Skip to main content
Top
Published in: Breast Cancer Research 6/2012

Open Access 01-12-2012 | Research article

The influence of mammogram acquisition on the mammographic density and breast cancer association in the mayo mammography health study cohort

Authors: Janet E Olson, Thomas A Sellers, Christopher G Scott, Beth A Schueler, Kathleen R Brandt, Daniel J Serie, Matthew R Jensen, Fang-Fang Wu, Marilyn J Morton, John J Heine, Fergus J Couch, V Shane Pankratz, Celine M Vachon

Published in: Breast Cancer Research | Issue 6/2012

Login to get access

Abstract

Introduction

Mammographic density is a strong risk factor for breast cancer. Image acquisition technique varies across mammograms to limit radiation and produce a clinically useful image. We examined whether acquisition technique parameters at the time of mammography were associated with mammographic density and whether the acquisition parameters confounded the density and breast cancer association.

Methods

We examined this question within the Mayo Mammography Health Study (MMHS) cohort, comprised of 19,924 women (51.2% of eligible) seen in the Mayo Clinic mammography screening practice from 2003 to 2006. A case-cohort design, comprising 318 incident breast cancers diagnosed through December 2009 and a random subcohort of 2,259, was used to examine potential confounding of mammogram acquisition technique parameters (x-ray tube voltage peak (kVp), milliampere-seconds (mAs), thickness and compression force) on the density and breast cancer association. The Breast Imaging Reporting and Data System four-category tissue composition measure (BI-RADS) and percent density (PD) (Cumulus program) were estimated from screen-film mammograms at time of enrollment. Spearman correlation coefficients (r) and means (standard deviations) were used to examine the relationship of density measures with acquisition parameters. Hazard ratios (HR) and C-statistics were estimated using Cox proportional hazards regression, adjusting for age, menopausal status, body mass index and postmenopausal hormones. A change in the HR of at least 15% indicated confounding.

Results

Adjusted PD and BI-RADS density were associated with breast cancer (p-trends < 0.001), with a 3 to 4-fold increased risk in the extremely dense vs. fatty BI-RADS categories (HR: 3.0, 95% CI, 1.7 - 5.1) and the ≥ 25% vs. ≤ 5% PD categories (HR: 3.8, 95% CI, 2.5 - 5.9). Of the acquisition parameters, kVp was not correlated with PD (r = 0.04, p = 0.07). Although thickness (r = -0.27, p < 0.001), compression force (r = -0.16, p < 0.001), and mAs (r = -0.06, p = 0.008) were inversely correlated with PD, they did not confound the PD or BI-RADS associations with breast cancer and their inclusion did not improve discriminatory accuracy. Results were similar for associations of dense and non-dense area with breast cancer.

Conclusions

We confirmed a strong association between mammographic density and breast cancer risk that was not confounded by mammogram acquisition technique.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kelemen LE, Pankratz VS, Sellers TA, Brandt KR, Wang A, Janney C, Fredericksen ZS, Cerhan JR, Vachon CM: Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study. Am J Epidemiol. 2008, 167: 1027-1036. 10.1093/aje/kwn063.CrossRefPubMed Kelemen LE, Pankratz VS, Sellers TA, Brandt KR, Wang A, Janney C, Fredericksen ZS, Cerhan JR, Vachon CM: Age-specific trends in mammographic density: the Minnesota Breast Cancer Family Study. Am J Epidemiol. 2008, 167: 1027-1036. 10.1093/aje/kwn063.CrossRefPubMed
2.
go back to reference Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA: Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000, 11: 653-662. 10.1023/A:1008926607428.CrossRefPubMed Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA: Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control. 2000, 11: 653-662. 10.1023/A:1008926607428.CrossRefPubMed
3.
go back to reference McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006, 15: 1159-1169. 10.1158/1055-9965.EPI-06-0034.CrossRefPubMed McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006, 15: 1159-1169. 10.1158/1055-9965.EPI-06-0034.CrossRefPubMed
4.
go back to reference Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S: Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010, 102: 1224-1237. 10.1093/jnci/djq239.CrossRefPubMedPubMedCentral Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S: Breast tissue composition and susceptibility to breast cancer. J Natl Cancer Inst. 2010, 102: 1224-1237. 10.1093/jnci/djq239.CrossRefPubMedPubMedCentral
5.
go back to reference Tice JA, Cummings SR, Ziv E, Kerlikowske K: Mammographic breast density and the gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat. 2005, 94: 115-122. 10.1007/s10549-005-5152-4.CrossRefPubMed Tice JA, Cummings SR, Ziv E, Kerlikowske K: Mammographic breast density and the gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat. 2005, 94: 115-122. 10.1007/s10549-005-5152-4.CrossRefPubMed
6.
go back to reference Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K: Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomarkers Prev. 2004, 13: 2090-2095.PubMed Ziv E, Tice J, Smith-Bindman R, Shepherd J, Cummings S, Kerlikowske K: Mammographic density and estrogen receptor status of breast cancer. Cancer Epidemiol Biomarkers Prev. 2004, 13: 2090-2095.PubMed
7.
go back to reference Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ: The quantitative analysis of mammographic densities. Phys Med Biol. 1994, 39: 1629-1638. 10.1088/0031-9155/39/10/008.CrossRefPubMed Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ: The quantitative analysis of mammographic densities. Phys Med Biol. 1994, 39: 1629-1638. 10.1088/0031-9155/39/10/008.CrossRefPubMed
8.
go back to reference Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ: Automated analysis of mammographic densities. Phys Med Biol. 1996, 41: 909-923. 10.1088/0031-9155/41/5/007.CrossRefPubMed Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ: Automated analysis of mammographic densities. Phys Med Biol. 1996, 41: 909-923. 10.1088/0031-9155/41/5/007.CrossRefPubMed
9.
go back to reference Cummings SR, Tice JA, Bauer S, Browner WS, Cuzick J, Ziv E, Vogel V, Shepherd J, Vachon C, Smith-Bindman R, Kerlikowske K: Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J Natl Cancer Inst. 2009, 101: 384-398. 10.1093/jnci/djp018.CrossRefPubMedPubMedCentral Cummings SR, Tice JA, Bauer S, Browner WS, Cuzick J, Ziv E, Vogel V, Shepherd J, Vachon C, Smith-Bindman R, Kerlikowske K: Prevention of breast cancer in postmenopausal women: approaches to estimating and reducing risk. J Natl Cancer Inst. 2009, 101: 384-398. 10.1093/jnci/djp018.CrossRefPubMedPubMedCentral
10.
go back to reference Heine JJ, Fowler EE, Flowers CI: Full field digital mammography and breast density: comparison of calibrated and noncalibrated measurements. Acad Radiol. 2011, 18: 1430-1436. 10.1016/j.acra.2011.07.011.CrossRefPubMedPubMedCentral Heine JJ, Fowler EE, Flowers CI: Full field digital mammography and breast density: comparison of calibrated and noncalibrated measurements. Acad Radiol. 2011, 18: 1430-1436. 10.1016/j.acra.2011.07.011.CrossRefPubMedPubMedCentral
11.
go back to reference Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J, Malkov S, Vittinghoff E, Cummings SR: Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2011, 20: 1473-1482. 10.1158/1055-9965.EPI-10-1150.CrossRefPubMedPubMedCentral Shepherd JA, Kerlikowske K, Ma L, Duewer F, Fan B, Wang J, Malkov S, Vittinghoff E, Cummings SR: Volume of mammographic density and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2011, 20: 1473-1482. 10.1158/1055-9965.EPI-10-1150.CrossRefPubMedPubMedCentral
12.
go back to reference Boyd N, Martin L, Gunasekara A, Melnichouk O, Maudsley G, Peressotti C, Yaffe M, Minkin S: Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomarkers Prev. 2009, 18: 1754-1762. 10.1158/1055-9965.EPI-09-0107.CrossRefPubMed Boyd N, Martin L, Gunasekara A, Melnichouk O, Maudsley G, Peressotti C, Yaffe M, Minkin S: Mammographic density and breast cancer risk: evaluation of a novel method of measuring breast tissue volumes. Cancer Epidemiol Biomarkers Prev. 2009, 18: 1754-1762. 10.1158/1055-9965.EPI-09-0107.CrossRefPubMed
13.
go back to reference Ding J, Warren R, Warsi I, Day N, Thompson D, Brady M, Tromans C, Highnam R, Easton D: Evaluating the effectiveness of using standard mammogram form to predict breast cancer risk: case-control study. Cancer Epidemiol Biomarkers Prev. 2008, 17: 1074-1081. 10.1158/1055-9965.EPI-07-2634.CrossRefPubMed Ding J, Warren R, Warsi I, Day N, Thompson D, Brady M, Tromans C, Highnam R, Easton D: Evaluating the effectiveness of using standard mammogram form to predict breast cancer risk: case-control study. Cancer Epidemiol Biomarkers Prev. 2008, 17: 1074-1081. 10.1158/1055-9965.EPI-07-2634.CrossRefPubMed
14.
go back to reference Berg WA, Campassi C, Langenberg P, Sexton MJ: Breast Imaging Reporting and Data System: inter- and intraobserver variability in feature analysis and final assessment. AJR Am J Roentgenol. 2000, 174: 1769-1777.CrossRefPubMed Berg WA, Campassi C, Langenberg P, Sexton MJ: Breast Imaging Reporting and Data System: inter- and intraobserver variability in feature analysis and final assessment. AJR Am J Roentgenol. 2000, 174: 1769-1777.CrossRefPubMed
15.
go back to reference Binder DA: Fitting Cox's proportional hazards models from survey data. Biometricka. 1992, 79: 139-147. 10.1093/biomet/79.1.139.CrossRef Binder DA: Fitting Cox's proportional hazards models from survey data. Biometricka. 1992, 79: 139-147. 10.1093/biomet/79.1.139.CrossRef
Metadata
Title
The influence of mammogram acquisition on the mammographic density and breast cancer association in the mayo mammography health study cohort
Authors
Janet E Olson
Thomas A Sellers
Christopher G Scott
Beth A Schueler
Kathleen R Brandt
Daniel J Serie
Matthew R Jensen
Fang-Fang Wu
Marilyn J Morton
John J Heine
Fergus J Couch
V Shane Pankratz
Celine M Vachon
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 6/2012
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3357

Other articles of this Issue 6/2012

Breast Cancer Research 6/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine