Skip to main content
Top
Published in: Neurocritical Care 3/2023

Open Access 22-03-2023 | Ultrasound | Pediatric Neuromonitoring

Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children

Authors: Tiffany S. Ko, Eva Catennacio, Samuel S. Shin, Joseph Stern, Shavonne L. Massey, Todd J. Kilbaugh, Misun Hwang

Published in: Neurocritical Care | Issue 3/2023

Login to get access

Abstract

Timely detection and monitoring of acute brain injury in children is essential to mitigate causes of injury and prevent secondary insults. Increasing survival in critically ill children has emphasized the importance of neuroprotective management strategies for long-term quality of life. In emergent and critical care settings, traditional neuroimaging modalities, such as computed tomography and magnetic resonance imaging (MRI), remain frontline diagnostic techniques to detect acute brain injury. Although detection of structural and anatomical abnormalities remains crucial, advanced MRI sequences assessing functional alterations in cerebral physiology provide unique diagnostic utility. Head ultrasound has emerged as a portable neuroimaging modality for point-of-care diagnosis via assessments of anatomical and perfusion abnormalities. Application of electroencephalography and near-infrared spectroscopy provides the opportunity for real-time detection and goal-directed management of neurological abnormalities at the bedside. In this review, we describe recent technological advancements in these neurodiagnostic modalities and elaborate on their current and potential utility in the detection and management of acute brain injury.
Literature
2.
go back to reference Williams CN, Eriksson CO, Kirby A, Piantino JA, Hall TA, Luther M, et al. Hospital mortality and functional outcomes in pediatric neurocritical care. Hosp Pediatr. 2019;9:958–66.PubMedPubMedCentralCrossRef Williams CN, Eriksson CO, Kirby A, Piantino JA, Hall TA, Luther M, et al. Hospital mortality and functional outcomes in pediatric neurocritical care. Hosp Pediatr. 2019;9:958–66.PubMedPubMedCentralCrossRef
3.
go back to reference DeSanti RL, Balakrishnan B, Rice TB, Pineda JA, Ferrazzano PA. The utilization of critical care resources in pediatric neurocritical care patients∗. Pediatr Crit Care Med. 2022;23:676–86.PubMedCrossRef DeSanti RL, Balakrishnan B, Rice TB, Pineda JA, Ferrazzano PA. The utilization of critical care resources in pediatric neurocritical care patients∗. Pediatr Crit Care Med. 2022;23:676–86.PubMedCrossRef
6.
go back to reference Araki T, Yokota H, Morita A. Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurol Med Chir (Tokyo). 2017;57:82–93.PubMedCrossRef Araki T, Yokota H, Morita A. Pediatric traumatic brain injury: characteristic features, diagnosis, and management. Neurol Med Chir (Tokyo). 2017;57:82–93.PubMedCrossRef
7.
go back to reference Thompson EM, Baird LC, Selden NR. Results of a North American survey of rapid-sequence MRI utilization to evaluate cerebral ventricles in children: clinical article. J Neurosurg Pediatr. 2014;13:636–40.PubMedCrossRef Thompson EM, Baird LC, Selden NR. Results of a North American survey of rapid-sequence MRI utilization to evaluate cerebral ventricles in children: clinical article. J Neurosurg Pediatr. 2014;13:636–40.PubMedCrossRef
9.
go back to reference LaRovere KL, Brett MS, Tasker RC, Strauss KJ, Burns JP. Head computed tomography scanning during pediatric neurocritical care: diagnostic yield and the utility of portable studies. Neurocrit Care. 2012;16:251–7.PubMedCrossRef LaRovere KL, Brett MS, Tasker RC, Strauss KJ, Burns JP. Head computed tomography scanning during pediatric neurocritical care: diagnostic yield and the utility of portable studies. Neurocrit Care. 2012;16:251–7.PubMedCrossRef
10.
go back to reference Agrawal S, Hulme SL, Hayward R, Brierley J. A portable CT scanner in the pediatric intensive care unit decreases transfer-associated adverse events and staff disruption. Eur J Trauma Emerg Surg. 2010;36:346–52.PubMedCrossRef Agrawal S, Hulme SL, Hayward R, Brierley J. A portable CT scanner in the pediatric intensive care unit decreases transfer-associated adverse events and staff disruption. Eur J Trauma Emerg Surg. 2010;36:346–52.PubMedCrossRef
11.
go back to reference Smith LGF, Milliron E, Ho ML, Hu HH, Rusin J, Leonard J, et al. Advanced neuroimaging in traumatic brain injury: an overview. Neurosurg Focus. 2019;47:1–9.CrossRef Smith LGF, Milliron E, Ho ML, Hu HH, Rusin J, Leonard J, et al. Advanced neuroimaging in traumatic brain injury: an overview. Neurosurg Focus. 2019;47:1–9.CrossRef
12.
go back to reference Mehta H, Acharya J, Mohan AL, Tobias ME, LeCompte L, Jeevan D. Minimizing radiation exposure in evaluation of pediatric head trauma: use of rapid MR imaging. Am J Neuroradiol. 2016;37:11–8.PubMedPubMedCentralCrossRef Mehta H, Acharya J, Mohan AL, Tobias ME, LeCompte L, Jeevan D. Minimizing radiation exposure in evaluation of pediatric head trauma: use of rapid MR imaging. Am J Neuroradiol. 2016;37:11–8.PubMedPubMedCentralCrossRef
13.
go back to reference McGlennan C, Ganesan V. Delays in investigation and management of acute arterial ischemic stroke in children. Dev Med Child Neurol. 2008;50:537–40.PubMedCrossRef McGlennan C, Ganesan V. Delays in investigation and management of acute arterial ischemic stroke in children. Dev Med Child Neurol. 2008;50:537–40.PubMedCrossRef
15.
go back to reference Tepper SJ. Computed tomography: an increasing source of radiation exposure: Commentary. Headache. 2008;48:657. Tepper SJ. Computed tomography: an increasing source of radiation exposure: Commentary. Headache. 2008;48:657.
16.
go back to reference Goodman TR, Mustafa A, Rowe E. Pediatric CT radiation exposure: where we were, and where we are now. Pediatr Radiol Pediatric Radiol. 2019;49:469–78.CrossRef Goodman TR, Mustafa A, Rowe E. Pediatric CT radiation exposure: where we were, and where we are now. Pediatr Radiol Pediatric Radiol. 2019;49:469–78.CrossRef
17.
go back to reference Scheinfeld MH, Moon JY, Fagan MJ, Davoudzadeh R, Wang D, Taragin BH. MRI usage in a pediatric emergency department: an analysis of usage and usage trends over 5 years. Pediatr Radiol Pediatric Radiol. 2017;47:327–32.CrossRef Scheinfeld MH, Moon JY, Fagan MJ, Davoudzadeh R, Wang D, Taragin BH. MRI usage in a pediatric emergency department: an analysis of usage and usage trends over 5 years. Pediatr Radiol Pediatric Radiol. 2017;47:327–32.CrossRef
18.
go back to reference Ramgopal S, Karim SA, Subramanian S, Furtado AD, Marin JR. Rapid brain MRI protocols reduce head computerized tomography use in the pediatric emergency department. BMC Pediatr BMC Pediatric. 2020;20:1–9. Ramgopal S, Karim SA, Subramanian S, Furtado AD, Marin JR. Rapid brain MRI protocols reduce head computerized tomography use in the pediatric emergency department. BMC Pediatr BMC Pediatric. 2020;20:1–9.
19.
go back to reference Yue EL, Meckler GD, Fleischman RJ, Selden NR, Bardo DME, Chu O’Connor AK, et al. Test characteristics of quick brain MRI for shunt evaluation in children: an alternative modality to avoid radiation. J Neurosurg Pediatr. 2015;15:420–6.PubMedCrossRef Yue EL, Meckler GD, Fleischman RJ, Selden NR, Bardo DME, Chu O’Connor AK, et al. Test characteristics of quick brain MRI for shunt evaluation in children: an alternative modality to avoid radiation. J Neurosurg Pediatr. 2015;15:420–6.PubMedCrossRef
20.
go back to reference Boyle TP, Nigrovic LE. Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. Pediatr Emerg Care. 2015;31:435–40.PubMedCrossRef Boyle TP, Nigrovic LE. Radiographic evaluation of pediatric cerebrospinal fluid shunt malfunction in the emergency setting. Pediatr Emerg Care. 2015;31:435–40.PubMedCrossRef
23.
go back to reference Rasooly IR, Mullins PM, Alpern ER, Pines JM. US emergency department use by children, 2001–2010. Pediatr Emerg Care. 2014;30:602–7.PubMedCrossRef Rasooly IR, Mullins PM, Alpern ER, Pines JM. US emergency department use by children, 2001–2010. Pediatr Emerg Care. 2014;30:602–7.PubMedCrossRef
26.
go back to reference Radhakrishnan R, Brown BP, Kralik SF, Bain D, Persohn S, Territo PR, et al. Frontal occipital and frontal temporal horn ratios: comparison and validation of head ultrasound-derived indexes with MRI and ventricular volumes in infantile ventriculomegaly. Am J Roentgenol. 2019;213:925–31.CrossRef Radhakrishnan R, Brown BP, Kralik SF, Bain D, Persohn S, Territo PR, et al. Frontal occipital and frontal temporal horn ratios: comparison and validation of head ultrasound-derived indexes with MRI and ventricular volumes in infantile ventriculomegaly. Am J Roentgenol. 2019;213:925–31.CrossRef
27.
go back to reference Marin JR, Rodean J, Hall M, Alpern ER, Aronson PL, Chaudhari PP, et al. Trends in use of advanced imaging in pediatric emergency departments, 2009–2018. JAMA Pediatr. 2020;174:2009–18.CrossRef Marin JR, Rodean J, Hall M, Alpern ER, Aronson PL, Chaudhari PP, et al. Trends in use of advanced imaging in pediatric emergency departments, 2009–2018. JAMA Pediatr. 2020;174:2009–18.CrossRef
31.
go back to reference Ha JY, Baek HJ, Ryu KH. With full basic sequences : can it be a promising way forward for. Am J Roentgenol. 2020;215:1–8.CrossRef Ha JY, Baek HJ, Ryu KH. With full basic sequences : can it be a promising way forward for. Am J Roentgenol. 2020;215:1–8.CrossRef
32.
go back to reference O’Reilly T, Teeuwisse WM, de Gans D, Koolstra K, Webb AG. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magn Reson Med. 2021;85:495–505.PubMedCrossRef O’Reilly T, Teeuwisse WM, de Gans D, Koolstra K, Webb AG. In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magn Reson Med. 2021;85:495–505.PubMedCrossRef
34.
go back to reference Wickstrom R, Taraschenko O, Dilena R, Payne ET, Specchio N, Nabbout R, et al. International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: statements and supporting evidence. Epilepsia. 2022;63(11):2840–64.PubMedPubMedCentralCrossRef Wickstrom R, Taraschenko O, Dilena R, Payne ET, Specchio N, Nabbout R, et al. International consensus recommendations for management of new onset refractory status epilepticus including febrile infection-related epilepsy syndrome: statements and supporting evidence. Epilepsia. 2022;63(11):2840–64.PubMedPubMedCentralCrossRef
35.
go back to reference Kessler BA, Goh JL, Pajer HB, Asher AM, Northam WT, Hung SC, et al. Rapid-sequence MRI for evaluation of pediatric traumatic brain injury: a systematic review. J Neurosurg Pediatr. 2021;28:278–86.CrossRef Kessler BA, Goh JL, Pajer HB, Asher AM, Northam WT, Hung SC, et al. Rapid-sequence MRI for evaluation of pediatric traumatic brain injury: a systematic review. J Neurosurg Pediatr. 2021;28:278–86.CrossRef
36.
go back to reference Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging. 2015;41:1165–80.PubMedCrossRef Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging. 2015;41:1165–80.PubMedCrossRef
37.
go back to reference Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial spin labeling applications in pediatric and adult neurologic disorders. J Magn Reson Imaging. 2022;55:698–719.PubMedCrossRef Bambach S, Smith M, Morris PP, Campeau NG, Ho ML. Arterial spin labeling applications in pediatric and adult neurologic disorders. J Magn Reson Imaging. 2022;55:698–719.PubMedCrossRef
38.
go back to reference Golay X, Hendrikse J, Lim TCC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging. 2004;15:10–27.PubMedCrossRef Golay X, Hendrikse J, Lim TCC. Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging. 2004;15:10–27.PubMedCrossRef
39.
go back to reference Crisi G, Filice S, Scoditti U. Arterial spin labeling MRI to measure cerebral blood flow in untreated ischemic stroke. J Neuroimaging. 2019;29:193–7.PubMedCrossRef Crisi G, Filice S, Scoditti U. Arterial spin labeling MRI to measure cerebral blood flow in untreated ischemic stroke. J Neuroimaging. 2019;29:193–7.PubMedCrossRef
42.
go back to reference Blauwblomme T, Naggara O, Brunelle F, Grévent D, Puget S, Di Rocco F, et al. Arterial spin labeling magnetic resonance imaging: toward noninvasive diagnosis and follow-up of pediatric brain arteriovenous malformations. J Neurosurg Pediatr. 2015;15:451–8.PubMedCrossRef Blauwblomme T, Naggara O, Brunelle F, Grévent D, Puget S, Di Rocco F, et al. Arterial spin labeling magnetic resonance imaging: toward noninvasive diagnosis and follow-up of pediatric brain arteriovenous malformations. J Neurosurg Pediatr. 2015;15:451–8.PubMedCrossRef
45.
47.
go back to reference Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, et al. Arterial spin-labeled perfusion of pediatric brain tumors. Am J Neuroradiol. 2014;35:395–401.PubMedPubMedCentralCrossRef Yeom KW, Mitchell LA, Lober RM, Barnes PD, Vogel H, Fisher PG, et al. Arterial spin-labeled perfusion of pediatric brain tumors. Am J Neuroradiol. 2014;35:395–401.PubMedPubMedCentralCrossRef
48.
go back to reference Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281(2):553–66.PubMedCrossRef Dangouloff-Ros V, Deroulers C, Foissac F, Badoual M, Shotar E, Grévent D, et al. Arterial spin labeling to predict brain tumor grading in children: correlations between histopathologic vascular density and perfusion MR imaging. Radiology. 2016;281(2):553–66.PubMedCrossRef
49.
go back to reference Yeom KW, Lober RM, Alexander A, Cheshier SH, Edwards MSB. Hydrocephalus decreases arterial spin-labeled cerebral perfusion. Am J Neuroradiol. 2014;35:1433–9.PubMedPubMedCentralCrossRef Yeom KW, Lober RM, Alexander A, Cheshier SH, Edwards MSB. Hydrocephalus decreases arterial spin-labeled cerebral perfusion. Am J Neuroradiol. 2014;35:1433–9.PubMedPubMedCentralCrossRef
50.
go back to reference Krishnan P, Raybaud C, Palasamudram S, Shroff M. Neuroimaging in pediatric hydrocephalus. Indian J Pediatr. 2019;86:952–60.PubMedCrossRef Krishnan P, Raybaud C, Palasamudram S, Shroff M. Neuroimaging in pediatric hydrocephalus. Indian J Pediatr. 2019;86:952–60.PubMedCrossRef
52.
go back to reference Takahara K, Morioka T, Shimogawa T, Amano T, Kawakita A, Watanabe K, et al. Perfusion imaging with arterial spin labeling in acute encephalopathy with reduced subcortical diffusion following secondary generalized status epilepticus. Epilepsy Seizure. 2017;9:32–9.CrossRef Takahara K, Morioka T, Shimogawa T, Amano T, Kawakita A, Watanabe K, et al. Perfusion imaging with arterial spin labeling in acute encephalopathy with reduced subcortical diffusion following secondary generalized status epilepticus. Epilepsy Seizure. 2017;9:32–9.CrossRef
53.
go back to reference Polyanskaya MV, Demushkina AA, Vasiliev IG, Gazdieva HS, Kholin AA, Zavadenko NN, et al. Role of contrast-free MR-perfusion in the diagnosis of potential epileptogenic foci in children with focal epilepsia. Epilepsia Paroxyzmal Cond. 2018;10:6–18.CrossRef Polyanskaya MV, Demushkina AA, Vasiliev IG, Gazdieva HS, Kholin AA, Zavadenko NN, et al. Role of contrast-free MR-perfusion in the diagnosis of potential epileptogenic foci in children with focal epilepsia. Epilepsia Paroxyzmal Cond. 2018;10:6–18.CrossRef
54.
go back to reference Mabray P, Thewamit R, Whitehead MT, Kao A, Scafidi J, Gaillard WD, et al. Increased cerebral blood flow on arterial spin labeling magnetic resonance imaging can localize to seizure focus in newborns: a report of 3 cases. Epilepsia. 2018;59:e63–7.PubMedCrossRef Mabray P, Thewamit R, Whitehead MT, Kao A, Scafidi J, Gaillard WD, et al. Increased cerebral blood flow on arterial spin labeling magnetic resonance imaging can localize to seizure focus in newborns: a report of 3 cases. Epilepsia. 2018;59:e63–7.PubMedCrossRef
57.
go back to reference Lam J, Tomaszewski P, Gilbert G, Moreau JT, Guiot MC, Albrecht S, et al. The utility of arterial spin labeling in the presurgical evaluation of poorly defined focal epilepsy in children. J Neurosurg Pediatr. 2021;27:243–52.CrossRef Lam J, Tomaszewski P, Gilbert G, Moreau JT, Guiot MC, Albrecht S, et al. The utility of arterial spin labeling in the presurgical evaluation of poorly defined focal epilepsy in children. J Neurosurg Pediatr. 2021;27:243–52.CrossRef
59.
go back to reference Tortora D, Cataldi M, Severino M, Consales A, Pacetti M, Parodi C, et al. Comparison of qualitative and quantitative analyses of MR-arterial spin labeling perfusion data for the assessment of pediatric patients with focal epilepsies. Diagnostics. 2022;12:1–15.CrossRef Tortora D, Cataldi M, Severino M, Consales A, Pacetti M, Parodi C, et al. Comparison of qualitative and quantitative analyses of MR-arterial spin labeling perfusion data for the assessment of pediatric patients with focal epilepsies. Diagnostics. 2022;12:1–15.CrossRef
60.
go back to reference Feldman HM, Yeatman JD, Lee ES, Barde LHF, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr. 2010;31:346–56.PubMedPubMedCentralCrossRef Feldman HM, Yeatman JD, Lee ES, Barde LHF, Gaman-Bean S. Diffusion tensor imaging: a review for pediatric researchers and clinicians. J Dev Behav Pediatr. 2010;31:346–56.PubMedPubMedCentralCrossRef
61.
go back to reference Dennis EL, Babikian T, Alger J, Rashid F, Villalon-Reina JE, Jin Y, et al. Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: a combined MRS—Diffusion MRI study. Hum Brain Mapp. 2018;39:3759–68.PubMedPubMedCentralCrossRef Dennis EL, Babikian T, Alger J, Rashid F, Villalon-Reina JE, Jin Y, et al. Magnetic resonance spectroscopy of fiber tracts in children with traumatic brain injury: a combined MRS—Diffusion MRI study. Hum Brain Mapp. 2018;39:3759–68.PubMedPubMedCentralCrossRef
63.
go back to reference Wilde EA, Ayoub KW, Bigler ED, Chu ZD, Hunter JV, Wu TC, et al. Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav. 2012;6:404–16.PubMedCrossRef Wilde EA, Ayoub KW, Bigler ED, Chu ZD, Hunter JV, Wu TC, et al. Diffusion tensor imaging in moderate-to-severe pediatric traumatic brain injury: changes within an 18 month post-injury interval. Brain Imaging Behav. 2012;6:404–16.PubMedCrossRef
64.
go back to reference Shahim P, Politis A, van der Merwe A, Moore B, Chou YY, Pham DL, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology. 2020;95:e610–22.PubMedPubMedCentralCrossRef Shahim P, Politis A, van der Merwe A, Moore B, Chou YY, Pham DL, et al. Neurofilament light as a biomarker in traumatic brain injury. Neurology. 2020;95:e610–22.PubMedPubMedCentralCrossRef
65.
go back to reference Shin S, Hefti MM, Mazandi VM, Issadore DA, Meaney D, Christman Schneider ALLC, et al. Plasma neurofilament light and glial Fibrillary acidic protein levels over 30 days in a porcine model of traumatic brain injury. J Neurotrauma. 2022;39(13–14):935–43.PubMedCrossRef Shin S, Hefti MM, Mazandi VM, Issadore DA, Meaney D, Christman Schneider ALLC, et al. Plasma neurofilament light and glial Fibrillary acidic protein levels over 30 days in a porcine model of traumatic brain injury. J Neurotrauma. 2022;39(13–14):935–43.PubMedCrossRef
66.
go back to reference Gunawan PI, Saharso D, Purnama SD. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. Korean J Pediatr. 2019;62:281–5.PubMedPubMedCentralCrossRef Gunawan PI, Saharso D, Purnama SD. Correlation of serum S100B levels with brain magnetic resonance imaging abnormalities in children with status epilepticus. Korean J Pediatr. 2019;62:281–5.PubMedPubMedCentralCrossRef
67.
go back to reference Shin SS, Ynen TV, Pathak S, Jarbo K, Hricik AJ, Maserati M, et al. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage. Case report J Neurosurg. 2012;116:1062–9.PubMed Shin SS, Ynen TV, Pathak S, Jarbo K, Hricik AJ, Maserati M, et al. High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage. Case report J Neurosurg. 2012;116:1062–9.PubMed
68.
go back to reference Shin S, Okonkwo D, Schneider W, Verstynen T. Using high resolution white matter mapping to detect traumatic brain injury. Neurosurg News: Univ Pittsburgh. 2012;13:2012. Shin S, Okonkwo D, Schneider W, Verstynen T. Using high resolution white matter mapping to detect traumatic brain injury. Neurosurg News: Univ Pittsburgh. 2012;13:2012.
69.
go back to reference Panigrahy A, Nelson MD, Blüml S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010;40:3–30.PubMedCrossRef Panigrahy A, Nelson MD, Blüml S. Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol. 2010;40:3–30.PubMedCrossRef
70.
go back to reference Liserre R, Pinelli L, Gasparotti R. MR spectroscopy in pediatric neuroradiology. Transl Pediatr. 2021;1169–200. Liserre R, Pinelli L, Gasparotti R. MR spectroscopy in pediatric neuroradiology. Transl Pediatr. 2021;1169–200.
72.
go back to reference Aida N. An invited review for the special 20th anniversary issue of MRMS1H-MR spectroscopy of the early developmental brain, neonatal encephalopathies, and neurometabolic disorders. Magn Reson Med Sci. 2022;21:9–28.PubMedCrossRef Aida N. An invited review for the special 20th anniversary issue of MRMS1H-MR spectroscopy of the early developmental brain, neonatal encephalopathies, and neurometabolic disorders. Magn Reson Med Sci. 2022;21:9–28.PubMedCrossRef
74.
go back to reference Zarifi MK, Astrakas LG, Poussaint TY, Du Plessis A, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology. 2002;225:859–70.PubMedCrossRef Zarifi MK, Astrakas LG, Poussaint TY, Du Plessis A, Zurakowski D, Tzika AA. Prediction of adverse outcome with cerebral lactate level and apparent diffusion coefficient in infants with perinatal asphyxia. Radiology. 2002;225:859–70.PubMedCrossRef
75.
go back to reference Alderliesten T, De Vries LS, Benders MJNL, Koopman C, Groenendaal F. MR imaging and outcome of term neonates with perinatal asphyxia: Value of diffusion-weighted MR imaging and 1 H MR spectroscopy. Radiology. 2011;261:235–42.PubMedCrossRef Alderliesten T, De Vries LS, Benders MJNL, Koopman C, Groenendaal F. MR imaging and outcome of term neonates with perinatal asphyxia: Value of diffusion-weighted MR imaging and 1 H MR spectroscopy. Radiology. 2011;261:235–42.PubMedCrossRef
76.
go back to reference Barkovich AJ, Miller SP, Bartha A, Newton N, Hamrick SEG, Mukherjee P, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. Am J Neuroradiol. 2006;27:533–47.PubMedPubMedCentral Barkovich AJ, Miller SP, Bartha A, Newton N, Hamrick SEG, Mukherjee P, et al. MR imaging, MR spectroscopy, and diffusion tensor imaging of sequential studies in neonates with encephalopathy. Am J Neuroradiol. 2006;27:533–47.PubMedPubMedCentral
77.
go back to reference Penrice J, Cady EB, Lorek A, Wylezinska M, Amess PN, Aldridge RF, et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res. 1996;40:6–14.PubMedCrossRef Penrice J, Cady EB, Lorek A, Wylezinska M, Amess PN, Aldridge RF, et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia-ischemia. Pediatr Res. 1996;40:6–14.PubMedCrossRef
78.
go back to reference Alderliesten T, De Vries LS, Staats L, Van Haastert IC, Weeke L, Benders MJNL, et al. MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2017;102:F147–52.PubMedCrossRef Alderliesten T, De Vries LS, Staats L, Van Haastert IC, Weeke L, Benders MJNL, et al. MRI and spectroscopy in (near) term neonates with perinatal asphyxia and therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed. 2017;102:F147–52.PubMedCrossRef
79.
go back to reference Lally PJ, Montaldo P, Oliveira V, Soe A, Swamy R, Bassett P, et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol. 2019;18:35–45.PubMedPubMedCentralCrossRef Lally PJ, Montaldo P, Oliveira V, Soe A, Swamy R, Bassett P, et al. Magnetic resonance spectroscopy assessment of brain injury after moderate hypothermia in neonatal encephalopathy: a prospective multicentre cohort study. Lancet Neurol. 2019;18:35–45.PubMedPubMedCentralCrossRef
80.
go back to reference Shibasaki J, Niwa T, Piedvache A, Tomiyasu M, Morisaki N, Fujii Y, et al. Comparison of predictive values of magnetic resonance biomarkers based on scan timing in neonatal encephalopathy following therapeutic hypothermia. J Pediatr. 2021;239:101-109.e4.PubMedCrossRef Shibasaki J, Niwa T, Piedvache A, Tomiyasu M, Morisaki N, Fujii Y, et al. Comparison of predictive values of magnetic resonance biomarkers based on scan timing in neonatal encephalopathy following therapeutic hypothermia. J Pediatr. 2021;239:101-109.e4.PubMedCrossRef
81.
go back to reference Holshouser BA, Tong KA, Ashwal S. Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. Am J Neuroradiol. 2005;26:1276–85.PubMedPubMedCentral Holshouser BA, Tong KA, Ashwal S. Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. Am J Neuroradiol. 2005;26:1276–85.PubMedPubMedCentral
82.
go back to reference Holshouser B, Pivonka-Jones J, Nichols JG, Oyoyo U, Tong K, Ghosh N, et al. Longitudinal metabolite changes after traumatic brain injury: a prospective pediatric magnetic resonance spectroscopic imaging study. J Neurotrauma. 2019;36:1352–60.PubMedPubMedCentralCrossRef Holshouser B, Pivonka-Jones J, Nichols JG, Oyoyo U, Tong K, Ghosh N, et al. Longitudinal metabolite changes after traumatic brain injury: a prospective pediatric magnetic resonance spectroscopic imaging study. J Neurotrauma. 2019;36:1352–60.PubMedPubMedCentralCrossRef
84.
go back to reference Aaen GS, Holshouser BA, Sheridan C, Colbert C, McKenney M, Kido D, et al. Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma. Pediatrics. 2010;125:295–303.PubMedCrossRef Aaen GS, Holshouser BA, Sheridan C, Colbert C, McKenney M, Kido D, et al. Magnetic resonance spectroscopy predicts outcomes for children with nonaccidental trauma. Pediatrics. 2010;125:295–303.PubMedCrossRef
86.
go back to reference Holshouser BA, Proton MR. Spectroscopy after acute central nervous system injury. Radiology. 1997;202:487–96.PubMedCrossRef Holshouser BA, Proton MR. Spectroscopy after acute central nervous system injury. Radiology. 1997;202:487–96.PubMedCrossRef
87.
go back to reference Babikian T, Freier MC, Ashwal S, Riggs ML, Burley T, Holshouser BA. MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. J Magn Reson Imaging. 2006;24:801–11.PubMedCrossRef Babikian T, Freier MC, Ashwal S, Riggs ML, Burley T, Holshouser BA. MR spectroscopy: predicting long-term neuropsychological outcome following pediatric TBI. J Magn Reson Imaging. 2006;24:801–11.PubMedCrossRef
88.
go back to reference Knauth M, Forsting M, Hartmann M, Heiland S, Balzer T, Sartor K. MR enhancement of brain lesions: Increased contrast dose compared with magnetization transfer. Am J Neuroradiol. 1996;17:1853–9.PubMedPubMedCentral Knauth M, Forsting M, Hartmann M, Heiland S, Balzer T, Sartor K. MR enhancement of brain lesions: Increased contrast dose compared with magnetization transfer. Am J Neuroradiol. 1996;17:1853–9.PubMedPubMedCentral
89.
go back to reference Gale EM, Caravan P, Rao AG, McDonald RJ, Winfeld M, Fleck RJ, et al. Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr Radiol Pediatric Radiology. 2017;47:507–21.PubMedCrossRef Gale EM, Caravan P, Rao AG, McDonald RJ, Winfeld M, Fleck RJ, et al. Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr Radiol Pediatric Radiology. 2017;47:507–21.PubMedCrossRef
91.
go back to reference Noda SM, Oztek MA, Stanescu AL, Maloney E, Shaw DWW, Iyer RS. Gadolinium retention: should pediatric radiologists be concerned, and how to frame conversations with families. Pediatr Radiol Pediatric Radiol. 2022;52:345–53.CrossRef Noda SM, Oztek MA, Stanescu AL, Maloney E, Shaw DWW, Iyer RS. Gadolinium retention: should pediatric radiologists be concerned, and how to frame conversations with families. Pediatr Radiol Pediatric Radiol. 2022;52:345–53.CrossRef
92.
go back to reference Shah CC, Spampinato MV, Parmar HA, Raslan OA, Tomà P, Lin DDM, et al. Safety and diagnostic efficacy of gadoteridol for magnetic resonance imaging of the brain and spine in children 2 years of age and younger. Pediatr Radiol Pediatric Radiology. 2021;51:1895–906.PubMedCrossRef Shah CC, Spampinato MV, Parmar HA, Raslan OA, Tomà P, Lin DDM, et al. Safety and diagnostic efficacy of gadoteridol for magnetic resonance imaging of the brain and spine in children 2 years of age and younger. Pediatr Radiol Pediatric Radiology. 2021;51:1895–906.PubMedCrossRef
93.
go back to reference Braun J, Busse R, Darmon-Kern E, Heine O, Auer J, Meyl T, et al. Baseline characteristics, diagnostic efficacy, and peri-examinational safety of IV gadoteric acid MRI in 148,489 patients. Acta radiol. 2020;61:910–20.PubMedCrossRef Braun J, Busse R, Darmon-Kern E, Heine O, Auer J, Meyl T, et al. Baseline characteristics, diagnostic efficacy, and peri-examinational safety of IV gadoteric acid MRI in 148,489 patients. Acta radiol. 2020;61:910–20.PubMedCrossRef
94.
go back to reference Robertson RL, Palasis S, Rivkin MJ, Pruthi S, Bartel TB, Desai NK, et al. ACR appropriateness criteria® cerebrovascular disease-child. J Am Coll Radiol. 2020;17:S36-54.PubMedCrossRef Robertson RL, Palasis S, Rivkin MJ, Pruthi S, Bartel TB, Desai NK, et al. ACR appropriateness criteria® cerebrovascular disease-child. J Am Coll Radiol. 2020;17:S36-54.PubMedCrossRef
95.
go back to reference Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol. 2011;13:904–9.PubMedPubMedCentralCrossRef Hipp SJ, Steffen-Smith E, Hammoud D, Shih JH, Bent R, Warren KE. Predicting outcome of children with diffuse intrinsic pontine gliomas using multiparametric imaging. Neuro Oncol. 2011;13:904–9.PubMedPubMedCentralCrossRef
96.
go back to reference Stence NV, Pabst LL, Hollatz AL, Mirsky DM, Herson PS, Poisson S, et al. Predicting progression of intracranial arteriopathies in childhood stroke with vessel wall imaging. Stroke. 2017;48:2274–7.PubMedCrossRef Stence NV, Pabst LL, Hollatz AL, Mirsky DM, Herson PS, Poisson S, et al. Predicting progression of intracranial arteriopathies in childhood stroke with vessel wall imaging. Stroke. 2017;48:2274–7.PubMedCrossRef
98.
go back to reference Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, et al. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol Pediatric Radiology. 2022;52:354–66.PubMedCrossRef Daldrup-Link HE, Theruvath AJ, Rashidi A, Iv M, Majzner RG, Spunt SL, et al. How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol. Pediatr Radiol Pediatric Radiology. 2022;52:354–66.PubMedCrossRef
99.
go back to reference Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, et al. Nanoparticles for diagnosis and target therapy in pediatric brain cancers. Diagnostics. 2022;12(1):173.PubMedPubMedCentralCrossRef Guido C, Baldari C, Maiorano G, Mastronuzzi A, Carai A, Quintarelli C, et al. Nanoparticles for diagnosis and target therapy in pediatric brain cancers. Diagnostics. 2022;12(1):173.PubMedPubMedCentralCrossRef
100.
go back to reference Yuan C, Lin E, Millard J, Hwang JN. Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magn Reson Imaging. 1999;17:257–66.PubMedCrossRef Yuan C, Lin E, Millard J, Hwang JN. Closed contour edge detection of blood vessel lumen and outer wall boundaries in black-blood MR images. Magn Reson Imaging. 1999;17:257–66.PubMedCrossRef
101.
go back to reference Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology. 2009;72:627–34.PubMedCrossRef Swartz RH, Bhuta SS, Farb RI, Agid R, Willinsky RA, Terbrugge KG, et al. Intracranial arterial wall imaging using high-resolution 3-tesla contrast-enhanced MRI. Neurology. 2009;72:627–34.PubMedCrossRef
104.
go back to reference Mineyko A, Kirton A, Ng D, Wei XC. Normal intracranial periarterial enhancement on pediatric brain MR imaging. Neuroradiology. 2013;55:1161–9.PubMedCrossRef Mineyko A, Kirton A, Ng D, Wei XC. Normal intracranial periarterial enhancement on pediatric brain MR imaging. Neuroradiology. 2013;55:1161–9.PubMedCrossRef
105.
go back to reference Mossa-Basha M, Shibata DK, Hallam DK, De Havenon A, Hippe DS, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke. 2017;48:3026–33.PubMedPubMedCentralCrossRef Mossa-Basha M, Shibata DK, Hallam DK, De Havenon A, Hippe DS, Becker KJ, et al. Added value of vessel wall magnetic resonance imaging for differentiation of nonocclusive intracranial vasculopathies. Stroke. 2017;48:3026–33.PubMedPubMedCentralCrossRef
106.
go back to reference Dlamini N, Yau I, Muthusami P, Mikulis DJ, Elbers J, Slim M, et al. Arterial wall imaging in pediatric stroke. Stroke. 2018;49:891–8.PubMedCrossRef Dlamini N, Yau I, Muthusami P, Mikulis DJ, Elbers J, Slim M, et al. Arterial wall imaging in pediatric stroke. Stroke. 2018;49:891–8.PubMedCrossRef
107.
go back to reference Song JW, Obusez EC, Raymond SB, Rafla SD, Schaefer PW, Romero JM. Vessel wall MRI added to MR angiography in the evaluation of suspected vasculopathies. J Neuroimaging. 2019;29:454–7.PubMedCrossRef Song JW, Obusez EC, Raymond SB, Rafla SD, Schaefer PW, Romero JM. Vessel wall MRI added to MR angiography in the evaluation of suspected vasculopathies. J Neuroimaging. 2019;29:454–7.PubMedCrossRef
108.
go back to reference Sung J, Lee D, Song JY, Lee J, Kim JH, Lee J. The value of high-resolution vessel wall magnetic resonance imaging in the diagnosis and management of primary angiitis of the central nervous system in children. Ann Child Neurol. 2021;29:159–67.CrossRef Sung J, Lee D, Song JY, Lee J, Kim JH, Lee J. The value of high-resolution vessel wall magnetic resonance imaging in the diagnosis and management of primary angiitis of the central nervous system in children. Ann Child Neurol. 2021;29:159–67.CrossRef
109.
go back to reference Rafay MF, Shapiro KA, Surmava AM, Deveber GA, Kirton A, Fullerton HJ, et al. Spectrum of cerebral arteriopathies in children with arterial ischemic stroke. Neurology. 2020;94:E2479–90.PubMedPubMedCentralCrossRef Rafay MF, Shapiro KA, Surmava AM, Deveber GA, Kirton A, Fullerton HJ, et al. Spectrum of cerebral arteriopathies in children with arterial ischemic stroke. Neurology. 2020;94:E2479–90.PubMedPubMedCentralCrossRef
110.
go back to reference Obusez EC, Hui F, Hajj-ali RA, Cerejo R, Calabrese LH, Hammad T, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. Am J Neuroradiol. 2014;35:1527–32.PubMedPubMedCentralCrossRef Obusez EC, Hui F, Hajj-ali RA, Cerejo R, Calabrese LH, Hammad T, et al. High-resolution MRI vessel wall imaging: spatial and temporal patterns of reversible cerebral vasoconstriction syndrome and central nervous system vasculitis. Am J Neuroradiol. 2014;35:1527–32.PubMedPubMedCentralCrossRef
112.
go back to reference Smitka M, Bruck N, Engellandt K, Hahn G, Knoefler R, von der Hagen M. Clinical perspective on primary angiitis of the central nervous system in childhood (cPACNS). Front Pediatr. 2020;8:1–12.CrossRef Smitka M, Bruck N, Engellandt K, Hahn G, Knoefler R, von der Hagen M. Clinical perspective on primary angiitis of the central nervous system in childhood (cPACNS). Front Pediatr. 2020;8:1–12.CrossRef
113.
go back to reference Fullerton HJ, Wu YW, Sidney S, Johnston SC. Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics. 2007;119:495–501.PubMedCrossRef Fullerton HJ, Wu YW, Sidney S, Johnston SC. Risk of recurrent childhood arterial ischemic stroke in a population-based cohort: the importance of cerebrovascular imaging. Pediatrics. 2007;119:495–501.PubMedCrossRef
115.
go back to reference Ziskin MC. Fundamental physics of ultrasound and its propagation in tissue. Radiographics. 1993;13:705–9.PubMedCrossRef Ziskin MC. Fundamental physics of ultrasound and its propagation in tissue. Radiographics. 1993;13:705–9.PubMedCrossRef
116.
go back to reference Adams R, McKie V, Nichols F, Carl E, Zhang D-L, McKie K, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326:605–10.PubMedCrossRef Adams R, McKie V, Nichols F, Carl E, Zhang D-L, McKie K, et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease. N Engl J Med. 1992;326:605–10.PubMedCrossRef
117.
go back to reference Purkayastha S, Sorond F. Transcranial doppler ultrasound: technique and application. Semin Neurol. 2012;32:411–20.PubMedCrossRef Purkayastha S, Sorond F. Transcranial doppler ultrasound: technique and application. Semin Neurol. 2012;32:411–20.PubMedCrossRef
119.
go back to reference Barletta A, Balbi M, Surace A, Caroli A, Radaelli S, Musto F, et al. Cerebral superb microvascular imaging in preterm neonates: in vivo evaluation of thalamic, striatal, and extrastriatal angioarchitecture. Neuroradiology. 2021;63:1103–12.PubMedCrossRef Barletta A, Balbi M, Surace A, Caroli A, Radaelli S, Musto F, et al. Cerebral superb microvascular imaging in preterm neonates: in vivo evaluation of thalamic, striatal, and extrastriatal angioarchitecture. Neuroradiology. 2021;63:1103–12.PubMedCrossRef
120.
go back to reference Goeral K, Hojreh A, Kasprian G, Klebermass-Schrehof K, Weber M, Mitter C, et al. Microvessel ultrasound of neonatal brain parenchyma: feasibility, reproducibility, and normal imaging features by superb microvascular imaging (SMI). Eur Radiol. 2019;29:2127–36.PubMedCrossRef Goeral K, Hojreh A, Kasprian G, Klebermass-Schrehof K, Weber M, Mitter C, et al. Microvessel ultrasound of neonatal brain parenchyma: feasibility, reproducibility, and normal imaging features by superb microvascular imaging (SMI). Eur Radiol. 2019;29:2127–36.PubMedCrossRef
121.
go back to reference Park AY, Seo BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography. 2018;37(2):98.PubMedCrossRef Park AY, Seo BK. Up-to-date Doppler techniques for breast tumor vascularity: superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography. 2018;37(2):98.PubMedCrossRef
122.
go back to reference Hwang M, Haddad S, Tierradentro-Garcia LO, Alves CA, Taylor GA, Darge K. Current understanding and future potential applications of cerebral microvascular imaging in infants. Br J Radiol. 2022;95:20211051.PubMedCrossRef Hwang M, Haddad S, Tierradentro-Garcia LO, Alves CA, Taylor GA, Darge K. Current understanding and future potential applications of cerebral microvascular imaging in infants. Br J Radiol. 2022;95:20211051.PubMedCrossRef
125.
go back to reference Hwang M, Sridharan A, Darge K, Riggs B, Sehgal C, Flibotte J, et al. Novel quantitative contrast-enhanced ultrasound detection of hypoxic ischemic injury in neonates and infants: pilot study 1. J Ultrasound Med. 2019;38:2025–38.PubMedCrossRef Hwang M, Sridharan A, Darge K, Riggs B, Sehgal C, Flibotte J, et al. Novel quantitative contrast-enhanced ultrasound detection of hypoxic ischemic injury in neonates and infants: pilot study 1. J Ultrasound Med. 2019;38:2025–38.PubMedCrossRef
126.
go back to reference Meairs S. Contrast-enhanced ultrasound perfusion imaging in acute stroke patients. Eur Neurol. 2008;59(Suppl. 1):17–26.PubMedCrossRef Meairs S. Contrast-enhanced ultrasound perfusion imaging in acute stroke patients. Eur Neurol. 2008;59(Suppl. 1):17–26.PubMedCrossRef
128.
go back to reference Zhang Z, Hwang M, Kilbaugh TJ, Sridharan A, Katz J. Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nat Commun. 2022;13:1–15. Zhang Z, Hwang M, Kilbaugh TJ, Sridharan A, Katz J. Cerebral microcirculation mapped by echo particle tracking velocimetry quantifies the intracranial pressure and detects ischemia. Nat Commun. 2022;13:1–15.
129.
go back to reference Sigrist RMS, Liau J, El KA, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303.PubMedPubMedCentralCrossRef Sigrist RMS, Liau J, El KA, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303.PubMedPubMedCentralCrossRef
130.
go back to reference deCampo D, Hwang M. Characterizing the neonatal brain with ultrasound elastography. Pediatr Neurol. 2018;86:19–26.PubMedCrossRef deCampo D, Hwang M. Characterizing the neonatal brain with ultrasound elastography. Pediatr Neurol. 2018;86:19–26.PubMedCrossRef
132.
go back to reference Kim HG, Park MS, Lee JD, Park SY. Ultrasound elastography of the neonatal brain: preliminary study. J Ultrasound Med. 2017;36:1313–9.PubMedCrossRef Kim HG, Park MS, Lee JD, Park SY. Ultrasound elastography of the neonatal brain: preliminary study. J Ultrasound Med. 2017;36:1313–9.PubMedCrossRef
133.
go back to reference Albayrak E, Kasap T. Evaluation of neonatal brain parenchyma using 2-dimensional shear wave elastography. J Ultrasound Med. 2018;37:959–67.PubMedCrossRef Albayrak E, Kasap T. Evaluation of neonatal brain parenchyma using 2-dimensional shear wave elastography. J Ultrasound Med. 2018;37:959–67.PubMedCrossRef
134.
go back to reference El-Ali AM, Subramanian S, Krofchik LM, Kephart MC, Squires JH. Feasibility and reproducibility of shear wave elastography in pediatric cranial ultrasound. Pediatr Radiol. 2020;50:990–6.PubMedCrossRef El-Ali AM, Subramanian S, Krofchik LM, Kephart MC, Squires JH. Feasibility and reproducibility of shear wave elastography in pediatric cranial ultrasound. Pediatr Radiol. 2020;50:990–6.PubMedCrossRef
135.
go back to reference Wang J, Zhang Z, Xu X, Lu X, Wu T, Tong M. Real-time shear wave elastography evaluation of the correlation between brain tissue stiffness and body mass index in premature neonates. Transl Pediatr. 2021;10:3230–6.PubMedPubMedCentralCrossRef Wang J, Zhang Z, Xu X, Lu X, Wu T, Tong M. Real-time shear wave elastography evaluation of the correlation between brain tissue stiffness and body mass index in premature neonates. Transl Pediatr. 2021;10:3230–6.PubMedPubMedCentralCrossRef
136.
go back to reference Yang H, Li H, Liao J, Yuan X, Shi C, Liang W. Compression elastography and shear wave ultrasound elastography for measurement of brain elasticity in full-term and premature neonates: a prospective study. J Ultrasound Med. 2022;42(1):221–31.PubMedCrossRef Yang H, Li H, Liao J, Yuan X, Shi C, Liang W. Compression elastography and shear wave ultrasound elastography for measurement of brain elasticity in full-term and premature neonates: a prospective study. J Ultrasound Med. 2022;42(1):221–31.PubMedCrossRef
137.
go back to reference Chan HW, Pressler R, Uff C, Gunny R, St Piers K, Cross H, et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative shearwave elastography. Epilepsia. 2014;55:30–3.CrossRef Chan HW, Pressler R, Uff C, Gunny R, St Piers K, Cross H, et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative shearwave elastography. Epilepsia. 2014;55:30–3.CrossRef
138.
go back to reference Dirrichs T, Meiser N, Panek A, Trepels-Kottek S, Orlikowsky T, Kuhl CK, et al. Transcranial shear wave elastography of neonatal and infant brains for quantitative evaluation of increased intracranial pressure. Invest Radiol. 2019;54:719–27.PubMedCrossRef Dirrichs T, Meiser N, Panek A, Trepels-Kottek S, Orlikowsky T, Kuhl CK, et al. Transcranial shear wave elastography of neonatal and infant brains for quantitative evaluation of increased intracranial pressure. Invest Radiol. 2019;54:719–27.PubMedCrossRef
139.
go back to reference Stone JL, Hughes JR. Early history of electroencephalography and establishment of the american clinical neurophysiology society. J Clin Neurophysiol LWW. 2013;30:28–44.CrossRef Stone JL, Hughes JR. Early history of electroencephalography and establishment of the american clinical neurophysiology society. J Clin Neurophysiol LWW. 2013;30:28–44.CrossRef
140.
go back to reference Aaberg KM, Gunnes N, Bakken IJ, Soraas CL, Berntsen A, Magnus P, et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics. 2017;139:e20163908.PubMedCrossRef Aaberg KM, Gunnes N, Bakken IJ, Soraas CL, Berntsen A, Magnus P, et al. Incidence and prevalence of childhood epilepsy: a nationwide cohort study. Pediatrics. 2017;139:e20163908.PubMedCrossRef
142.
go back to reference Tsuchida TN, Wusthoff CJ, Shellhaas RA, Abend NS, Hahn CD, Sullivan JE, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the american clinical neurophysiology society critical care monitoring committee. J Clin Neurophysiol. 2013;30:161–73.PubMedCrossRef Tsuchida TN, Wusthoff CJ, Shellhaas RA, Abend NS, Hahn CD, Sullivan JE, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the american clinical neurophysiology society critical care monitoring committee. J Clin Neurophysiol. 2013;30:161–73.PubMedCrossRef
143.
go back to reference Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, et al. Consensus statement on continuous EEG in critically Ill adults and children, part I: indications. J Clin Neurophysiol NIH Public Access. 2015;32:87–95.CrossRef Herman ST, Abend NS, Bleck TP, Chapman KE, Drislane FW, Emerson RG, et al. Consensus statement on continuous EEG in critically Ill adults and children, part I: indications. J Clin Neurophysiol NIH Public Access. 2015;32:87–95.CrossRef
144.
go back to reference Hirsch LJ, Fong MWK, Leitinger M, LaRoche SM, Beniczky S, Abend NS, et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol NIH Public Access. 2021;38:1–29.CrossRef Hirsch LJ, Fong MWK, Leitinger M, LaRoche SM, Beniczky S, Abend NS, et al. American clinical neurophysiology society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol NIH Public Access. 2021;38:1–29.CrossRef
145.
go back to reference Libenson MH. Practical approach to electroencephalography. Spinal Cord. Elsevier Health Sciences; 2012. Libenson MH. Practical approach to electroencephalography. Spinal Cord. Elsevier Health Sciences; 2012.
146.
go back to reference Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol LWW. 2006;23:186–9.CrossRef Olejniczak P. Neurophysiologic basis of EEG. J Clin Neurophysiol LWW. 2006;23:186–9.CrossRef
147.
go back to reference Ng MC, Jing J, Westover MB. A primer on EEG spectrograms. J Clin Neurophysiol Wolters Kluwer. 2022;39:177–83.CrossRef Ng MC, Jing J, Westover MB. A primer on EEG spectrograms. J Clin Neurophysiol Wolters Kluwer. 2022;39:177–83.CrossRef
148.
go back to reference El-Dib M, Chang T, Tsuchida TN, Clancy RR. Amplitude-integrated electroencephalography in neonates. Pediatr Neurol. 2009;41:315–26.PubMedCrossRef El-Dib M, Chang T, Tsuchida TN, Clancy RR. Amplitude-integrated electroencephalography in neonates. Pediatr Neurol. 2009;41:315–26.PubMedCrossRef
150.
go back to reference Swisher CB, White CR, Mace BE, Dombrowski KE, Husain AM, Kolls BJ, et al. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol. 2015;32(4):324–30.PubMedCrossRef Swisher CB, White CR, Mace BE, Dombrowski KE, Husain AM, Kolls BJ, et al. Diagnostic accuracy of electrographic seizure detection by neurophysiologists and non-neurophysiologists in the adult ICU using a panel of quantitative EEG trends. J Clin Neurophysiol. 2015;32(4):324–30.PubMedCrossRef
151.
go back to reference Haider HA, Esteller R, Hahn CD, Westover MB, Halford JJ, Lee JW, et al. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology. 2016;87:935–44.PubMedPubMedCentralCrossRef Haider HA, Esteller R, Hahn CD, Westover MB, Halford JJ, Lee JW, et al. Sensitivity of quantitative EEG for seizure identification in the intensive care unit. Neurology. 2016;87:935–44.PubMedPubMedCentralCrossRef
152.
go back to reference Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;2012:746–58. Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;2012:746–58.
153.
go back to reference Gaspard N. Current clinical evidence supporting the use of continuous EEG monitoring for delayed cerebral ischemia detection. J Clin Neurophysiol. 2016;33(3):211–6.PubMedCrossRef Gaspard N. Current clinical evidence supporting the use of continuous EEG monitoring for delayed cerebral ischemia detection. J Clin Neurophysiol. 2016;33(3):211–6.PubMedCrossRef
154.
go back to reference Kamitaki BK, Tu B, Wong S, Mendiratta A, Choi H. Quantitative EEG changes correlate with post-clamp ischemia during carotid endarterectomy. J Clin Neurophysiol. 2021;38:213–20.PubMedCrossRef Kamitaki BK, Tu B, Wong S, Mendiratta A, Choi H. Quantitative EEG changes correlate with post-clamp ischemia during carotid endarterectomy. J Clin Neurophysiol. 2021;38:213–20.PubMedCrossRef
155.
go back to reference Yu Z, Wen D, Zheng J, Guo R, Li H, You C, et al. Predictive accuracy of alpha-delta ratio on quantitative electroencephalography for delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: meta-analysis. World Neurosurg. 2019;126:e510–6.PubMedCrossRef Yu Z, Wen D, Zheng J, Guo R, Li H, You C, et al. Predictive accuracy of alpha-delta ratio on quantitative electroencephalography for delayed cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage: meta-analysis. World Neurosurg. 2019;126:e510–6.PubMedCrossRef
156.
go back to reference Kamitaki BK, Tu B, Reynolds AS, Schevon CA. Teaching NeuroImages: acute stroke captured on EEG in the ICU: visual and quantitative analysis. Neurology. 2019;92(6):e626–7.PubMedPubMedCentralCrossRef Kamitaki BK, Tu B, Reynolds AS, Schevon CA. Teaching NeuroImages: acute stroke captured on EEG in the ICU: visual and quantitative analysis. Neurology. 2019;92(6):e626–7.PubMedPubMedCentralCrossRef
157.
go back to reference Alsallom F, Casassa C, Akkineni K, Lin L. Early detection of cerebral herniation by continuous electroencephalography and quantitative analysis. Clin EEG Neurosci. 2022;53:133–7.PubMedCrossRef Alsallom F, Casassa C, Akkineni K, Lin L. Early detection of cerebral herniation by continuous electroencephalography and quantitative analysis. Clin EEG Neurosci. 2022;53:133–7.PubMedCrossRef
158.
go back to reference Munjal NK, Bergman I, Scheuer ML, Genovese CR, Simon DW, Patterson CM. Quantitative electroencephalography (EEG) predicting acute neurologic deterioration in the pediatric intensive care unit: a case series. J Child Neurol. 2022;37:73–9.PubMedCrossRef Munjal NK, Bergman I, Scheuer ML, Genovese CR, Simon DW, Patterson CM. Quantitative electroencephalography (EEG) predicting acute neurologic deterioration in the pediatric intensive care unit: a case series. J Child Neurol. 2022;37:73–9.PubMedCrossRef
159.
go back to reference Swisher CB, Sinha SR. Utilization of quantitative EEG trends for Critical care continuous EEG monitoring: a survey of neurophysiologists. J Clin Neurophysiol LWW. 2016;33:538–44.CrossRef Swisher CB, Sinha SR. Utilization of quantitative EEG trends for Critical care continuous EEG monitoring: a survey of neurophysiologists. J Clin Neurophysiol LWW. 2016;33:538–44.CrossRef
161.
go back to reference Durduran T, Choe R, Baker WB, Yodh AG. Diffuse optics for tissue monitoring and tomography. Reports Prog Phys. 2010;73:076701.CrossRef Durduran T, Choe R, Baker WB, Yodh AG. Diffuse optics for tissue monitoring and tomography. Reports Prog Phys. 2010;73:076701.CrossRef
162.
go back to reference Van Meurs KP, Yan ES, Randall KS, Chock VY, Davis AS, Glennon CS, et al. Development of a NeuroNICU with a broader focus on all newborns at risk of brain injury: the first 2 years. Am J Perinatol. 2018;35:1197–205.PubMedCrossRef Van Meurs KP, Yan ES, Randall KS, Chock VY, Davis AS, Glennon CS, et al. Development of a NeuroNICU with a broader focus on all newborns at risk of brain injury: the first 2 years. Am J Perinatol. 2018;35:1197–205.PubMedCrossRef
163.
go back to reference Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of optical neuromonitoring in neonatal encephalopathy: current state and recent advances. Front Pediatr. 2021;9:1–18.CrossRef Harvey-Jones K, Lange F, Tachtsidis I, Robertson NJ, Mitra S. Role of optical neuromonitoring in neonatal encephalopathy: current state and recent advances. Front Pediatr. 2021;9:1–18.CrossRef
164.
go back to reference Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and precision medicine in pediatric neurocritical care: multi-modal monitoring of immunometabolic dysfunction. Int J Mol Sci. 2020;21:1–21.CrossRef Woodward KE, de Jesus P, Esser MJ. Neuroinflammation and precision medicine in pediatric neurocritical care: multi-modal monitoring of immunometabolic dysfunction. Int J Mol Sci. 2020;21:1–21.CrossRef
165.
go back to reference Gardner Yelton SE, Williams MA, Young M, Fields J, Pearl MS, Casella JF, et al. Perioperative management of pediatric patients with moyamoya arteriopathy. J Pediatr Intensive Care. 2021;01(07):2021. Gardner Yelton SE, Williams MA, Young M, Fields J, Pearl MS, Casella JF, et al. Perioperative management of pediatric patients with moyamoya arteriopathy. J Pediatr Intensive Care. 2021;01(07):2021.
166.
go back to reference Marino BS. New concepts in predicting, evaluating, and managing neurodevelopmental outcomes in children with congenital heart disease. Curr Opin Pediatr. 2013;25:574–84.PubMedCrossRef Marino BS. New concepts in predicting, evaluating, and managing neurodevelopmental outcomes in children with congenital heart disease. Curr Opin Pediatr. 2013;25:574–84.PubMedCrossRef
167.
go back to reference Neshat Vahid S, Panisello JM. The state of affairs of neurologic monitoring by near-infrared spectroscopy in pediatric cardiac critical care. Curr Opin Pediatr. 2014;26:299–303.PubMedCrossRef Neshat Vahid S, Panisello JM. The state of affairs of neurologic monitoring by near-infrared spectroscopy in pediatric cardiac critical care. Curr Opin Pediatr. 2014;26:299–303.PubMedCrossRef
168.
go back to reference Humblet K, Docquier MA, Rubay J, Momeni M. Multimodal brain monitoring in congenital cardiac surgery: the importance of processed electroencephalogram monitor, NeuroSENSE, in addition to cerebral near-infrared spectroscopy. J Cardiothorac Vasc Anesth. 2017;31:254–8.PubMedCrossRef Humblet K, Docquier MA, Rubay J, Momeni M. Multimodal brain monitoring in congenital cardiac surgery: the importance of processed electroencephalogram monitor, NeuroSENSE, in addition to cerebral near-infrared spectroscopy. J Cardiothorac Vasc Anesth. 2017;31:254–8.PubMedCrossRef
170.
go back to reference Medikonda R, Ong CS, Wadia R, Goswami D, Schwartz J, Wolff L, et al. A review of goal-directed cardiopulmonary bypass management in pediatric cardiac surgery. World J Pediatr Congenit Hear Surg. 2018;9:565–72.CrossRef Medikonda R, Ong CS, Wadia R, Goswami D, Schwartz J, Wolff L, et al. A review of goal-directed cardiopulmonary bypass management in pediatric cardiac surgery. World J Pediatr Congenit Hear Surg. 2018;9:565–72.CrossRef
171.
go back to reference Zaleski KL, Kussman BD. Near-infrared spectroscopy in pediatric congenital heart disease. J Cardiothorac Vasc Anesth. 2020;34:489–500.PubMedCrossRef Zaleski KL, Kussman BD. Near-infrared spectroscopy in pediatric congenital heart disease. J Cardiothorac Vasc Anesth. 2020;34:489–500.PubMedCrossRef
172.
go back to reference Houska NM, Schwartz LI. The year in review: anesthesia for congenital heart disease 2019. Semin Cardiothorac Vasc Anesth. 2020;24:175–86.PubMedCrossRef Houska NM, Schwartz LI. The year in review: anesthesia for congenital heart disease 2019. Semin Cardiothorac Vasc Anesth. 2020;24:175–86.PubMedCrossRef
174.
go back to reference Hunter CL, Oei JL, Suzuki K, Lui K, Schindler T. Patterns of use of near-infrared spectroscopy in neonatal intensive care units: international usage survey. Acta Paediatr Int J Paediatr. 2018;107:1198–204.CrossRef Hunter CL, Oei JL, Suzuki K, Lui K, Schindler T. Patterns of use of near-infrared spectroscopy in neonatal intensive care units: international usage survey. Acta Paediatr Int J Paediatr. 2018;107:1198–204.CrossRef
176.
go back to reference Tombolini S, De Angelis F, Correani A, Marchionni P, Monachesi C, Ferretti E, et al. Is low cerebral near infrared spectroscopy oximetry associated with neurodevelopment of preterm infants without brain injury? J Perinat Med. 2022;50(5):625–9.PubMedCrossRef Tombolini S, De Angelis F, Correani A, Marchionni P, Monachesi C, Ferretti E, et al. Is low cerebral near infrared spectroscopy oximetry associated with neurodevelopment of preterm infants without brain injury? J Perinat Med. 2022;50(5):625–9.PubMedCrossRef
177.
go back to reference Wolf M, Naulaers G, Van BF, Kleiser S, Greisen G. Review: a review of near infrared spectroscopy for term and preterm newborns. J Near Infrared Spectrosc. 2012;20:43–55.CrossRef Wolf M, Naulaers G, Van BF, Kleiser S, Greisen G. Review: a review of near infrared spectroscopy for term and preterm newborns. J Near Infrared Spectrosc. 2012;20:43–55.CrossRef
179.
go back to reference Jeon GW. Clinical application of near-infrared spectroscopy in neonates. Neonatal Med. 2019;26:121–7.CrossRef Jeon GW. Clinical application of near-infrared spectroscopy in neonates. Neonatal Med. 2019;26:121–7.CrossRef
182.
go back to reference Thiele RH, Shaw AD, Bartels K, Brown CH, Grocott H, Heringlake M, et al. American society for enhanced recovery and perioperative quality initiative joint consensus statement on the role of neuromonitoring in perioperative outcomes: cerebral near-infrared spectroscopy. Anesth Analg. 2020;131:1444–55.PubMedCrossRef Thiele RH, Shaw AD, Bartels K, Brown CH, Grocott H, Heringlake M, et al. American society for enhanced recovery and perioperative quality initiative joint consensus statement on the role of neuromonitoring in perioperative outcomes: cerebral near-infrared spectroscopy. Anesth Analg. 2020;131:1444–55.PubMedCrossRef
183.
go back to reference Mitra S, Bale G, Meek J, Tachtsidis I, Robertson NJ. Cerebral near infrared spectroscopy monitoring in term infants with hypoxic ischemic encephalopathy: a systematic review. Front Neurol. 2020;11:1–17.CrossRef Mitra S, Bale G, Meek J, Tachtsidis I, Robertson NJ. Cerebral near infrared spectroscopy monitoring in term infants with hypoxic ischemic encephalopathy: a systematic review. Front Neurol. 2020;11:1–17.CrossRef
184.
go back to reference Da Dalt L, Parri N, Amigoni A, Nocerino A, Selmin F, Manara R, et al. Italian guidelines on the assessment and management of pediatric head injury in the emergency department. Ital J Pediatr. 2018;44:1–41. Da Dalt L, Parri N, Amigoni A, Nocerino A, Selmin F, Manara R, et al. Italian guidelines on the assessment and management of pediatric head injury in the emergency department. Ital J Pediatr. 2018;44:1–41.
185.
186.
go back to reference Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995;227:54–68.PubMedCrossRef Matcher SJ, Elwell CE, Cooper CE, Cope M, Delpy DT. Performance comparison of several published tissue near-infrared spectroscopy algorithms. Anal Biochem. 1995;227:54–68.PubMedCrossRef
187.
go back to reference Tachtsidis I, Tisdall MM, Pritchard C, Leung TS, Ghosh A, Elwell CE, et al. Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study. Adv Exp Med Biol. 2011;701:9–14.PubMedPubMedCentralCrossRef Tachtsidis I, Tisdall MM, Pritchard C, Leung TS, Ghosh A, Elwell CE, et al. Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: a broadband NIRS study. Adv Exp Med Biol. 2011;701:9–14.PubMedPubMedCentralCrossRef
188.
go back to reference Qin J, Lu R. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl Spectrosc. 2007;61:388–96.PubMedCrossRef Qin J, Lu R. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Appl Spectrosc. 2007;61:388–96.PubMedCrossRef
191.
go back to reference Pham TH, Coquoz O, Fishkin JB, Anderson E, Tromberg BJ. Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Rev Sci Instrum. 2000;71:2500–13.CrossRef Pham TH, Coquoz O, Fishkin JB, Anderson E, Tromberg BJ. Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy. Rev Sci Instrum. 2000;71:2500–13.CrossRef
192.
go back to reference Fantini S, Hueber D, Franceschini MA, Gratton E, Rosenfeld W, Stubblefield PG, et al. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol. 1999;44:1543–63.PubMedCrossRef Fantini S, Hueber D, Franceschini MA, Gratton E, Rosenfeld W, Stubblefield PG, et al. Non-invasive optical monitoring of the newborn piglet brain using continuous-wave and frequency-domain spectroscopy. Phys Med Biol. 1999;44:1543–63.PubMedCrossRef
193.
go back to reference Dean Kurth C, Thayer WS. A multiwavelength frequency-domain near-infrared cerebral oximeter. Phys Med Biol. 1999;44:727–40.CrossRef Dean Kurth C, Thayer WS. A multiwavelength frequency-domain near-infrared cerebral oximeter. Phys Med Biol. 1999;44:727–40.CrossRef
194.
go back to reference Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, et al. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem. 1988;174:698–707.PubMedCrossRef Chance B, Nioka S, Kent J, McCully K, Fountain M, Greenfeld R, et al. Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle. Anal Biochem. 1988;174:698–707.PubMedCrossRef
195.
go back to reference Patterson MS, Chance B, Wilson BC. Time resolved reflectance and transmittance for the non- invasive measurement of tissue optical properties. Appl Opt Soc. 1989;28:2331–6.CrossRef Patterson MS, Chance B, Wilson BC. Time resolved reflectance and transmittance for the non- invasive measurement of tissue optical properties. Appl Opt Soc. 1989;28:2331–6.CrossRef
197.
go back to reference Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards D, Wray S, et al. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol. 1990;68:1086–91.PubMedCrossRef Wyatt JS, Cope M, Delpy DT, Richardson CE, Edwards D, Wray S, et al. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol. 1990;68:1086–91.PubMedCrossRef
198.
go back to reference Lange F, Tachtsidis I. Clinical brain monitoring with time domain NIRS: a review and future perspectives. Appl Sci. 2019;9(8):1612.CrossRef Lange F, Tachtsidis I. Clinical brain monitoring with time domain NIRS: a review and future perspectives. Appl Sci. 2019;9(8):1612.CrossRef
199.
go back to reference Diop M, Kishimoto J, Toronov V, Lee DSC, St. Lawrence K,. Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants. Biomed Opt Exp. 2015;6:3907–18.CrossRef Diop M, Kishimoto J, Toronov V, Lee DSC, St. Lawrence K,. Development of a combined broadband near-infrared and diffusion correlation system for monitoring cerebral blood flow and oxidative metabolism in preterm infants. Biomed Opt Exp. 2015;6:3907–18.CrossRef
200.
go back to reference Rajaram A, Bale G, Kewin M, Tachtsidis I, Lawrence KS, Diop M. Hybrid broadband NIRS/Diffuse correlation spectroscopy system for simultaneous monitoring of cerebral perfusion and cytochrome c oxidase. In: Optical tomography and spectroscopy Part F91-T:2588–603 Rajaram A, Bale G, Kewin M, Tachtsidis I, Lawrence KS, Diop M. Hybrid broadband NIRS/Diffuse correlation spectroscopy system for simultaneous monitoring of cerebral perfusion and cytochrome c oxidase. In: Optical tomography and spectroscopy Part F91-T:2588–603
201.
go back to reference Venkata Sekar SK, Lanka P, Farina A, Mora AD, Andersson-Engels S, Taroni P, et al. Broadband time domain diffuse optical reflectance spectroscopy: a review of systems, methods, and applications. Appl Sci. 2019;9(24):5465.CrossRef Venkata Sekar SK, Lanka P, Farina A, Mora AD, Andersson-Engels S, Taroni P, et al. Broadband time domain diffuse optical reflectance spectroscopy: a review of systems, methods, and applications. Appl Sci. 2019;9(24):5465.CrossRef
202.
go back to reference Lange F, Dunne L, Hale L, Tachtsidis I. MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of cytochrome-C-oxidase. IEEE J Sel Top Quantum Electron. 2019;25:1–12.CrossRef Lange F, Dunne L, Hale L, Tachtsidis I. MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in oxygenation and oxidation state of cytochrome-C-oxidase. IEEE J Sel Top Quantum Electron. 2019;25:1–12.CrossRef
203.
go back to reference Boas DA, Yodh AG. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J Opt Soc Am A. 1997;14:192.CrossRef Boas DA, Yodh AG. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. J Opt Soc Am A. 1997;14:192.CrossRef
206.
go back to reference Wu MM, Perdue K, Chan S-T, Stephens KA, Deng B, Franceschini MA, et al. Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models. Biomed Opt Exp. 2022;13:1131.CrossRef Wu MM, Perdue K, Chan S-T, Stephens KA, Deng B, Franceschini MA, et al. Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models. Biomed Opt Exp. 2022;13:1131.CrossRef
207.
go back to reference Buckley EM, Cook NM, Durduran T, Kim MN, Zhou C, Choe R, et al. Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt Express. 2009;17:12571.PubMedCrossRef Buckley EM, Cook NM, Durduran T, Kim MN, Zhou C, Choe R, et al. Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt Express. 2009;17:12571.PubMedCrossRef
208.
go back to reference Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, et al. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Opt. 2009;14:034015.PubMedCrossRef Zhou C, Eucker SA, Durduran T, Yu G, Ralston J, Friess SH, et al. Diffuse optical monitoring of hemodynamic changes in piglet brain with closed head injury. J Biomed Opt. 2009;14:034015.PubMedCrossRef
209.
go back to reference Busch DR, Rusin CG, Miller-Hance W, Kibler K, Baker WB, Heinle JS, et al. Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest. Biomed Opt Exp. 2016;7:3461–70.CrossRef Busch DR, Rusin CG, Miller-Hance W, Kibler K, Baker WB, Heinle JS, et al. Continuous cerebral hemodynamic measurement during deep hypothermic circulatory arrest. Biomed Opt Exp. 2016;7:3461–70.CrossRef
212.
go back to reference Carp SA, Dai GP, Boas DA, Franceschini MA, Kim YR. Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring. Biomed Opt Exp. 2010;1:553.CrossRef Carp SA, Dai GP, Boas DA, Franceschini MA, Kim YR. Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling MRI; towards MRI-optical continuous cerebral metabolic monitoring. Biomed Opt Exp. 2010;1:553.CrossRef
213.
215.
go back to reference Wang D, Parthasarathy AB, Baker WB, Gannon K, Kavuri V, Ko T, et al. Fast blood flow monitoring in deep tissues with real-time software correlators. Biomed Opt Exp [Internet]. 2016;7:776.CrossRef Wang D, Parthasarathy AB, Baker WB, Gannon K, Kavuri V, Ko T, et al. Fast blood flow monitoring in deep tissues with real-time software correlators. Biomed Opt Exp [Internet]. 2016;7:776.CrossRef
216.
go back to reference Zhang M, Yang Y, Chen X, Song Y, Zhu L, Gong X, et al. Application of near-infrared spectroscopy to monitor perfusion during extracorporeal membrane oxygenation after pediatric heart surgery. Front Med. 2021;8:1–8. Zhang M, Yang Y, Chen X, Song Y, Zhu L, Gong X, et al. Application of near-infrared spectroscopy to monitor perfusion during extracorporeal membrane oxygenation after pediatric heart surgery. Front Med. 2021;8:1–8.
217.
go back to reference Dragojević T, Hollmann JL, Tamborini D, Portaluppi D, Buttafava M, Culver JP, et al. Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow. Biomed Opt Exp. 2018;9:322.CrossRef Dragojević T, Hollmann JL, Tamborini D, Portaluppi D, Buttafava M, Culver JP, et al. Compact, multi-exposure speckle contrast optical spectroscopy (SCOS) device for measuring deep tissue blood flow. Biomed Opt Exp. 2018;9:322.CrossRef
218.
go back to reference Farzam P, Sutin J, Wu K-C, Zimmermann BB, Tamborini D, Dubb J, et al. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation). Clin Transl Neurophoton. 2017;10050:80–80. Farzam P, Sutin J, Wu K-C, Zimmermann BB, Tamborini D, Dubb J, et al. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation). Clin Transl Neurophoton. 2017;10050:80–80.
221.
go back to reference Tabassum S, Ruesch A, Acharya D, Rakkar J, Clark RSB, McDowell MM, et al. Intracranial pressure driven cardiac pulsation waveform changes measured with diffuse correlation spectroscopy. In: European conference on biomedical optics 2021. Pp ETu3C-4. Tabassum S, Ruesch A, Acharya D, Rakkar J, Clark RSB, McDowell MM, et al. Intracranial pressure driven cardiac pulsation waveform changes measured with diffuse correlation spectroscopy. In: European conference on biomedical optics 2021. Pp ETu3C-4.
222.
go back to reference Carp SA, Farzam P, Redes N, Hueber DM, Franceschini MA. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis. Biomed Opt Exp. 2017;8:3993.CrossRef Carp SA, Farzam P, Redes N, Hueber DM, Franceschini MA. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis. Biomed Opt Exp. 2017;8:3993.CrossRef
223.
go back to reference Tamborini D, Stephens KA, Wu MM, Farzam P, Siegel AM, Shatrovoy O, et al. Portable system for time-domain diffuse correlation spectroscopy. IEEE Trans Biomed Eng. 2019;66(11):3014–25.PubMedPubMedCentralCrossRef Tamborini D, Stephens KA, Wu MM, Farzam P, Siegel AM, Shatrovoy O, et al. Portable system for time-domain diffuse correlation spectroscopy. IEEE Trans Biomed Eng. 2019;66(11):3014–25.PubMedPubMedCentralCrossRef
224.
go back to reference Amendola C, Lacerenza M, Buttafava M, Tosi A, Spinelli L, Contini D, et al. A compact multi-distance dcs and time domain nirs hybrid system for hemodynamic and metabolic measurements. Sensors (Switzerland). 2021;21:1–17.CrossRef Amendola C, Lacerenza M, Buttafava M, Tosi A, Spinelli L, Contini D, et al. A compact multi-distance dcs and time domain nirs hybrid system for hemodynamic and metabolic measurements. Sensors (Switzerland). 2021;21:1–17.CrossRef
225.
go back to reference Lynch JM, Mavroudis CD, Ko TS, Jacobwitz M, Busch DR, Xiao R, et al. Association of ongoing cerebral oxygen extraction during deep hypothermic circulatory arrest with post-operative brain injury. Semin Thorac Cardiovasc Surg. 2021;34(4):1275–84.PubMedPubMedCentralCrossRef Lynch JM, Mavroudis CD, Ko TS, Jacobwitz M, Busch DR, Xiao R, et al. Association of ongoing cerebral oxygen extraction during deep hypothermic circulatory arrest with post-operative brain injury. Semin Thorac Cardiovasc Surg. 2021;34(4):1275–84.PubMedPubMedCentralCrossRef
227.
go back to reference Giovannella M. BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain. Neurophotonics. 2019;6:1.CrossRef Giovannella M. BabyLux device: a diffuse optical system integrating diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy for the neuromonitoring of the premature newborn brain. Neurophotonics. 2019;6:1.CrossRef
229.
go back to reference Lin P-Y, Roche-Labarbe N, Dehaes M, Carp S, Fenoglio A, Barbieri B, et al. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. J Vis Exp. 2013;73:e4379. Lin P-Y, Roche-Labarbe N, Dehaes M, Carp S, Fenoglio A, Barbieri B, et al. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants. J Vis Exp. 2013;73:e4379.
230.
go back to reference Irwin D, Dong L, Shang Y, Cheng R, Kudrimoti M, Stevens SD, et al. Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements. Biomed Opt Exp. 2011;2:1969.CrossRef Irwin D, Dong L, Shang Y, Cheng R, Kudrimoti M, Stevens SD, et al. Influences of tissue absorption and scattering on diffuse correlation spectroscopy blood flow measurements. Biomed Opt Exp. 2011;2:1969.CrossRef
231.
go back to reference Culver JP, Durduran T, Cheung C, Furuya D, Greenberg JH, Yodh AG. Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest. Adv Exp Med Biol. 2003;510:293–7.PubMedCrossRef Culver JP, Durduran T, Cheung C, Furuya D, Greenberg JH, Yodh AG. Diffuse optical measurement of hemoglobin and cerebral blood flow in rat brain during hypercapnia, hypoxia and cardiac arrest. Adv Exp Med Biol. 2003;510:293–7.PubMedCrossRef
233.
go back to reference Durduran T, Yu G, Burnett MG, Detre JA, Greenberg JH, Wang J, et al. Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett. 2004;29:1766.PubMedCrossRef Durduran T, Yu G, Burnett MG, Detre JA, Greenberg JH, Wang J, et al. Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation. Opt Lett. 2004;29:1766.PubMedCrossRef
234.
go back to reference De Carli A, Andresen B, Giovannella M, Durduran T, Contini D, Spinelli L, et al. Cerebral oxygenation and blood flow in term infants during postnatal transition: BabyLux project. Arch Dis Child Fetal Neonatal Ed. 2019;104:F648–53.PubMedCrossRef De Carli A, Andresen B, Giovannella M, Durduran T, Contini D, Spinelli L, et al. Cerebral oxygenation and blood flow in term infants during postnatal transition: BabyLux project. Arch Dis Child Fetal Neonatal Ed. 2019;104:F648–53.PubMedCrossRef
238.
go back to reference Bale G, Mitra S, de Roever I, Sokolska M, Price D, Bainbridge A, et al. Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury. J Cereb Blood Flow Metab. 2019;39:2035–47.PubMedCrossRef Bale G, Mitra S, de Roever I, Sokolska M, Price D, Bainbridge A, et al. Oxygen dependency of mitochondrial metabolism indicates outcome of newborn brain injury. J Cereb Blood Flow Metab. 2019;39:2035–47.PubMedCrossRef
239.
go back to reference Mitra S, Bale G, Highton D, Gunny R, Uria-Avellanal C, Bainbridge A, et al. Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury. J Cereb Blood Flow Metab. 2019;39:118–30.PubMedCrossRef Mitra S, Bale G, Highton D, Gunny R, Uria-Avellanal C, Bainbridge A, et al. Pressure passivity of cerebral mitochondrial metabolism is associated with poor outcome following perinatal hypoxic ischemic brain injury. J Cereb Blood Flow Metab. 2019;39:118–30.PubMedCrossRef
241.
go back to reference Vezyroglou A, Hebden P, De Roever I, Thornton R, Mitra S, Worley A, et al. Broadband-NIRS system identifies epileptic focus in a child with focal cortical dysplasia: a case study. Metabolites. 2022;12:260.PubMedPubMedCentralCrossRef Vezyroglou A, Hebden P, De Roever I, Thornton R, Mitra S, Worley A, et al. Broadband-NIRS system identifies epileptic focus in a child with focal cortical dysplasia: a case study. Metabolites. 2022;12:260.PubMedPubMedCentralCrossRef
242.
go back to reference Mitra S. Predictive role of Cytochrome C Oxidase measured by broadband near infrared spectroscopy as a real time bio marker of newborn brain injury. Thesis. 2018. Mitra S. Predictive role of Cytochrome C Oxidase measured by broadband near infrared spectroscopy as a real time bio marker of newborn brain injury. Thesis. 2018.
243.
go back to reference Ferradal SL, Yuki K, Vyas R, Ha CG, Yi F, Stopp C, et al. Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: feasibility and clinical implications. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/srep44117.CrossRef Ferradal SL, Yuki K, Vyas R, Ha CG, Yi F, Stopp C, et al. Non-invasive assessment of cerebral blood flow and oxygen metabolism in neonates during hypothermic cardiopulmonary bypass: feasibility and clinical implications. Sci Rep. 2017;7:1–9. https://​doi.​org/​10.​1038/​srep44117.CrossRef
246.
go back to reference Ko TS, Mavroudis CD, Morgan RW, Baker WB, Marquez AM, Boorady TW, et al. Non-invasive diffuse optical neuromonitoring during cardiopulmonary resuscitation predicts return of spontaneous circulation. Sci Rep. 2021;11:3828.PubMedPubMedCentralCrossRef Ko TS, Mavroudis CD, Morgan RW, Baker WB, Marquez AM, Boorady TW, et al. Non-invasive diffuse optical neuromonitoring during cardiopulmonary resuscitation predicts return of spontaneous circulation. Sci Rep. 2021;11:3828.PubMedPubMedCentralCrossRef
247.
go back to reference White B, Ko T, Morgan RW, Jahnavi J, Benson E., Roberts AL, et al. Low frequency power in cerebral blood flow through cardiac arrest and recovery in a swine model. In: Yang VXD, Kainerstorfer JM, editors. Optical techniques in neurosurgery, neurophotonics, and optogenetics. SPIE; 2021. p 3. https://doi.org/10.1117/12.2578832.full. Accessed 29 May 2022. White B, Ko T, Morgan RW, Jahnavi J, Benson E., Roberts AL, et al. Low frequency power in cerebral blood flow through cardiac arrest and recovery in a swine model. In: Yang VXD, Kainerstorfer JM, editors. Optical techniques in neurosurgery, neurophotonics, and optogenetics. SPIE; 2021. p 3. https://​doi.​org/​10.​1117/​12.​2578832.​full. Accessed 29 May 2022.
249.
go back to reference Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:1–10. Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:1–10.
250.
go back to reference Hayman EG, Patel AP, Kimberly WT, Sheth KN, Simard JM. Cerebral edema after cardiopulmonary resuscitation: a therapeutic target following cardiac arrest? Neurocrit Care. 2018;28:276–87.PubMedCrossRef Hayman EG, Patel AP, Kimberly WT, Sheth KN, Simard JM. Cerebral edema after cardiopulmonary resuscitation: a therapeutic target following cardiac arrest? Neurocrit Care. 2018;28:276–87.PubMedCrossRef
251.
go back to reference Baker WB, Parthasarathy AB, Gannon KP, Kavuri VC, Busch DR, Abramson K, et al. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. J Cereb Blood Flow Metab. 2017;37:2691–705.PubMedPubMedCentralCrossRef Baker WB, Parthasarathy AB, Gannon KP, Kavuri VC, Busch DR, Abramson K, et al. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. J Cereb Blood Flow Metab. 2017;37:2691–705.PubMedPubMedCentralCrossRef
252.
go back to reference Ruesch A, Yang J, Schmitt S, Acharya D, Smith MA, Kainerstorfer JM. Estimating intracranial pressure using pulsatile cerebral blood flow measured with diffuse correlation spectroscopy. Biomed Opt Exp. 2022;13:710.CrossRef Ruesch A, Yang J, Schmitt S, Acharya D, Smith MA, Kainerstorfer JM. Estimating intracranial pressure using pulsatile cerebral blood flow measured with diffuse correlation spectroscopy. Biomed Opt Exp. 2022;13:710.CrossRef
253.
go back to reference Fischer JB, Ghouse A, Tagliabue S, Maruccia F, Rey-Perez A, Báguena M, et al. Non-invasive estimation of intracranial pressure by diffuse optics: a proof-of-concept study. J Neurotrauma. 2020;37:2569–79.PubMedCrossRef Fischer JB, Ghouse A, Tagliabue S, Maruccia F, Rey-Perez A, Báguena M, et al. Non-invasive estimation of intracranial pressure by diffuse optics: a proof-of-concept study. J Neurotrauma. 2020;37:2569–79.PubMedCrossRef
254.
go back to reference Wu K, Sunwoo J, Sheriff F, Farzam PYPPY, Farzam PYPPY, Orihuela-Espina F, et al. Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients. J Biomed Opt. 2021;26:036008.PubMedPubMedCentralCrossRef Wu K, Sunwoo J, Sheriff F, Farzam PYPPY, Farzam PYPPY, Orihuela-Espina F, et al. Validation of diffuse correlation spectroscopy measures of critical closing pressure against transcranial Doppler ultrasound in stroke patients. J Biomed Opt. 2021;26:036008.PubMedPubMedCentralCrossRef
255.
go back to reference Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25:473–91.PubMedPubMedCentralCrossRef Cardim D, Robba C, Bohdanowicz M, Donnelly J, Cabella B, Liu X, et al. Non-invasive monitoring of intracranial pressure using transcranial doppler ultrasonography: is it possible? Neurocrit Care. 2016;25:473–91.PubMedPubMedCentralCrossRef
256.
go back to reference Ruesch A, Schmitt S, Yang J, Smith MA, Kainerstorfer JM. Fluctuations in intracranial pressure can be estimated non-invasively using near-infrared spectroscopy in non-human primates. J Cereb Blood Flow Metab. 2020;40:2304–14.PubMedCrossRef Ruesch A, Schmitt S, Yang J, Smith MA, Kainerstorfer JM. Fluctuations in intracranial pressure can be estimated non-invasively using near-infrared spectroscopy in non-human primates. J Cereb Blood Flow Metab. 2020;40:2304–14.PubMedCrossRef
258.
go back to reference Donnelly JE, Young AMH, Brady K. Autoregulation in paediatric TBI: current evidence and implications for treatment. Child’s Nerv Syst Child’s Nervous Syst. 2017;33:1735–44.CrossRef Donnelly JE, Young AMH, Brady K. Autoregulation in paediatric TBI: current evidence and implications for treatment. Child’s Nerv Syst Child’s Nervous Syst. 2017;33:1735–44.CrossRef
260.
go back to reference Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 2016;3:031411.PubMedPubMedCentralCrossRef Fantini S, Sassaroli A, Tgavalekos KT, Kornbluth J. Cerebral blood flow and autoregulation: current measurement techniques and prospects for noninvasive optical methods. Neurophotonics. 2016;3:031411.PubMedPubMedCentralCrossRef
264.
go back to reference Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, et al. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab. 2019;39(8):1469–85.PubMedPubMedCentralCrossRef Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, et al. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab. 2019;39(8):1469–85.PubMedPubMedCentralCrossRef
265.
go back to reference Forti RM, Favilla CG, Cochran JM, Baker WB, Detre JA, Kasner SE, et al. Transcranial optical monitoring of cerebral hemodynamics in acute stroke patients during mechanical thrombectomy. J Stroke Cerebrovasc Dis. 2019;28:1483–94.PubMedPubMedCentralCrossRef Forti RM, Favilla CG, Cochran JM, Baker WB, Detre JA, Kasner SE, et al. Transcranial optical monitoring of cerebral hemodynamics in acute stroke patients during mechanical thrombectomy. J Stroke Cerebrovasc Dis. 2019;28:1483–94.PubMedPubMedCentralCrossRef
266.
go back to reference Parthasarathy AB, Gannon KP, Baker WB, Favilla CG, Balu R, Kasner SE, et al. Dynamic autoregulation of cerebral blood flow measured non-invasively with fast diffuse correlation spectroscopy. J Cereb Blood Flow Metab. 2018;38:230–40.PubMedCrossRef Parthasarathy AB, Gannon KP, Baker WB, Favilla CG, Balu R, Kasner SE, et al. Dynamic autoregulation of cerebral blood flow measured non-invasively with fast diffuse correlation spectroscopy. J Cereb Blood Flow Metab. 2018;38:230–40.PubMedCrossRef
268.
go back to reference Gregori-Pla C, Mesquita RC, Favilla CG, Busch DR, Blanco I, Zirak P, et al. Blood flow response to orthostatic challenge identifies signatures of the failure of static cerebral autoregulation in patients with cerebrovascular disease. BMC Neurol. 2021;21:1–12.CrossRef Gregori-Pla C, Mesquita RC, Favilla CG, Busch DR, Blanco I, Zirak P, et al. Blood flow response to orthostatic challenge identifies signatures of the failure of static cerebral autoregulation in patients with cerebrovascular disease. BMC Neurol. 2021;21:1–12.CrossRef
269.
270.
go back to reference Hwang M. Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential. Pediatr Radiol. 2019;49(2):254–62.PubMedCrossRef Hwang M. Introduction to contrast-enhanced ultrasound of the brain in neonates and infants: current understanding and future potential. Pediatr Radiol. 2019;49(2):254–62.PubMedCrossRef
271.
go back to reference Forti RM, Ko TS, Laurent GH, Hobson J, Benson E, Morton S, et al. Optical assessment of edema, perfusion, and oxygen metabolism after severe contusional traumatic brain injury: preliminary results in a swine-model. Opt Biophotonics Congr Biomed Opt 2022. Fort Lauderdale, FL; 2022. p. BS3C.5. Forti RM, Ko TS, Laurent GH, Hobson J, Benson E, Morton S, et al. Optical assessment of edema, perfusion, and oxygen metabolism after severe contusional traumatic brain injury: preliminary results in a swine-model. Opt Biophotonics Congr Biomed Opt 2022. Fort Lauderdale, FL; 2022. p. BS3C.5.
Metadata
Title
Advanced Neuromonitoring Modalities on the Horizon: Detection and Management of Acute Brain Injury in Children
Authors
Tiffany S. Ko
Eva Catennacio
Samuel S. Shin
Joseph Stern
Shavonne L. Massey
Todd J. Kilbaugh
Misun Hwang
Publication date
22-03-2023
Publisher
Springer US
Published in
Neurocritical Care / Issue 3/2023
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-023-01690-9

Other articles of this Issue 3/2023

Neurocritical Care 3/2023 Go to the issue