Skip to main content
Top
Published in: European Journal of Medical Research 1/2017

Open Access 01-12-2017 | Research

Using automated texture features to determine the probability for masking of a tumor on mammography, but not ultrasound

Authors: Lothar Häberle, Carolin C.  Hack, Katharina Heusinger, Florian Wagner, Sebastian M. Jud, Michael Uder, Matthias W.  Beckmann, Rüdiger Schulz-Wendtland, Thomas Wittenberg, Peter A.  Fasching

Published in: European Journal of Medical Research | Issue 1/2017

Login to get access

Abstract

Background

Tumors in radiologically dense breast were overlooked on mammograms more often than tumors in low-density breasts. A fast reproducible and automated method of assessing percentage mammographic density (PMD) would be desirable to support decisions whether ultrasonography should be provided for women in addition to mammography in diagnostic mammography units. PMD assessment has still not been included in clinical routine work, as there are issues of interobserver variability and the procedure is quite time consuming. This study investigated whether fully automatically generated texture features of mammograms can replace time-consuming semi-automatic PMD assessment to predict a patient’s risk of having an invasive breast tumor that is visible on ultrasound but masked on mammography (mammography failure).

Methods

This observational study included 1334 women with invasive breast cancer treated at a hospital-based diagnostic mammography unit. Ultrasound was available for the entire cohort as part of routine diagnosis. Computer-based threshold PMD assessments (“observed PMD”) were carried out and 363 texture features were obtained from each mammogram. Several variable selection and regression techniques (univariate selection, lasso, boosting, random forest) were applied to predict PMD from the texture features. The predicted PMD values were each used as new predictor for masking in logistic regression models together with clinical predictors. These four logistic regression models with predicted PMD were compared among themselves and with a logistic regression model with observed PMD. The most accurate masking prediction was determined by cross-validation.

Results

About 120 of the 363 texture features were selected for predicting PMD. Density predictions with boosting were the best substitute for observed PMD to predict masking. Overall, the corresponding logistic regression model performed better (cross-validated AUC, 0.747) than one without mammographic density (0.734), but less well than the one with the observed PMD (0.753). However, in patients with an assigned mammography failure risk >10%, covering about half of all masked tumors, the boosting-based model performed at least as accurately as the original PMD model.

Conclusion

Automatically generated texture features can replace semi-automatically determined PMD in a prediction model for mammography failure, such that more than 50% of masked tumors could be discovered.
Literature
1.
go back to reference Sharpe R, Levin D, Rao V, Parker L. Breast imaging utilization trends in the medicare population from 2005 to 2011. Conference: Radiological Society of North America 2013 Scientific Assembly and Annual Meeting. 2013. Sharpe R, Levin D, Rao V, Parker L. Breast imaging utilization trends in the medicare population from 2005 to 2011. Conference: Radiological Society of North America 2013 Scientific Assembly and Annual Meeting. 2013.
2.
go back to reference Häberle L, Fasching PA, Brehm B, Heusinger K, Jud SM, Loehberg CR, Hack CC, Bayer CM, Lux MP, Hartmann A, Vachon C, Meier-Meitinger M, Uder M, Beckmann MW, Schulz-Wendtland R. Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography. Int J Cancer. 2016;139:1967–74.CrossRefPubMed Häberle L, Fasching PA, Brehm B, Heusinger K, Jud SM, Loehberg CR, Hack CC, Bayer CM, Lux MP, Hartmann A, Vachon C, Meier-Meitinger M, Uder M, Beckmann MW, Schulz-Wendtland R. Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography. Int J Cancer. 2016;139:1967–74.CrossRefPubMed
3.
go back to reference Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM, Marques HS, Boparai K. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.CrossRefPubMedPubMedCentral Berg WA, Blume JD, Cormack JB, Mendelson EB, Lehrer D, Bohm-Velez M, Pisano ED, Jong RA, Evans WP, Morton MJ, Mahoney MC, Larsen LH, Barr RG, Farria DM, Marques HS, Boparai K. Combined screening with ultrasound and mammography vs mammography alone in women at elevated risk of breast cancer. JAMA. 2008;299(18):2151–63.CrossRefPubMedPubMedCentral
4.
go back to reference Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225(1):165–75.CrossRefPubMed Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology. 2002;225(1):165–75.CrossRefPubMed
5.
go back to reference Brandt KR, Scott CG, Ma L, Mahmoudzadeh AP, Jensen MR, Whaley DH, Wu FF, Malkov S, Hruska CB, Norman AD, Heine J, Shepherd J, Pankratz VS, Kerlikowske K, Vachon CM. Comparison of clinical and automated breast density measurements: implications for risk prediction and supplemental screening. Radiology. 2016;279(3):710–9.CrossRefPubMed Brandt KR, Scott CG, Ma L, Mahmoudzadeh AP, Jensen MR, Whaley DH, Wu FF, Malkov S, Hruska CB, Norman AD, Heine J, Shepherd J, Pankratz VS, Kerlikowske K, Vachon CM. Comparison of clinical and automated breast density measurements: implications for risk prediction and supplemental screening. Radiology. 2016;279(3):710–9.CrossRefPubMed
6.
go back to reference Destounis S, Arieno A, Morgan R, Roberts C, Chan A. Qualitative versus quantitative mammographic breast density assessment: applications for the US and Abroad. Diagnostics. 2017;7(2):30.CrossRefPubMedCentral Destounis S, Arieno A, Morgan R, Roberts C, Chan A. Qualitative versus quantitative mammographic breast density assessment: applications for the US and Abroad. Diagnostics. 2017;7(2):30.CrossRefPubMedCentral
7.
go back to reference Häberle L, Wagner F, Fasching PA, Jud SM, Heusinger K, Loehberg CR, Hein A, Bayer CM, Hack CC, Lux MP, Binder K, Elter M, Munzenmayer C, Schulz-Wendtland R, Meier-Meitinger M, Adamietz BR, Uder M, Beckmann MW, Wittenberg T. Characterizing mammographic images by using generic texture features. Breast Cancer Res. 2012;14(2):R59.CrossRefPubMedPubMedCentral Häberle L, Wagner F, Fasching PA, Jud SM, Heusinger K, Loehberg CR, Hein A, Bayer CM, Hack CC, Lux MP, Binder K, Elter M, Munzenmayer C, Schulz-Wendtland R, Meier-Meitinger M, Adamietz BR, Uder M, Beckmann MW, Wittenberg T. Characterizing mammographic images by using generic texture features. Breast Cancer Res. 2012;14(2):R59.CrossRefPubMedPubMedCentral
8.
go back to reference Heine JJ, Carston MJ, Scott CG, Brandt KR, Wu FF, Pankratz VS, Sellers TA, Vachon CM. An automated approach for estimation of breast density. Cancer Epidemiol, Biomark Prev. 2008;17(11):3090–7.CrossRef Heine JJ, Carston MJ, Scott CG, Brandt KR, Wu FF, Pankratz VS, Sellers TA, Vachon CM. An automated approach for estimation of breast density. Cancer Epidemiol, Biomark Prev. 2008;17(11):3090–7.CrossRef
9.
go back to reference Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR, Sellers TA, Vachon CM, Cerhan JR. Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol Biomark Prev. 2009;18(3):837–45.CrossRef Manduca A, Carston MJ, Heine JJ, Scott CG, Pankratz VS, Brandt KR, Sellers TA, Vachon CM, Cerhan JR. Texture features from mammographic images and risk of breast cancer. Cancer Epidemiol Biomark Prev. 2009;18(3):837–45.CrossRef
10.
go back to reference Heine JJ, Scott CG, Sellers TA, Brandt KR, Serie DJ, Wu FF, Morton MJ, Schueler BA, Couch FJ, Olson JE, Pankratz VS, Vachon CM. A novel automated mammographic density measure and breast cancer risk. J Natl Cancer Inst. 2012;104(13):1028–37.CrossRefPubMedPubMedCentral Heine JJ, Scott CG, Sellers TA, Brandt KR, Serie DJ, Wu FF, Morton MJ, Schueler BA, Couch FJ, Olson JE, Pankratz VS, Vachon CM. A novel automated mammographic density measure and breast cancer risk. J Natl Cancer Inst. 2012;104(13):1028–37.CrossRefPubMedPubMedCentral
11.
go back to reference Olson JE, Sellers TA, Scott CG, Schueler BA, Brandt KR, Serie DJ, Jensen MR, Wu FF, Morton MJ, Heine JJ, Couch FJ, Pankratz VS, Vachon CM. The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo Mammography Health Study cohort. Breast Cancer Res. 2012;14(6):R147.CrossRefPubMedPubMedCentral Olson JE, Sellers TA, Scott CG, Schueler BA, Brandt KR, Serie DJ, Jensen MR, Wu FF, Morton MJ, Heine JJ, Couch FJ, Pankratz VS, Vachon CM. The influence of mammogram acquisition on the mammographic density and breast cancer association in the Mayo Mammography Health Study cohort. Breast Cancer Res. 2012;14(6):R147.CrossRefPubMedPubMedCentral
12.
go back to reference Fowler EE, Vachon CM, Scott CG, Sellers TA, Heine JJ. Automated percentage of breast density measurements for full-field digital mammography applications. Acad Radiol. 2014;21(8):958–70.CrossRefPubMedPubMedCentral Fowler EE, Vachon CM, Scott CG, Sellers TA, Heine JJ. Automated percentage of breast density measurements for full-field digital mammography applications. Acad Radiol. 2014;21(8):958–70.CrossRefPubMedPubMedCentral
13.
go back to reference Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal textures analysis in breast cancer risk assessment. Breast Cancer Res. 2016;18:91.CrossRefPubMedPubMedCentral Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal textures analysis in breast cancer risk assessment. Breast Cancer Res. 2016;18:91.CrossRefPubMedPubMedCentral
14.
go back to reference Winkel RR, von Euler-Chelpin M, Nielsen M, Petersen K, Lillholm M, Nielsen MB, Lynge E, Uldall WY, Vejborg I. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case–control study. BMC Cancer. 2016;16:414.CrossRefPubMedPubMedCentral Winkel RR, von Euler-Chelpin M, Nielsen M, Petersen K, Lillholm M, Nielsen MB, Lynge E, Uldall WY, Vejborg I. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case–control study. BMC Cancer. 2016;16:414.CrossRefPubMedPubMedCentral
15.
go back to reference Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, Vachon CM, Holland K, Winkel RR, Karssemeijer N, Lillholm M. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35(5):1322–31.CrossRefPubMed Kallenberg M, Petersen K, Nielsen M, Ng AY, Diao P, Igel C, Vachon CM, Holland K, Winkel RR, Karssemeijer N, Lillholm M. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging. 2016;35(5):1322–31.CrossRefPubMed
16.
go back to reference Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, Bertrand KA, Couch F, Jensen MR, Mahmoudzadeh AP, Fan B, Norman A, Brandt KR, Pankratz VS, Vachon CM, Kerlikowske K. Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status. Breast Cancer Res. 2016;18(1):122.CrossRefPubMedPubMedCentral Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, Bertrand KA, Couch F, Jensen MR, Mahmoudzadeh AP, Fan B, Norman A, Brandt KR, Pankratz VS, Vachon CM, Kerlikowske K. Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status. Breast Cancer Res. 2016;18(1):122.CrossRefPubMedPubMedCentral
17.
go back to reference Beckmann MW, Brucker C, Hanf V, Rauh C, Bani MR, Knob S, Petsch S, Schick S, Fasching PA, Hartmann A, Lux MP, Haberle L. Quality assured health care in certified breast centers and improvement of the prognosis of breast cancer patients. Onkologie. 2011;34(7):362–7.CrossRefPubMed Beckmann MW, Brucker C, Hanf V, Rauh C, Bani MR, Knob S, Petsch S, Schick S, Fasching PA, Hartmann A, Lux MP, Haberle L. Quality assured health care in certified breast centers and improvement of the prognosis of breast cancer patients. Onkologie. 2011;34(7):362–7.CrossRefPubMed
18.
go back to reference Ursin G, Astrahan MA, Salane M, Parisky YR, Pearce JG, Daniels JR, Pike MC, Spicer DV. The detection of changes in mammographic densities. Cancer Epidemiol Biomark Prev. 1998;7(1):43–7. Ursin G, Astrahan MA, Salane M, Parisky YR, Pearce JG, Daniels JR, Pike MC, Spicer DV. The detection of changes in mammographic densities. Cancer Epidemiol Biomark Prev. 1998;7(1):43–7.
19.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol). 1996;58:267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol). 1996;58:267–88.
20.
go back to reference Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.CrossRef Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.CrossRef
21.
go back to reference Bühlmann P, Hothorn T. Boosting algorithms: regularization, prediction and model fitting. Stat Sci. 2007;22:477–505.CrossRef Bühlmann P, Hothorn T. Boosting algorithms: regularization, prediction and model fitting. Stat Sci. 2007;22:477–505.CrossRef
23.
go back to reference Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21.CrossRefPubMed Pencina MJ, D’Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11–21.CrossRefPubMed
24.
go back to reference Bovelstad HM, Nygard S, Storvold HL, Aldrin M, Borgan O, Frigessi A, Lingjaerde OC. Predicting survival from microarray data–a comparative study. Bioinformatics. 2007;23(16):2080–7.CrossRefPubMed Bovelstad HM, Nygard S, Storvold HL, Aldrin M, Borgan O, Frigessi A, Lingjaerde OC. Predicting survival from microarray data–a comparative study. Bioinformatics. 2007;23(16):2080–7.CrossRefPubMed
26.
go back to reference Kerlikowske K, Zhu W, Tosteson AN, Sprague BL, Tice JA, Lehman CD, Miglioretti DL, Breast Cancer Surveillance C. Identifying women with dense breasts at high risk for interval cancer: a cohort study. Ann Intern Med. 2015;162(10):673–81.CrossRefPubMedPubMedCentral Kerlikowske K, Zhu W, Tosteson AN, Sprague BL, Tice JA, Lehman CD, Miglioretti DL, Breast Cancer Surveillance C. Identifying women with dense breasts at high risk for interval cancer: a cohort study. Ann Intern Med. 2015;162(10):673–81.CrossRefPubMedPubMedCentral
27.
go back to reference Häberle L, Hein A, Rübner M, Schneider M, Ekici AB, Gass P, Hartmann A, Schulz-Wendtland R, Beckmann MW, Lo WY, Schroth W, Brauch H, Fasching PA, Wunderle M. Predicting triple-negative breast cancer subtype using multiple single nucleotide polymorphisms for breast cancer risk and several variable selection methods. Geburtshilfe Frauenheilkd. 2017;77(6):667–78.CrossRefPubMedPubMedCentral Häberle L, Hein A, Rübner M, Schneider M, Ekici AB, Gass P, Hartmann A, Schulz-Wendtland R, Beckmann MW, Lo WY, Schroth W, Brauch H, Fasching PA, Wunderle M. Predicting triple-negative breast cancer subtype using multiple single nucleotide polymorphisms for breast cancer risk and several variable selection methods. Geburtshilfe Frauenheilkd. 2017;77(6):667–78.CrossRefPubMedPubMedCentral
28.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sanchez CI. A survey on deep learning in medical image analysis. arXiv preprint arXiv:1702.05747. 2017. Litjens G, Kooi T, Bejnordi BE, Setio AA, Ciompi F, Ghafoorian M, van der Laak JA, van Ginneken B, Sanchez CI. A survey on deep learning in medical image analysis. arXiv preprint arXiv:​1702.​05747. 2017.
29.
go back to reference Wessels LF, Reinders MJ, Hart AA, Veenman CJ, Dai H, He YD, van’t Veer LJ. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics. 2005;21(19):3755–62.CrossRefPubMed Wessels LF, Reinders MJ, Hart AA, Veenman CJ, Dai H, He YD, van’t Veer LJ. A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics. 2005;21(19):3755–62.CrossRefPubMed
30.
go back to reference Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006;7:91.CrossRef Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006;7:91.CrossRef
31.
go back to reference Schild RL, Maringa M, Siemer J, Meurer B, Hart N, Goecke TW, Schmid M, Hothorn T, Hansmann ME. Weight estimation by three-dimensional ultrasound imaging in the small fetus. Ultrasound Obstet Gynecol. 2008;32(2):168–75.CrossRefPubMed Schild RL, Maringa M, Siemer J, Meurer B, Hart N, Goecke TW, Schmid M, Hothorn T, Hansmann ME. Weight estimation by three-dimensional ultrasound imaging in the small fetus. Ultrasound Obstet Gynecol. 2008;32(2):168–75.CrossRefPubMed
Metadata
Title
Using automated texture features to determine the probability for masking of a tumor on mammography, but not ultrasound
Authors
Lothar Häberle
Carolin C.  Hack
Katharina Heusinger
Florian Wagner
Sebastian M. Jud
Michael Uder
Matthias W.  Beckmann
Rüdiger Schulz-Wendtland
Thomas Wittenberg
Peter A.  Fasching
Publication date
01-12-2017
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2017
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-017-0270-0

Other articles of this Issue 1/2017

European Journal of Medical Research 1/2017 Go to the issue