Skip to main content
Top
Published in: Angiogenesis 4/2006

01-12-2006 | Original Paper

Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens

Authors: Christopher A. Mitchell, Catrin S. Rutland, Michael Walker, Muneeb Nasir, Alexander J. E. Foss, Christine Stewart, Holger Gerhardt, Moritz A. Konerding, Werner Risau, Hannes C. A. Drexler

Published in: Angiogenesis | Issue 4/2006

Login to get access

Abstract

Formation of a correctly organised vasculature and subsequently embryonic survival is critically dependent on the dosage and site-specific expression of VEGF. Murine VEGF exists in three common isoforms (viz. 120, 164 and 188 amino acids) having different organ specific distribution levels. Gene knock-in studies show that expression of any of the individual isoforms of VEGF extends survival until birth, although each is associated with distinct organ-specific abnormalities. Comparison of the effects of VEGF isoform expression is complicated by the general lethality of mis-expression, in addition to cumulative effects of adjacent tissues from the inappropriately patterned vasculature. Here we investigate the effects of over-expression of individual VEGFA isoforms from the lens-specific αA-Crystallin promoter and characterise their effects on the vessel morphology of the hyaloid and developing retinal vasculature. Since the hyaloid vasculature is an anatomically distinct, transient vasculature of the eye, comprising 3 cell types (endothelium, pericytes and macrophages) it is possible to more readily interpret the role of individual VEGF-A isoforms in vascular pattern formation in this model. The severity of the vascular phenotype, characterised by a hyperplastic hyaloid at E13.5 and subsequently retinal vascular patterning and ocular defects, is most severe in transgenics over-expressing the more diffusible forms of VEGFA (120 and 164), whereas in VEGFA188 transgenics the hyaloid vascular defects partially resolve post-natally. The results of this study indicate that individual isoforms of VEGFA induce distinct vascular phenotypes in the eye during embryonic development and that their relative doses provide instructive cues for vascular patterning.
Literature
1.
go back to reference Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439CrossRefPubMed Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439CrossRefPubMed
2.
go back to reference Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442CrossRefPubMed Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442CrossRefPubMed
3.
go back to reference Haigh JJ, Gerber HP, Ferrara N, Wagner EF (2000) Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 127:1445–1453PubMed Haigh JJ, Gerber HP, Ferrara N, Wagner EF (2000) Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state. Development 127:1445–1453PubMed
4.
go back to reference Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159PubMed Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159PubMed
5.
go back to reference Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32CrossRefPubMed Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32CrossRefPubMed
6.
go back to reference Shima DT, Kuroki M, Deutsch U, Ng YS, Adamis AP, D’Amore PA (1996) The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem 271:3877–3883CrossRefPubMed Shima DT, Kuroki M, Deutsch U, Ng YS, Adamis AP, D’Amore PA (1996) The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J Biol Chem 271:3877–3883CrossRefPubMed
7.
go back to reference Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dynam 220:112–121CrossRef Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dynam 220:112–121CrossRef
8.
go back to reference Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326PubMed Park JE, Keller GA, Ferrara N (1993) The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell 4:1317–1326PubMed
9.
go back to reference Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271:7788–7795CrossRefPubMed Keyt BA, Berleau LT, Nguyen HV, Chen H, Heinsohn H, Vandlen R, Ferrara N (1996) The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J Biol Chem 271:7788–7795CrossRefPubMed
10.
go back to reference Forsten KE, Fannon M, Nugent MA (2000) Potential mechanisms for the regulation of growth factor binding by heparin. J Theor Biol 205:215–230CrossRefPubMed Forsten KE, Fannon M, Nugent MA (2000) Potential mechanisms for the regulation of growth factor binding by heparin. J Theor Biol 205:215–230CrossRefPubMed
11.
go back to reference Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, Damore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF(164) and VEGF(188). Nat Med 5:495–502CrossRefPubMed Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, Damore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF(164) and VEGF(188). Nat Med 5:495–502CrossRefPubMed
12.
go back to reference Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes HP, Moons L, Dewerchin M, Collen D, Carmeliet P, D’Amore PA (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109:327–336CrossRefPubMed Stalmans I, Ng YS, Rohan R, Fruttiger M, Bouche A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes HP, Moons L, Dewerchin M, Collen D, Carmeliet P, D’Amore PA (2002) Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J Clin Invest 109:327–336CrossRefPubMed
13.
go back to reference Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF(164) and VEGF(188). Mech Dev 111:61–73CrossRefPubMed Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D, Bouillon R, Carmeliet G (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF(164) and VEGF(188). Mech Dev 111:61–73CrossRefPubMed
14.
go back to reference Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 82:7815–7819CrossRefPubMed Overbeek PA, Chepelinsky AB, Khillan JS, Piatigorsky J, Westphal H (1985) Lens-specific expression and developmental regulation of the bacterial chloramphenicol acetyltransferase gene driven by the murine alpha A-crystallin promoter in transgenic mice. Proc Natl Acad Sci USA 82:7815–7819CrossRefPubMed
15.
go back to reference Ash JD, Overbeek PA (2000) Lens-specific VEGF-A expression induces angioblast migration and proliferation and stimulates angiogenic remodeling. Dev Biol 223:383–398CrossRefPubMed Ash JD, Overbeek PA (2000) Lens-specific VEGF-A expression induces angioblast migration and proliferation and stimulates angiogenic remodeling. Dev Biol 223:383–398CrossRefPubMed
16.
go back to reference Mitchell CA, Risau W, Drexler HCA (1998) Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dynam 213:322–333CrossRef Mitchell CA, Risau W, Drexler HCA (1998) Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: a role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dynam 213:322–333CrossRef
17.
go back to reference Reneker LW, Silversides DW, Patel K, Overbeek PA (1995) TGF alpha can act as a chemoattractant to perioptic mesenchymal cells in developing mouse eyes. Development 121:1669–1680PubMed Reneker LW, Silversides DW, Patel K, Overbeek PA (1995) TGF alpha can act as a chemoattractant to perioptic mesenchymal cells in developing mouse eyes. Development 121:1669–1680PubMed
18.
go back to reference Hovey RC, Goldhar AS, Baffi J, Vonderhaar BK (2001) Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol Endocrinol 15:819–831CrossRefPubMed Hovey RC, Goldhar AS, Baffi J, Vonderhaar BK (2001) Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development. Mol Endocrinol 15:819–831CrossRefPubMed
19.
go back to reference Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965–976PubMed Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W (2000) Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156:965–976PubMed
20.
go back to reference Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177CrossRefPubMed Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177CrossRefPubMed
21.
go back to reference Kretzler M, Schroppel B, Merkle M, Huber S, Mundel P, Horster M, Schlondorff D (1998) Detection of multiple vascular endothelial growth factor splice isoforms in single glomerular podocytes. Kidney Int 54:S159–S161CrossRef Kretzler M, Schroppel B, Merkle M, Huber S, Mundel P, Horster M, Schlondorff D (1998) Detection of multiple vascular endothelial growth factor splice isoforms in single glomerular podocytes. Kidney Int 54:S159–S161CrossRef
22.
go back to reference Halder JB, Zhao X, Soker S, Paria BC, Klagsbrun M, Das SK, Dey SK (2000) Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation. Genesis 26:213–224CrossRefPubMed Halder JB, Zhao X, Soker S, Paria BC, Klagsbrun M, Das SK, Dey SK (2000) Differential expression of VEGF isoforms and VEGF(164)-specific receptor neuropilin-1 in the mouse uterus suggests a role for VEGF(164) in vascular permeability and angiogenesis during implantation. Genesis 26:213–224CrossRefPubMed
23.
go back to reference Krussel JS, Behr B, Milki AA, Hirchenhain J, Wen Y, Bielfeld P, Lake Polan M (2001) Vascular endothelial growth factor (VEGF) mRNA splice variants are differentially expressed in human blastocysts. Mol Hum Reprod 7:57–63CrossRefPubMed Krussel JS, Behr B, Milki AA, Hirchenhain J, Wen Y, Bielfeld P, Lake Polan M (2001) Vascular endothelial growth factor (VEGF) mRNA splice variants are differentially expressed in human blastocysts. Mol Hum Reprod 7:57–63CrossRefPubMed
24.
go back to reference Simon M, Grone HJ, Johren O, Kullmer J, Plate KH, Risau W, Fuchs E (1995) Expression of vascular endothelial growth-factor and its receptors in human renal ontogeny and in adult kidney. Am J Physiol Renal Fluid Electrolyte Physiol 37:F240–F250 Simon M, Grone HJ, Johren O, Kullmer J, Plate KH, Risau W, Fuchs E (1995) Expression of vascular endothelial growth-factor and its receptors in human renal ontogeny and in adult kidney. Am J Physiol Renal Fluid Electrolyte Physiol 37:F240–F250
25.
go back to reference Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP (1998) Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol 29:910–914CrossRefPubMed Cheung N, Wong MP, Yuen ST, Leung SY, Chung LP (1998) Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol 29:910–914CrossRefPubMed
26.
go back to reference Okamoto K, Oshika Y, Fukushima Y, Ohnishi Y, Tokunaga T, Tomii Y, Kijima H, Yamazaki H, Ueyama Y, Tamaoki N, Nakumura M (1999) Xenografts of human solid tumors frequently express cellular-associated isoform of vascular endothelial growth factor (VEGF) 189. Oncol Rep 6:1201–1204PubMed Okamoto K, Oshika Y, Fukushima Y, Ohnishi Y, Tokunaga T, Tomii Y, Kijima H, Yamazaki H, Ueyama Y, Tamaoki N, Nakumura M (1999) Xenografts of human solid tumors frequently express cellular-associated isoform of vascular endothelial growth factor (VEGF) 189. Oncol Rep 6:1201–1204PubMed
27.
go back to reference Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS (2000) Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 20:7282–7291CrossRefPubMed Grunstein J, Masbad JJ, Hickey R, Giordano F, Johnson RS (2000) Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 20:7282–7291CrossRefPubMed
28.
go back to reference Yu JL, Rak JW, Klement G, Kerbel RS (2002) Vascular endothelial growth factor isoform expression as a determinant of blood vessel patterning in human melanoma xenografts. Cancer Res 62:1838–1846PubMed Yu JL, Rak JW, Klement G, Kerbel RS (2002) Vascular endothelial growth factor isoform expression as a determinant of blood vessel patterning in human melanoma xenografts. Cancer Res 62:1838–1846PubMed
29.
go back to reference Tober KL, Cannon RE, Spalding JW, Oberyszyn TM, Parrett ML, Rackoff AI, Oberyszyn AS, Tennant RW, Robertson FM (1998) Comparative expression of novel vascular endothelial growth factor vascular permeability factor transcripts in skin, papillomas, and carcinomas of v-Ha-ras Tg.AC transgenic mice and FVB/N mice [Full text delivery]. Biochem Biophys Res Commun 247:644–653CrossRefPubMed Tober KL, Cannon RE, Spalding JW, Oberyszyn TM, Parrett ML, Rackoff AI, Oberyszyn AS, Tennant RW, Robertson FM (1998) Comparative expression of novel vascular endothelial growth factor vascular permeability factor transcripts in skin, papillomas, and carcinomas of v-Ha-ras Tg.AC transgenic mice and FVB/N mice [Full text delivery]. Biochem Biophys Res Commun 247:644–653CrossRefPubMed
30.
go back to reference Mann IC (1964) The development of the human eye. Grune and Stratton Inc., New York Mann IC (1964) The development of the human eye. Grune and Stratton Inc., New York
31.
go back to reference Balazs EA, Toth LZ, Ozanics V (1980) Cytological studies on the developing vitreous as related to the hyaloid vessel system. Albrecht Von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie 213:71–85CrossRefPubMed Balazs EA, Toth LZ, Ozanics V (1980) Cytological studies on the developing vitreous as related to the hyaloid vessel system. Albrecht Von Graefes Archiv fur Klinische und Experimentelle Ophthalmologie 213:71–85CrossRefPubMed
32.
go back to reference Lang R (1997) Apoptosis in mammalian eye development: lens morphogenesis, vascular regression and immune privilege. Cell Death Differ 4:12–20CrossRefPubMed Lang R (1997) Apoptosis in mammalian eye development: lens morphogenesis, vascular regression and immune privilege. Cell Death Differ 4:12–20CrossRefPubMed
33.
go back to reference de Iongh R, McAvoy JW (1992) Distribution of acidic and basic fibroblast growth factors (FGF) in the foetal rat eye: implications for lens development. Growth Factors 6:159–177PubMedCrossRef de Iongh R, McAvoy JW (1992) Distribution of acidic and basic fibroblast growth factors (FGF) in the foetal rat eye: implications for lens development. Growth Factors 6:159–177PubMedCrossRef
34.
go back to reference Parmigiani CM, McAvoy JW (1989) A morphometric analysis of the development of the rat lens capsule. Curr Eye Res 8:1271–1277PubMed Parmigiani CM, McAvoy JW (1989) A morphometric analysis of the development of the rat lens capsule. Curr Eye Res 8:1271–1277PubMed
35.
go back to reference Davies MJ, Mitchell CA, Maley MAL, Grounds MD, Harvey AR, Plant GW, Wood DJ, Hong Y, Chirila TV (1997) In vitro assessment of the biological activity of basic fibroblast growth factor released from various polymers and biomatrices. J Biomater Appl 12:31–56 Davies MJ, Mitchell CA, Maley MAL, Grounds MD, Harvey AR, Plant GW, Wood DJ, Hong Y, Chirila TV (1997) In vitro assessment of the biological activity of basic fibroblast growth factor released from various polymers and biomatrices. J Biomater Appl 12:31–56
36.
go back to reference Mudhar HS, Pollock RA, Wang C, Stiles CD, Richardson WD (1993) PDGF and its receptors in the developing rodent retina and optic nerve. Development 118:539–552PubMed Mudhar HS, Pollock RA, Wang C, Stiles CD, Richardson WD (1993) PDGF and its receptors in the developing rodent retina and optic nerve. Development 118:539–552PubMed
37.
go back to reference Robinson ML, Overbeek PA, Verran DJ, Grizzle WE, Stockard CR, Friesel R, Maciag T, Thompson JA (1995) Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121:505–514PubMed Robinson ML, Overbeek PA, Verran DJ, Grizzle WE, Stockard CR, Friesel R, Maciag T, Thompson JA (1995) Extracellular FGF-1 acts as a lens differentiation factor in transgenic mice. Development 121:505–514PubMed
38.
go back to reference Lovicu FJ, Overbeek PA (1998) Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125:3365–3377PubMed Lovicu FJ, Overbeek PA (1998) Overlapping effects of different members of the FGF family on lens fiber differentiation in transgenic mice. Development 125:3365–3377PubMed
39.
go back to reference Reneker LW, Overbeek PA (1996) Lens-specific expression of PDGF-A alters lens growth and development. Dev Biol 180:554–565CrossRefPubMed Reneker LW, Overbeek PA (1996) Lens-specific expression of PDGF-A alters lens growth and development. Dev Biol 180:554–565CrossRefPubMed
40.
go back to reference Cleaver O, Krieg PA (1998) VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125:3905–3914PubMed Cleaver O, Krieg PA (1998) VEGF mediates angioblast migration during development of the dorsal aorta in Xenopus. Development 125:3905–3914PubMed
41.
go back to reference Shoji W, Isogai S, Sato-Maeda M, Obinata M, Kuwada JY (2003) Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development 130:3227–3236CrossRefPubMed Shoji W, Isogai S, Sato-Maeda M, Obinata M, Kuwada JY (2003) Semaphorin3a1 regulates angioblast migration and vascular development in zebrafish embryos. Development 130:3227–3236CrossRefPubMed
42.
go back to reference Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698CrossRefPubMed Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT (2002) Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16:2684–2698CrossRefPubMed
43.
go back to reference Wilting J, Birkenhager R, Eichmann A, Kurz H, Martiny-Baron G, Marme D, McCarthy JE, Christ B, Weich HA (1996) VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol 176:76–85CrossRefPubMed Wilting J, Birkenhager R, Eichmann A, Kurz H, Martiny-Baron G, Marme D, McCarthy JE, Christ B, Weich HA (1996) VEGF121 induces proliferation of vascular endothelial cells and expression of flk-1 without affecting lymphatic vessels of chorioallantoic membrane. Dev Biol 176:76–85CrossRefPubMed
44.
go back to reference Drake CJ, Little CD (1995) Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 92:7657–7661CrossRefPubMed Drake CJ, Little CD (1995) Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 92:7657–7661CrossRefPubMed
45.
go back to reference Cheng SY, Nagane M, Huang HJS, Cavenee WK (1997) Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF(121) and VEGF(165) but not VEGF(189). Proc Natl Acad Sci USA 94:12081–12087CrossRefPubMed Cheng SY, Nagane M, Huang HJS, Cavenee WK (1997) Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF(121) and VEGF(165) but not VEGF(189). Proc Natl Acad Sci USA 94:12081–12087CrossRefPubMed
46.
go back to reference Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 21:1939–1947CrossRefPubMed Dor Y, Djonov V, Abramovitch R, Itin A, Fishman GI, Carmeliet P, Goelman G, Keshet E (2002) Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J 21:1939–1947CrossRefPubMed
47.
go back to reference Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, Carter R, Krieger JE, Manseau EJ, Harvey VS, Eckelhoefer IA, Feng D, Dvorak AM, Mulligan RC, Dvorak HF (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80:99–115PubMedCrossRef Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, Carter R, Krieger JE, Manseau EJ, Harvey VS, Eckelhoefer IA, Feng D, Dvorak AM, Mulligan RC, Dvorak HF (2000) Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest 80:99–115PubMedCrossRef
48.
go back to reference Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. Faseb J 11:365–373PubMed Beck L Jr, D’Amore PA (1997) Vascular development: cellular and molecular regulation. Faseb J 11:365–373PubMed
49.
go back to reference Ishida A, Murray J, Saito Y, Kanthou C, Benzakour O, Shibuya M, Wijelath ES (2001) Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 188:359–368CrossRefPubMed Ishida A, Murray J, Saito Y, Kanthou C, Benzakour O, Shibuya M, Wijelath ES (2001) Expression of vascular endothelial growth factor receptors in smooth muscle cells. J Cell Physiol 188:359–368CrossRefPubMed
50.
go back to reference Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S, Tanaka N, Yamamoto H (1999) Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest 79:501–509PubMed Yamagishi S, Yonekura H, Yamamoto Y, Fujimori H, Sakurai S, Tanaka N, Yamamoto H (1999) Vascular endothelial growth factor acts as a pericyte mitogen under hypoxic conditions. Lab Invest 79:501–509PubMed
51.
go back to reference Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF- B and VEGF. Development 125:1591–1598PubMed Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF- B and VEGF. Development 125:1591–1598PubMed
52.
go back to reference Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305PubMed Hirschi KK, Rohovsky SA, Beck LH, Smith SR, D’Amore PA (1999) Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact. Circ Res 84:298–305PubMed
53.
go back to reference Lindahl P, Hellstrom M, Kalen M, Betsholtz C (1998) Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411CrossRefPubMed Lindahl P, Hellstrom M, Kalen M, Betsholtz C (1998) Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9:407–411CrossRefPubMed
54.
go back to reference Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840CrossRefPubMed Lindblom P, Gerhardt H, Liebner S, Abramsson A, Enge M, Hellstrom M, Backstrom G, Fredriksson S, Landegren U, Nystrom HC, Bergstrom G, Dejana E, Ostman A, Lindahl P, Betsholtz C (2003) Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 17:1835–1840CrossRefPubMed
55.
go back to reference Diez-Roux G, Lang RA. (1997) Macrophages induce apoptosis in normal cells in vivo. Development 124:3633–3638PubMed Diez-Roux G, Lang RA. (1997) Macrophages induce apoptosis in normal cells in vivo. Development 124:3633–3638PubMed
56.
go back to reference Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA (1999) Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126:2141–2147PubMed Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA (1999) Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126:2141–2147PubMed
57.
go back to reference Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–421CrossRefPubMed Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, Kurup S, Glass DA, Patel MS, Shu W, Morrisey EE, McMahon AP, Karsenty G, Lang RA (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437:417–421CrossRefPubMed
58.
go back to reference Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43:522–527PubMed Fruttiger M (2002) Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest Ophthalmol Vis Sci 43:522–527PubMed
59.
go back to reference Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747PubMed Stone J, Itin A, Alon T, Pe’er J, Gnessin H, Chan-Ling T, Keshet E (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15:4738–4747PubMed
60.
go back to reference Klagsbrun M, Takashima S, Mamluk R (2002) The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol 515:33–48PubMed Klagsbrun M, Takashima S, Mamluk R (2002) The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol 515:33–48PubMed
61.
go back to reference Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745CrossRefPubMed Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M (1998) Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745CrossRefPubMed
62.
go back to reference Ishihama H, Ohbayashi M, Kurosawa N, Kitsukawa T, Matsuura O, Miyake Y, Muramatsu T (2001) Colocalization of neuropilin-1 and Flk-1 in retinal neovascularization in a mouse model of retinopathy. Invest Ophthalmol Vis Sci 42:1172–1178PubMed Ishihama H, Ohbayashi M, Kurosawa N, Kitsukawa T, Matsuura O, Miyake Y, Muramatsu T (2001) Colocalization of neuropilin-1 and Flk-1 in retinal neovascularization in a mouse model of retinopathy. Invest Ophthalmol Vis Sci 42:1172–1178PubMed
63.
go back to reference Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S, Bayard F (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 272:13390–13396CrossRefPubMed Plouet J, Moro F, Bertagnolli S, Coldeboeuf N, Mazarguil H, Clamens S, Bayard F (1997) Extracellular cleavage of the vascular endothelial growth factor 189-amino acid form by urokinase is required for its mitogenic effect. J Biol Chem 272:13390–13396CrossRefPubMed
64.
go back to reference Ogata N, Yamanaka R, Yamamoto C, Miyashiro M, Kimoto T, Takahashi K, Maruyama K, Uyama M (1998) Expression of vascular endothelial growth factor and its receptor, KDR, following retinal ischemia-reperfusion injury in the rat. Curr Eye Res 17:1087–1096CrossRefPubMed Ogata N, Yamanaka R, Yamamoto C, Miyashiro M, Kimoto T, Takahashi K, Maruyama K, Uyama M (1998) Expression of vascular endothelial growth factor and its receptor, KDR, following retinal ischemia-reperfusion injury in the rat. Curr Eye Res 17:1087–1096CrossRefPubMed
65.
go back to reference Stout AU, Stout JT (2003) Retinopathy of prematurity. Pediatr Clin North Am 50:77–87, vi Stout AU, Stout JT (2003) Retinopathy of prematurity. Pediatr Clin North Am 50:77–87, vi
66.
go back to reference Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028CrossRefPubMed Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E (1995) Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1:1024–1028CrossRefPubMed
67.
go back to reference Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, Harris AL, Ziche M, Bicknell R (2000) The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 83:63–68CrossRefPubMed Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, Harris AL, Ziche M, Bicknell R (2000) The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 83:63–68CrossRefPubMed
68.
go back to reference Silbert M, Gurwood AS (2000) Persistent hyperplastic primary vitreous. Clin Eye Vis Care 12:131–137CrossRefPubMed Silbert M, Gurwood AS (2000) Persistent hyperplastic primary vitreous. Clin Eye Vis Care 12:131–137CrossRefPubMed
69.
go back to reference Mullner-Eidenbock A, Amon M, Moser E, Klebermass N (2004) Persistent fetal vasculature and minimal fetal vascular remnants: a frequent cause of unilateral congenital cataracts. Ophthalmology 111:906–913CrossRefPubMed Mullner-Eidenbock A, Amon M, Moser E, Klebermass N (2004) Persistent fetal vasculature and minimal fetal vascular remnants: a frequent cause of unilateral congenital cataracts. Ophthalmology 111:906–913CrossRefPubMed
70.
Metadata
Title
Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens
Authors
Christopher A. Mitchell
Catrin S. Rutland
Michael Walker
Muneeb Nasir
Alexander J. E. Foss
Christine Stewart
Holger Gerhardt
Moritz A. Konerding
Werner Risau
Hannes C. A. Drexler
Publication date
01-12-2006
Publisher
Kluwer Academic Publishers
Published in
Angiogenesis / Issue 4/2006
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-006-9056-7

Other articles of this Issue 4/2006

Angiogenesis 4/2006 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.