nygaard HB. Neuropathological and behavioral characterization of aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. Acta Neuropathol Commun. 2021;9(1).
155.
go back to reference Klein Z, Takahashi H, Ma M, Stagi M, Zhou M, Lam T, et al. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron. 2017;95(2):281-296.e6.PubMedPubMedCentralCrossRef Klein Z, Takahashi H, Ma M, Stagi M, Zhou M, Lam T, et al. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron. 2017;95(2):281-296.e6.PubMedPubMedCentralCrossRef
156.
go back to reference Petkau TL, Blanco J, Leavitt BR. Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice. Neurobiol Dis. 2017;106:14–22.PubMedCrossRef Petkau TL, Blanco J, Leavitt BR. Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice. Neurobiol Dis. 2017;106:14–22.PubMedCrossRef
157.
go back to reference Arrant AE, Filiano AJ, Patel AR, Hoffmann MQ, Boyle NR, Kashyap S, et al. Reduction of microglial progranulin does not exacerbate pathology or behavioral deficits in neuronal progranulin-insufficient mice. Neurobiol Dis. 2019;1(124):152–62.CrossRef Arrant AE, Filiano AJ, Patel AR, Hoffmann MQ, Boyle NR, Kashyap S, et al. Reduction of microglial progranulin does not exacerbate pathology or behavioral deficits in neuronal progranulin-insufficient mice. Neurobiol Dis. 2019;1(124):152–62.CrossRef
158.
go back to reference Petkau TL, Life B, Lu G, Yang JJ, Fornes O, Wasserman WW, et al. Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis. 2021;1(153):105314–24.CrossRef Petkau TL, Life B, Lu G, Yang JJ, Fornes O, Wasserman WW, et al. Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis. 2021;1(153):105314–24.CrossRef
159.
go back to reference Daniel RL, Daniels E, He Z, Bateman A. Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn. 2003;227(4):593–9.PubMedCrossRef Daniel RL, Daniels E, He Z, Bateman A. Progranulin (acrogranin/PC cell-derived growth factor/granulin-epithelin precursor) is expressed in the placenta, epidermis, microvasculature, and brain during murine development. Dev Dyn. 2003;227(4):593–9.PubMedCrossRef
160.
go back to reference Daniel R, He Z, Carmichael KP, Halper J, Bateman A. Cellular localization of gene expression for progranulin. J Histochem Cytochem. 2000;48(7):999–1009.PubMedCrossRef Daniel R, He Z, Carmichael KP, Halper J, Bateman A. Cellular localization of gene expression for progranulin. J Histochem Cytochem. 2000;48(7):999–1009.PubMedCrossRef
161.
go back to reference Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW. Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation. 2007;4(1). Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW. Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation. 2007;4(1).
162.
go back to reference Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochimica et Biophysica Acta (BBA) Mol Basis Dis. 2020;1866(9):165570.CrossRef Nelvagal HR, Lange J, Takahashi K, Tarczyluk-Wells MA, Cooper JD. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochimica et Biophysica Acta (BBA) Mol Basis Dis. 2020;1866(9):165570.CrossRef
163.
go back to reference Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson C, Carlson SR, et al. Transcriptome of HPβCD-treated Niemann-Pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet. 2021;30(24):2456–68.PubMedPubMedCentralCrossRef Rodriguez-Gil JL, Baxter LL, Watkins-Chow DE, Johnson NL, Davidson C, Carlson SR, et al. Transcriptome of HPβCD-treated Niemann-Pick disease type C1 cells highlights GPNMB as a biomarker for therapeutics. Hum Mol Genet. 2021;30(24):2456–68.PubMedPubMedCentralCrossRef
164.
go back to reference Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1). Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1).
165.
go back to reference Sheng J, Su L, Xu Z, Chen G. Progranulin polymorphism rs5848 is associated with increased risk of Alzheimer’s disease. Gene. 2014;542(2):141–5.PubMedCrossRef Sheng J, Su L, Xu Z, Chen G. Progranulin polymorphism rs5848 is associated with increased risk of Alzheimer’s disease. Gene. 2014;542(2):141–5.PubMedCrossRef
166.
go back to reference Xu HM, Tan L, Wan Y, Tan MS, Zhang W, Zheng ZJ, et al. PGRN is associated with late-onset Alzheimer’s disease: a case-control replication study and meta-analysis. Mol Neurobiol. 2016;54(2):1187–95.PubMedCrossRef Xu HM, Tan L, Wan Y, Tan MS, Zhang W, Zheng ZJ, et al. PGRN is associated with late-onset Alzheimer’s disease: a case-control replication study and meta-analysis. Mol Neurobiol. 2016;54(2):1187–95.PubMedCrossRef
167.
go back to reference Mateo I, González-Aramburu I, Pozueta A, Vázquez-Higuera JL, Rodríguez-Rodríguez E, Sánchez-Juan P, et al. Reduced serum progranulin level might be associated with Parkinson’s disease risk. Eur J Neurol. 2013;20(12):1571–3.PubMedCrossRef Mateo I, González-Aramburu I, Pozueta A, Vázquez-Higuera JL, Rodríguez-Rodríguez E, Sánchez-Juan P, et al. Reduced serum progranulin level might be associated with Parkinson’s disease risk. Eur J Neurol. 2013;20(12):1571–3.PubMedCrossRef
168.
go back to reference Coppola G, Karydas A, Rademakers R, Wang Q, Baker M, Hutton M, et al. Gene expression study on peripheral blood identifies progranulin mutations. Ann Neurol. 2008;64(1):92–6.PubMedPubMedCentralCrossRef Coppola G, Karydas A, Rademakers R, Wang Q, Baker M, Hutton M, et al. Gene expression study on peripheral blood identifies progranulin mutations. Ann Neurol. 2008;64(1):92–6.PubMedPubMedCentralCrossRef
169.
go back to reference Cooper YA, Nachun D, Dokuru D, Yang Z, Karydas AM, Serrero G, et al. Progranulin levels in blood in Alzheimer’s disease and mild cognitive impairment. Ann Clin Transl Neurol. 2018;5(5):616–29.PubMedPubMedCentralCrossRef Cooper YA, Nachun D, Dokuru D, Yang Z, Karydas AM, Serrero G, et al. Progranulin levels in blood in Alzheimer’s disease and mild cognitive impairment. Ann Clin Transl Neurol. 2018;5(5):616–29.PubMedPubMedCentralCrossRef
170.
go back to reference Batzu L, Westman E, Pereira JB. Cerebrospinal fluid progranulin is associated with increased cortical thickness in early stages of Alzheimer’s disease. Neurobiol Aging. 2019;88. Batzu L, Westman E, Pereira JB. Cerebrospinal fluid progranulin is associated with increased cortical thickness in early stages of Alzheimer’s disease. Neurobiol Aging. 2019;88.
171.
go back to reference Morenas-Rodríguez E, Cervera-Carles L, Vilaplana E, Alcolea D, Carmona-Iragui M, Dols-Icardo O, et al. Progranulin protein levels in cerebrospinal fluid in primary neurodegenerative dementias. J Alzheimer’s Dis. 2016;50(2):539–46.CrossRef Morenas-Rodríguez E, Cervera-Carles L, Vilaplana E, Alcolea D, Carmona-Iragui M, Dols-Icardo O, et al. Progranulin protein levels in cerebrospinal fluid in primary neurodegenerative dementias. J Alzheimer’s Dis. 2016;50(2):539–46.CrossRef
172.
go back to reference McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease: current evidence and future perspectives. Brain Sci. 2021;11(2):215.PubMedPubMedCentralCrossRef McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, et al. Cerebrospinal fluid biomarkers of Alzheimer’s disease: current evidence and future perspectives. Brain Sci. 2021;11(2):215.PubMedPubMedCentralCrossRef
173.
go back to reference Xu W, Tan CC, Cao XP, Tan L. Neuroinflammation modulates the association of PGRN with cerebral amyloid-β burden. Neurobiol Aging. 2021;103:52–9.PubMedCrossRef Xu W, Tan CC, Cao XP, Tan L. Neuroinflammation modulates the association of PGRN with cerebral amyloid-β burden. Neurobiol Aging. 2021;103:52–9.PubMedCrossRef
174.
go back to reference Suárez‐Calvet M, Capell A, Araque Caballero MÁ, Morenas‐Rodríguez E, Fellerer K, Franzmeier N, et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med. 2018;10(12). Suárez‐Calvet M, Capell A, Araque Caballero MÁ, Morenas‐Rodríguez E, Fellerer K, Franzmeier N, et al. CSF progranulin increases in the course of Alzheimer’s disease and is associated with sTREM2, neurodegeneration and cognitive decline. EMBO Mol Med. 2018;10(12).
175.
go back to reference Mao Q, Zheng X, Gefen T, Rogalski E, Spencer C, Rademakers R, et al. FTLD-TDP with and without GRN mutations cause different patterns of CA1 pathology. J Neuropathol Exp Neurol. 2019;78(9):844–53.PubMedPubMedCentralCrossRef Mao Q, Zheng X, Gefen T, Rogalski E, Spencer C, Rademakers R, et al. FTLD-TDP with and without GRN mutations cause different patterns of CA1 pathology. J Neuropathol Exp Neurol. 2019;78(9):844–53.PubMedPubMedCentralCrossRef
176.
go back to reference Mendsaikhan A, Tooyama I, Walker DG. Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases. Cells. 2019;8(3):230.PubMedPubMedCentralCrossRef Mendsaikhan A, Tooyama I, Walker DG. Microglial progranulin: involvement in Alzheimer’s disease and neurodegenerative diseases. Cells. 2019;8(3):230.PubMedPubMedCentralCrossRef
177.
go back to reference Mendsaikhan A, Tooyama I, Serrano GE, Beach TG, Walker DG. Loss of lysosomal proteins progranulin and prosaposin associated with increased neurofibrillary tangle development in Alzheimer disease. J Neuropathol Exp Neurol. 2021;80(8):741–53.PubMedPubMedCentralCrossRef Mendsaikhan A, Tooyama I, Serrano GE, Beach TG, Walker DG. Loss of lysosomal proteins progranulin and prosaposin associated with increased neurofibrillary tangle development in Alzheimer disease. J Neuropathol Exp Neurol. 2021;80(8):741–53.PubMedPubMedCentralCrossRef
178.
go back to reference Pereson S, Wils H, Kleinberger G, McGowan E, Vandewoestyne M, Van Broeck B, et al. Progranulin expression correlates with dense-core amyloid plaque burden in Alzheimer disease mouse models. J Pathol. 2009;219(2):173–81.PubMedCrossRef Pereson S, Wils H, Kleinberger G, McGowan E, Vandewoestyne M, Van Broeck B, et al. Progranulin expression correlates with dense-core amyloid plaque burden in Alzheimer disease mouse models. J Pathol. 2009;219(2):173–81.PubMedCrossRef
179.
go back to reference Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R, et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat Med. 2014;20(10):1157–64.PubMedPubMedCentralCrossRef Minami SS, Min SW, Krabbe G, Wang C, Zhou Y, Asgarov R, et al. Progranulin protects against amyloid β deposition and toxicity in Alzheimer’s disease mouse models. Nat Med. 2014;20(10):1157–64.PubMedPubMedCentralCrossRef
180.
go back to reference Du H, Ying Wong M, Zhang T, Nunez Santos M, Hsu C, Zhang J, et al. A multifaceted role of progranulin in regulating amyloid-beta dynamics and responses. Life Sci Alliance. 2021;4(7):e202000874–84.PubMedPubMedCentralCrossRef Du H, Ying Wong M, Zhang T, Nunez Santos M, Hsu C, Zhang J, et al. A multifaceted role of progranulin in regulating amyloid-beta dynamics and responses. Life Sci Alliance. 2021;4(7):e202000874–84.PubMedPubMedCentralCrossRef
181.
go back to reference Guan Z, Chen Z, Fu S, Dai L, Shen Y. Progranulin administration attenuates β-amyloid deposition in the hippocampus of 5xFAD mice through modulating BACE1 expression and microglial phagocytosis. Front Cell Neurosci. 2020;18:14. Guan Z, Chen Z, Fu S, Dai L, Shen Y. Progranulin administration attenuates β-amyloid deposition in the hippocampus of 5xFAD mice through modulating BACE1 expression and microglial phagocytosis. Front Cell Neurosci. 2020;18:14.
182.
go back to reference Kampen V, Kay DG. Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer’s disease. PLoS ONE. 2017;12(8):e0182896-e182906.PubMedPubMedCentralCrossRef Kampen V, Kay DG. Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer’s disease. PLoS ONE. 2017;12(8):e0182896-e182906.PubMedPubMedCentralCrossRef
183.
go back to reference Hosokawa M, Arai T, Masuda-Suzukake M, Kondo H, Matsuwaki T, Nishihara M, et al. Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice. J Neuropathol Exp Neurol. 2015;74(2):158–65.PubMedCrossRef Hosokawa M, Arai T, Masuda-Suzukake M, Kondo H, Matsuwaki T, Nishihara M, et al. Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice. J Neuropathol Exp Neurol. 2015;74(2):158–65.PubMedCrossRef
184.
go back to reference Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133(5):785–807.PubMedPubMedCentralCrossRef Takahashi H, Klein ZA, Bhagat SM, Kaufman AC, Kostylev MA, Ikezu T, et al. Opposing effects of progranulin deficiency on amyloid and tau pathologies via microglial TYROBP network. Acta Neuropathol. 2017;133(5):785–807.PubMedPubMedCentralCrossRef
185.
go back to reference Satoh J, Kino Y, Yanaizu M, Ishida T, Saito Y. Microglia express GPNMB in the brains of Alzheimer’s disease and Nasu-Hakola disease. Intractable Rare Dis Res. 2019;8(2):120–8.PubMedPubMedCentralCrossRef Satoh J, Kino Y, Yanaizu M, Ishida T, Saito Y. Microglia express GPNMB in the brains of Alzheimer’s disease and Nasu-Hakola disease. Intractable Rare Dis Res. 2019;8(2):120–8.PubMedPubMedCentralCrossRef
186.
go back to reference Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, et al. Glycoprotein NMB: a novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun. 2018;6(1). Hüttenrauch M, Ogorek I, Klafki H, Otto M, Stadelmann C, Weggen S, et al. Glycoprotein NMB: a novel Alzheimer’s disease associated marker expressed in a subset of activated microglia. Acta Neuropathol Commun. 2018;6(1).
187.
go back to reference Zhu Z, Liu Y, Li X, Zhang L, Liu H, Cui Y, et al. GPNMB mitigates Alzheimer’s disease and enhances autophagy via suppressing the mTOR signal. Neurosci Lett. 2022;767: 136300.PubMedCrossRef Zhu Z, Liu Y, Li X, Zhang L, Liu H, Cui Y, et al. GPNMB mitigates Alzheimer’s disease and enhances autophagy via suppressing the mTOR signal. Neurosci Lett. 2022;767: 136300.PubMedCrossRef
188.
go back to reference Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegeneration. 2020;15(1). Wang H, Dey KK, Chen PC, Li Y, Niu M, Cho JH, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol Neurodegeneration. 2020;15(1).
189.
go back to reference Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(3):17013.PubMedCrossRef Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3(3):17013.PubMedCrossRef
190.
go back to reference Van Kampen JM, Baranowski D, Kay DG. Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson’s disease. PLoS ONE. 2014;9(5):e97032.PubMedPubMedCentralCrossRef Van Kampen JM, Baranowski D, Kay DG. Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson’s disease. PLoS ONE. 2014;9(5):e97032.PubMedPubMedCentralCrossRef
191.
go back to reference Sarkar S, Dammer EB, Malovic E, Olsen AL, Ali Raza S, Gao T, et al. Molecular signatures of neuroinflammation induced by αsynuclein aggregates in microglial cells. Front Immunol. 2020;31:11. Sarkar S, Dammer EB, Malovic E, Olsen AL, Ali Raza S, Gao T, et al. Molecular signatures of neuroinflammation induced by αsynuclein aggregates in microglial cells. Front Immunol. 2020;31:11.
192.
go back to reference Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett P. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson’s disease patients and increases after lysosomal stress. Neurobiol Dis. 2018;1(120):1–11.CrossRef Moloney EB, Moskites A, Ferrari EJ, Isacson O, Hallett P. The glycoprotein GPNMB is selectively elevated in the substantia nigra of Parkinson’s disease patients and increases after lysosomal stress. Neurobiol Dis. 2018;1(120):1–11.CrossRef
193.
go back to reference Smajić S, Prada-Medina CA, Landoulsi Z, Ghelfi J, Delcambre S, Dietrich C, et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain J Neurol. 2022;145(3):964–78.CrossRef Smajić S, Prada-Medina CA, Landoulsi Z, Ghelfi J, Delcambre S, Dietrich C, et al. Single-cell sequencing of human midbrain reveals glial activation and a Parkinson-specific neuronal state. Brain J Neurol. 2022;145(3):964–78.CrossRef
194.
go back to reference Diaz-Ortiz ME, Seo Y, Posavi M, Carceles Cordon M, Clark E, Jain N, et al. GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science. 2022;377(6608). Diaz-Ortiz ME, Seo Y, Posavi M, Carceles Cordon M, Clark E, Jain N, et al. GPNMB confers risk for Parkinson’s disease through interaction with α-synuclein. Science. 2022;377(6608).
195.
go back to reference Brendza RP, Lin H, Stark KL, Foreman O, Tao J, Pierce AA, et al. Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiol Dis. 2021;1(159):105494–504.CrossRef Brendza RP, Lin H, Stark KL, Foreman O, Tao J, Pierce AA, et al. Genetic ablation of Gpnmb does not alter synuclein-related pathology. Neurobiol Dis. 2021;1(159):105494–504.CrossRef
196.
go back to reference Budge KM, Neal ML, Richardson JR, Safadi FF. Transgenic overexpression of GPNMB protects against MPTP-induced neurodegeneration. Mol Neurobiol. 2020;57(7):2920–33.PubMedCrossRef Budge KM, Neal ML, Richardson JR, Safadi FF. Transgenic overexpression of GPNMB protects against MPTP-induced neurodegeneration. Mol Neurobiol. 2020;57(7):2920–33.PubMedCrossRef
197.
go back to reference Ma Y, Matsuwaki T, Keitaro Yamanouchi K, Nishihara M. Progranulin protects hippocampal neurogenesis via suppression of neuroinflammatory responses under acute immune stress. Mol Neurobiol. 2016;54(5):3717–28.PubMedCrossRef Ma Y, Matsuwaki T, Keitaro Yamanouchi K, Nishihara M. Progranulin protects hippocampal neurogenesis via suppression of neuroinflammatory responses under acute immune stress. Mol Neurobiol. 2016;54(5):3717–28.PubMedCrossRef
198.
go back to reference Takahashi K, Nakamura S, Otsu W, Shimazawa M, Hara H. Progranulin deficiency in Iba-1+ myeloid cells exacerbates choroidal neovascularization by perturbation of lysosomal function and abnormal inflammation. J Neuroinflammation. 2021;18(1). Takahashi K, Nakamura S, Otsu W, Shimazawa M, Hara H. Progranulin deficiency in Iba-1+ myeloid cells exacerbates choroidal neovascularization by perturbation of lysosomal function and abnormal inflammation. J Neuroinflammation. 2021;18(1).
199.
go back to reference Götzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G, et al. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol. 2014. Götzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G, et al. Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol. 2014.
200.
go back to reference Hafler BP, Klein ZA, Zhou Z, Strittmatter SM. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice. Brain Res. 2014;1(1588):168–74.CrossRef Hafler BP, Klein ZA, Zhou Z, Strittmatter SM. Progressive retinal degeneration and accumulation of autofluorescent lipopigments in Progranulin deficient mice. Brain Res. 2014;1(1588):168–74.CrossRef
201.
go back to reference Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M. Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun. 2014;2(1). Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M. Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun. 2014;2(1).
202.
go back to reference Götzl JK, Colombo AV, Fellerer K, Reifschneider A, Werner G, Tahirovic S, et al. Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegeneration. 2018;13(1). Götzl JK, Colombo AV, Fellerer K, Reifschneider A, Werner G, Tahirovic S, et al. Early lysosomal maturation deficits in microglia triggers enhanced lysosomal activity in other brain cells of progranulin knockout mice. Mol Neurodegeneration. 2018;13(1).
203.
go back to reference Wang C, Zhang L, Ndong JDLC, Hettinghouse A, Sun G, Chen C, et al. Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice. J Neuroinflammation. 2019;16(1). Wang C, Zhang L, Ndong JDLC, Hettinghouse A, Sun G, Chen C, et al. Progranulin deficiency exacerbates spinal cord injury by promoting neuroinflammation and cell apoptosis in mice. J Neuroinflammation. 2019;16(1).
204.
go back to reference Yu Y, Xu X, Liu L, Mao S, Feng T, Lu Y, et al. Progranulin deficiency leads to severe inflammation, lung injury and cell death in a mouse model of endotoxic shock. J Cell Mol Med. 2016;20(3):506–17.PubMedPubMedCentralCrossRef Yu Y, Xu X, Liu L, Mao S, Feng T, Lu Y, et al. Progranulin deficiency leads to severe inflammation, lung injury and cell death in a mouse model of endotoxic shock. J Cell Mol Med. 2016;20(3):506–17.PubMedPubMedCentralCrossRef
205.
go back to reference Zhang T, Feng T, Wu K, Guo J, Nana AL, Yang G, et al. Progranulin deficiency results in sex-dependent alterations in microglia in response to demyelination. Acta Neuropathol. 2023;146(1):97–119.PubMedPubMedCentralCrossRef Zhang T, Feng T, Wu K, Guo J, Nana AL, Yang G, et al. Progranulin deficiency results in sex-dependent alterations in microglia in response to demyelination. Acta Neuropathol. 2023;146(1):97–119.PubMedPubMedCentralCrossRef
206.
go back to reference Du H, Cha Y, Nana AL, Seeley WW, Smolka MB, Hu F. Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation. bioRxiv (Cold Spring Harbor Laboratory). 2023; Du H, Cha Y, Nana AL, Seeley WW, Smolka MB, Hu F. Progranulin inhibits phospholipase sPLA2-IIA to control neuroinflammation. bioRxiv (Cold Spring Harbor Laboratory). 2023;
207.
go back to reference Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell. 2021;184(18):4651-4668.e25.PubMedPubMedCentralCrossRef Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, et al. Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell. 2021;184(18):4651-4668.e25.PubMedPubMedCentralCrossRef
208.
go back to reference Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, et al. Biochemical, biomarker, and behavioral characterization of theGrnR493Xmouse model of frontotemporal dementia. bioRxiv (Cold Spring Harbor Laboratory). 2023; Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, et al. Biochemical, biomarker, and behavioral characterization of theGrnR493Xmouse model of frontotemporal dementia. bioRxiv (Cold Spring Harbor Laboratory). 2023;
209.
go back to reference Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res. 2007;185(2):110–8.PubMedCrossRef Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, et al. Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res. 2007;185(2):110–8.PubMedCrossRef
210.
go back to reference Zhang J, Velmeshev D, Hashimoto K, Huang YH, Hofmann JW, Shi X, et al. Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature. 2020;588(7838):459–65.PubMedPubMedCentralCrossRef Zhang J, Velmeshev D, Hashimoto K, Huang YH, Hofmann JW, Shi X, et al. Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature. 2020;588(7838):459–65.PubMedPubMedCentralCrossRef
211.
go back to reference Arrant AE, Onyilo VC, Unger DE, Roberson ED. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018;38(9):2341–58.PubMedPubMedCentralCrossRef Arrant AE, Onyilo VC, Unger DE, Roberson ED. Progranulin gene therapy improves lysosomal dysfunction and microglial pathology associated with frontotemporal dementia and neuronal ceroid lipofuscinosis. J Neurosci. 2018;38(9):2341–58.PubMedPubMedCentralCrossRef
213.
go back to reference Root J, Mendsaikhan A, Nandy S, Taylor G, Wang M, Troiano Araujo L, et al. Granulins rescue inflammation, lysosome dysfunction, and neuropathology in a mouse model of progranulin deficiency. bioRxiv (Cold Spring Harbor Laboratory). 2023; Root J, Mendsaikhan A, Nandy S, Taylor G, Wang M, Troiano Araujo L, et al. Granulins rescue inflammation, lysosome dysfunction, and neuropathology in a mouse model of progranulin deficiency. bioRxiv (Cold Spring Harbor Laboratory). 2023;
215.
go back to reference Heckman LD, Burstein SR, Brandes A, Wong LC, Yang Z, Lin H, et al. Preclinical development of PR006, a gene therapy for the treatment of frontotemporal dementia with progranulin mutations. Alzheimer’s & Dementia. 2020;16(S2). Heckman LD, Burstein SR, Brandes A, Wong LC, Yang Z, Lin H, et al. Preclinical development of PR006, a gene therapy for the treatment of frontotemporal dementia with progranulin mutations. Alzheimer’s & Dementia. 2020;16(S2).
218.
go back to reference Arechavaleta-Velasco F, Perez-Juarez CE, Gerton GL, Diaz-Cueto L. Progranulin and its biological effects in cancer. Med Oncol. 2017;34(12). Arechavaleta-Velasco F, Perez-Juarez CE, Gerton GL, Diaz-Cueto L. Progranulin and its biological effects in cancer. Med Oncol. 2017;34(12).
219.
go back to reference Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, et al. Progranulin oncogenic network in solid tumors. Cancers. 2023;15(6):1706–16.PubMedPubMedCentralCrossRef Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, et al. Progranulin oncogenic network in solid tumors. Cancers. 2023;15(6):1706–16.PubMedPubMedCentralCrossRef
220.
go back to reference Purrahman D, Mahmoudian-Sani MR, Saki N, Wojdasiewicz P, Kurkowska-Jastrzębska I, Poniatowski ŁA. Involvement of progranulin (PGRN) in the pathogenesis and prognosis of breast cancer. Cytokine. 2022;151: 155803.PubMedCrossRef Purrahman D, Mahmoudian-Sani MR, Saki N, Wojdasiewicz P, Kurkowska-Jastrzębska I, Poniatowski ŁA. Involvement of progranulin (PGRN) in the pathogenesis and prognosis of breast cancer. Cytokine. 2022;151: 155803.PubMedCrossRef
221.
go back to reference Yabe K, Yamamoto Y, Takemura M, Hara T, Tsurumi H, Serrero G, et al. Progranulin depletion inhibits proliferation via the transforming growth factor beta/SMAD family member 2 signaling axis in Kasumi-1 cells. Heliyon. 2021;7(1):e05849-e5859.PubMedPubMedCentralCrossRef Yabe K, Yamamoto Y, Takemura M, Hara T, Tsurumi H, Serrero G, et al. Progranulin depletion inhibits proliferation via the transforming growth factor beta/SMAD family member 2 signaling axis in Kasumi-1 cells. Heliyon. 2021;7(1):e05849-e5859.PubMedPubMedCentralCrossRef
222.
go back to reference Khan SA, Sun Z, Dahlberg SE, Malhotra J, Keresztes R, Ikpeazu C, et al. Efficacy and safety of glembatumumab vedotin in patients with advanced or metastatic squamous cell carcinoma of the lung (PrECOG 0504). JTO Clin Res Rep. 2021;2(5):100166–76.PubMedPubMedCentral Khan SA, Sun Z, Dahlberg SE, Malhotra J, Keresztes R, Ikpeazu C, et al. Efficacy and safety of glembatumumab vedotin in patients with advanced or metastatic squamous cell carcinoma of the lung (PrECOG 0504). JTO Clin Res Rep. 2021;2(5):100166–76.PubMedPubMedCentral
223.
go back to reference Kopp LM, Malempati S, Krailo M, Gao Y, Buxton A, Weigel BJ, et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody–drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: a report from the Children’s Oncology Group. Eur J Cancer. 2019;121:177–83.PubMedPubMedCentralCrossRef Kopp LM, Malempati S, Krailo M, Gao Y, Buxton A, Weigel BJ, et al. Phase II trial of the glycoprotein non-metastatic B-targeted antibody–drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: a report from the Children’s Oncology Group. Eur J Cancer. 2019;121:177–83.PubMedPubMedCentralCrossRef
224.
go back to reference Jin R, Jin Y, Tang Y, Yang H, Zhou X, Lei Z. GPNMB silencing suppresses the proliferation and metastasis of osteosarcoma cells by blocking the PI3K/Akt/mTOR signaling pathway. Oncol Rep. 2018; Jin R, Jin Y, Tang Y, Yang H, Zhou X, Lei Z. GPNMB silencing suppresses the proliferation and metastasis of osteosarcoma cells by blocking the PI3K/Akt/mTOR signaling pathway. Oncol Rep. 2018;
Metadata
Title
Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease
Authors
Drew A. Gillett
Rebecca L. Wallings
Oihane Uriarte Huarte
Malú Gámez Tansey
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2023
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-023-02965-w

Other articles of this Issue 1/2023

Journal of Neuroinflammation 1/2023 Go to the issue