Skip to main content
Top
Published in: Annals of Intensive Care 1/2020

01-12-2020 | Ultrasound | Research

Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts

Authors: Morgan Caplan, Arthur Durand, Perrine Bortolotti, Delphine Colling, Julien Goutay, Thibault Duburcq, Elodie Drumez, Anahita Rouze, Saad Nseir, Michael Howsam, Thierry Onimus, Raphael Favory, Sebastien Preau

Published in: Annals of Intensive Care | Issue 1/2020

Login to get access

Abstract

Background

The collapsibility index of the inferior vena cava (cIVC) has potential for predicting fluid responsiveness in spontaneously breathing patients, but a standardized approach for measuring the inferior vena cava diameter has yet to be established.
The aim was to test the accuracy of different measurement sites of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with sepsis-related circulatory failure and examine the influence of a standardized breathing manoeuvre.

Results

Among the 81 patients included in the study, the median Simplified Acute Physiologic Score II was 34 (24; 42). Sepsis was of pulmonary origin in 49 patients (60%). Median volume expansion during the 24 h prior to study inclusion was 1000 mL (0; 2000). Patients were not severely ill: none were intubated, only 20% were on vasopressors, and all were apparently able to perform a standardized breathing exercise. Forty-one (51%) patients were responders to volume expansion (i.e. a ≥ 10% stroke volume index increase). The cIVC was calculated during non-standardized (cIVC-ns) and standardized breathing (cIVC-st) conditions. The accuracy with which both cIVC-ns and cIVC-st predicted fluid responsiveness differed significantly by measurement site (interaction p < 0.001 and < 0.0001, respectively). Measuring inferior vena cava diameters 4 cm caudal to the right atrium predicted fluid responsiveness with the best accuracy. At this site, a standardized breathing manoeuvre also significantly improved predictive power: areas under ROC curves [mean and (95% CI)] for cIVC-ns = 0.85 [0.78–0.94] versus cIVC-st = 0.98 [0.97–1.0], p < 0.001. When cIVC-ns is superior or equal to 33%, fluid responsiveness is predicted with a sensitivity of 66% and a specificity of 92%. When cIVC-st is superior or equal to 44%, fluid responsiveness is predicted with a sensitivity of 93% and a specificity of 98%.

Conclusion

The accuracy with which cIVC measurements predict fluid responsiveness in spontaneously breathing patients depends on both the measurement site of inferior vena cava diameters and the breathing regime. Measuring inferior vena cava diameters during a standardized inhalation manoeuvre at 4 cm caudal to the right atrium seems to be the method by which to obtain cIVC measurements best-able to predict patients’ response to volume expansion.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMedCrossRef Boyd JH, Forbes J, Nakada T, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65.PubMedCrossRef
2.
go back to reference Sakr Y, Rubatto Birri PN, Kotfis K, et al. Higher fluid balance increases the risk of death from sepsis: results from a large international audit*. Crit Care Med. 2017;45(3):386–94.PubMedCrossRef Sakr Y, Rubatto Birri PN, Kotfis K, et al. Higher fluid balance increases the risk of death from sepsis: results from a large international audit*. Crit Care Med. 2017;45(3):386–94.PubMedCrossRef
3.
go back to reference Vincent J-L, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMedCrossRef Vincent J-L, Sakr Y, Sprung CL, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.PubMedCrossRef
4.
go back to reference Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6(2):107–15.PubMedCrossRef Prowle JR, Echeverri JE, Ligabo EV, Ronco C, Bellomo R. Fluid balance and acute kidney injury. Nat Rev Nephrol. 2010;6(2):107–15.PubMedCrossRef
5.
go back to reference Silversides JA, Major E, Ferguson AJ, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.PubMedCrossRef Silversides JA, Major E, Ferguson AJ, et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017;43(2):155–70.PubMedCrossRef
6.
go back to reference Calvin JE, Driedger AA, Sibbald WJ. The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery. 1981;90(1):61–76.PubMed Calvin JE, Driedger AA, Sibbald WJ. The hemodynamic effect of rapid fluid infusion in critically ill patients. Surgery. 1981;90(1):61–76.PubMed
7.
go back to reference Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest. 1990;98(6):1450–4.PubMedCrossRef Reuse C, Vincent JL, Pinsky MR. Measurements of right ventricular volumes during fluid challenge. Chest. 1990;98(6):1450–4.PubMedCrossRef
8.
go back to reference Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;7(2):76–85.CrossRef Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;7(2):76–85.CrossRef
9.
go back to reference Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89(6):1313–21.PubMedCrossRef Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89(6):1313–21.PubMedCrossRef
10.
go back to reference Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.PubMedCrossRef Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162(1):134–8.PubMedCrossRef
11.
go back to reference Michard F, Teboul J-L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.PubMedCrossRef Michard F, Teboul J-L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–8.PubMedCrossRef
12.
go back to reference Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316(12):1298–309.PubMedCrossRef Bentzer P, Griesdale DE, Boyd J, MacLean K, Sirounis D, Ayas NT. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016;316(12):1298–309.PubMedCrossRef
13.
go back to reference Bednarczyk JM, Fridfinnson JA, Kumar A, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017;45(9):1538–45.PubMedPubMedCentralCrossRef Bednarczyk JM, Fridfinnson JA, Kumar A, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017;45(9):1538–45.PubMedPubMedCentralCrossRef
14.
go back to reference Coudray A, Romand J-A, Treggiari M, Bendjelid K. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33(12):2757–62.PubMedCrossRef Coudray A, Romand J-A, Treggiari M, Bendjelid K. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33(12):2757–62.PubMedCrossRef
15.
go back to reference de Chaves RCF, Corrêa TD, Neto AS, et al. Assessment of fluid responsiveness in spontaneously breathing patients: a systematic review of literature. Ann Intensive Care. 2018;8(1):21.PubMedPubMedCentralCrossRef de Chaves RCF, Corrêa TD, Neto AS, et al. Assessment of fluid responsiveness in spontaneously breathing patients: a systematic review of literature. Ann Intensive Care. 2018;8(1):21.PubMedPubMedCentralCrossRef
16.
go back to reference Soubrier S, Saulnier F, Hubert H, et al. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med. 2007;33(7):1117–24.PubMedCrossRef Soubrier S, Saulnier F, Hubert H, et al. Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med. 2007;33(7):1117–24.PubMedCrossRef
17.
go back to reference Préau S, Dewavrin F, Soland V, et al. Hemodynamic changes during a deep inspiration maneuver predict fluid responsiveness in spontaneously breathing patients. Cardiol Res Pract. 2012;2012:191807.PubMedCrossRef Préau S, Dewavrin F, Soland V, et al. Hemodynamic changes during a deep inspiration maneuver predict fluid responsiveness in spontaneously breathing patients. Cardiol Res Pract. 2012;2012:191807.PubMedCrossRef
18.
go back to reference Monge García MI, Gil Cano A, Díaz Monrové JC. Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med. 2009;35(1):77–84.PubMedCrossRef Monge García MI, Gil Cano A, Díaz Monrové JC. Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med. 2009;35(1):77–84.PubMedCrossRef
19.
go back to reference Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007;33(7):1133–8.PubMedCrossRef Maizel J, Airapetian N, Lorne E, Tribouilloy C, Massy Z, Slama M. Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med. 2007;33(7):1133–8.PubMedCrossRef
20.
go back to reference Préau S, Saulnier F, Dewavrin F, Durocher A, Chagnon J-L. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38(3):819–25.PubMedCrossRef Préau S, Saulnier F, Dewavrin F, Durocher A, Chagnon J-L. Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med. 2010;38(3):819–25.PubMedCrossRef
21.
go back to reference Lakhal K, Ehrmann S, Runge I, et al. Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness. Intensive Care Med. 2010;36(6):940–8.PubMedCrossRef Lakhal K, Ehrmann S, Runge I, et al. Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness. Intensive Care Med. 2010;36(6):940–8.PubMedCrossRef
22.
go back to reference Marques NR, Martinello C, Kramer GC, et al. Passive leg raising during pregnancy. Am J Perinatol. 2015;32(4):393–8.PubMedCrossRef Marques NR, Martinello C, Kramer GC, et al. Passive leg raising during pregnancy. Am J Perinatol. 2015;32(4):393–8.PubMedCrossRef
23.
go back to reference Mahjoub Y, Touzeau J, Airapetian N, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38(9):1824–9.PubMedCrossRef Mahjoub Y, Touzeau J, Airapetian N, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38(9):1824–9.PubMedCrossRef
24.
go back to reference Beurton A, Teboul J-L, Girotto V, et al. Intra-abdominal hypertension is responsible for false negatives to the passive leg raising test. Crit Care Med. 2019;47(8):e639–47.PubMedCrossRef Beurton A, Teboul J-L, Girotto V, et al. Intra-abdominal hypertension is responsible for false negatives to the passive leg raising test. Crit Care Med. 2019;47(8):e639–47.PubMedCrossRef
25.
go back to reference Boulain T, Boisrame-Helms J, Ehrmann S, et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med. 2015;41(2):248–56.PubMedCrossRef Boulain T, Boisrame-Helms J, Ehrmann S, et al. Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med. 2015;41(2):248–56.PubMedCrossRef
26.
go back to reference Cecconi M, Hofer C, Teboul J-L, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41(9):1529–37.PubMedPubMedCentralCrossRef Cecconi M, Hofer C, Teboul J-L, et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015;41(9):1529–37.PubMedPubMedCentralCrossRef
27.
go back to reference Preau S, Dewavrin F, Demaeght V, et al. The use of static and dynamic haemodynamic parameters before volume expansion: a prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med. 2016;35(2):93–102.PubMedCrossRef Preau S, Dewavrin F, Demaeght V, et al. The use of static and dynamic haemodynamic parameters before volume expansion: a prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med. 2016;35(2):93–102.PubMedCrossRef
28.
go back to reference Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188.PubMedPubMedCentralCrossRef Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188.PubMedPubMedCentralCrossRef
29.
go back to reference Lanspa MJ, Grissom CK, Hirshberg EL, Jones JP, Brown SM. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock. Shock Augusta Ga. 2013;39(2):155–60.CrossRef Lanspa MJ, Grissom CK, Hirshberg EL, Jones JP, Brown SM. Applying dynamic parameters to predict hemodynamic response to volume expansion in spontaneously breathing patients with septic shock. Shock Augusta Ga. 2013;39(2):155–60.CrossRef
30.
go back to reference Airapetian N, Maizel J, Alyamani O, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care Lond Engl. 2015;19:400.CrossRef Airapetian N, Maizel J, Alyamani O, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care Lond Engl. 2015;19:400.CrossRef
31.
go back to reference Preau S, Bortolotti P, Colling D, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2017;45(3):e290–7.PubMedCrossRef Preau S, Bortolotti P, Colling D, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2017;45(3):e290–7.PubMedCrossRef
32.
go back to reference Bortolotti P, Colling D, Colas V, et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias. Ann Intensive Care. 2018;8(1):79.PubMedPubMedCentralCrossRef Bortolotti P, Colling D, Colas V, et al. Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias. Ann Intensive Care. 2018;8(1):79.PubMedPubMedCentralCrossRef
33.
go back to reference Bortolotti P, Colling D, Preau S. Inferior vena cava respiratory variations: a useful tool at bedside to guide fluid therapy in spontaneously breathing patients. Shock. 2018;49(2):235–6.PubMedCrossRef Bortolotti P, Colling D, Preau S. Inferior vena cava respiratory variations: a useful tool at bedside to guide fluid therapy in spontaneously breathing patients. Shock. 2018;49(2):235–6.PubMedCrossRef
34.
go back to reference Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654–64.PubMedPubMedCentralCrossRef Hernández G, Ospina-Tascón GA, Damiani LP, et al. Effect of a resuscitation strategy targeting peripheral perfusion status vs serum lactate levels on 28-day mortality among patients with septic shock: the ANDROMEDA-SHOCK randomized clinical trial. JAMA. 2019;321(7):654–64.PubMedPubMedCentralCrossRef
35.
go back to reference Kattan E, Ospina-Tascón GA, Teboul J-L, et al. Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial. Crit Care. 2020;24(1):23.PubMedPubMedCentralCrossRef Kattan E, Ospina-Tascón GA, Teboul J-L, et al. Systematic assessment of fluid responsiveness during early septic shock resuscitation: secondary analysis of the ANDROMEDA-SHOCK trial. Crit Care. 2020;24(1):23.PubMedPubMedCentralCrossRef
36.
go back to reference Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17(1):96–9.CrossRef Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17(1):96–9.CrossRef
37.
go back to reference Biasucci DG, Cina A, Calabrese M, et al. Size and shape of the inferior vena cava before and after a fluid challenge: a pilot study. Minerva Anestesiol. 2019;85(5):514–21.PubMedCrossRef Biasucci DG, Cina A, Calabrese M, et al. Size and shape of the inferior vena cava before and after a fluid challenge: a pilot study. Minerva Anestesiol. 2019;85(5):514–21.PubMedCrossRef
38.
go back to reference Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–10.PubMedPubMedCentralCrossRef
39.
go back to reference Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failureThe Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.CrossRefPubMed Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failureThe Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–200.CrossRefPubMed
40.
go back to reference Maluso P, Olson J, Sarani B. Abdominal compartment hypertension and abdominal compartment syndrome. Crit Care Clin. 2016;32(2):213–22.PubMedCrossRef Maluso P, Olson J, Sarani B. Abdominal compartment hypertension and abdominal compartment syndrome. Crit Care Clin. 2016;32(2):213–22.PubMedCrossRef
41.
go back to reference Mayo PH, Beaulieu Y, Doelken P, et al. American College of Chest Physicians/La Société de Réanimation de Langue Française statement on competence in critical care ultrasonography. Chest. 2009;135(4):1050–60.PubMedCrossRef Mayo PH, Beaulieu Y, Doelken P, et al. American College of Chest Physicians/La Société de Réanimation de Langue Française statement on competence in critical care ultrasonography. Chest. 2009;135(4):1050–60.PubMedCrossRef
42.
go back to reference Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70(3):425–31.PubMedCrossRef Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70(3):425–31.PubMedCrossRef
43.
go back to reference Bois DD, Bois EFD. Clinical calorimetry: Tenth paper a formula to estimate the approximative surface area if height and weight be known. Arch Intern Med. 1916;XVII(6–2):863–71.CrossRef Bois DD, Bois EFD. Clinical calorimetry: Tenth paper a formula to estimate the approximative surface area if height and weight be known. Arch Intern Med. 1916;XVII(6–2):863–71.CrossRef
44.
go back to reference Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.PubMedPubMedCentralCrossRef Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014;40(12):1795–815.PubMedPubMedCentralCrossRef
45.
go back to reference Jozwiak M, Mercado P, Teboul J-L, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care Lond Engl. 2019;23(1):116.CrossRef Jozwiak M, Mercado P, Teboul J-L, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care Lond Engl. 2019;23(1):116.CrossRef
46.
go back to reference Gall J-RL, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA. 1993;270(24):2957–63.PubMedCrossRef Gall J-RL, Lemeshow S, Saulnier F. A New Simplified Acute Physiology Score (SAPS II) Based on a European/North American Multicenter Study. JAMA. 1993;270(24):2957–63.PubMedCrossRef
47.
go back to reference Gignon L, Roger C, Bastide S, et al. Influence of diaphragmatic motion on inferior vena cava diameter respiratory variations in healthy volunteers. Anesthesiology. 2016;124(6):1338–46.PubMedCrossRef Gignon L, Roger C, Bastide S, et al. Influence of diaphragmatic motion on inferior vena cava diameter respiratory variations in healthy volunteers. Anesthesiology. 2016;124(6):1338–46.PubMedCrossRef
48.
go back to reference Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl (1985). 1990;69(6):1961–72.CrossRef Takata M, Wise RA, Robotham JL. Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl (1985). 1990;69(6):1961–72.CrossRef
49.
go back to reference Minten J, Van de Werf F, Aubert AE, Kesteloot H, De Geest H. Influence of transmural pressure on retrograde pressure pulse transmission velocity in the canine superior vena cava. Arch Int Physiol Biochim. 1984;92(4):317–25.PubMed Minten J, Van de Werf F, Aubert AE, Kesteloot H, De Geest H. Influence of transmural pressure on retrograde pressure pulse transmission velocity in the canine superior vena cava. Arch Int Physiol Biochim. 1984;92(4):317–25.PubMed
50.
go back to reference Shin DS, Sandstrom CK, Ingraham CR, Monroe EJ, Johnson GE. The inferior vena cava: a pictorial review of embryology, anatomy, pathology, and interventions. Abdom Radiol (NY). 2019;44(7):2511–27.CrossRef Shin DS, Sandstrom CK, Ingraham CR, Monroe EJ, Johnson GE. The inferior vena cava: a pictorial review of embryology, anatomy, pathology, and interventions. Abdom Radiol (NY). 2019;44(7):2511–27.CrossRef
51.
go back to reference Finnerty NM, Panchal AR, Boulger C, et al. Inferior vena cava measurement with ultrasound: what is the best view and best mode? West J Emerg Med. 2017;18(3):496–501.PubMedPubMedCentralCrossRef Finnerty NM, Panchal AR, Boulger C, et al. Inferior vena cava measurement with ultrasound: what is the best view and best mode? West J Emerg Med. 2017;18(3):496–501.PubMedPubMedCentralCrossRef
52.
go back to reference Viellard-Baron A, Evrard B, Repessé X, et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018;44:197–203.CrossRef Viellard-Baron A, Evrard B, Repessé X, et al. Limited value of end-expiratory inferior vena cava diameter to predict fluid responsiveness impact of intra-abdominal pressure. Intensive Care Med. 2018;44:197–203.CrossRef
53.
go back to reference Hamzoui O, Georger JF, Monnet X, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14(4):R142.CrossRef Hamzoui O, Georger JF, Monnet X, et al. Early administration of norepinephrine increases cardiac preload and cardiac output in septic patients with life-threatening hypotension. Crit Care. 2010;14(4):R142.CrossRef
Metadata
Title
Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts
Authors
Morgan Caplan
Arthur Durand
Perrine Bortolotti
Delphine Colling
Julien Goutay
Thibault Duburcq
Elodie Drumez
Anahita Rouze
Saad Nseir
Michael Howsam
Thierry Onimus
Raphael Favory
Sebastien Preau
Publication date
01-12-2020
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2020
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-020-00786-1

Other articles of this Issue 1/2020

Annals of Intensive Care 1/2020 Go to the issue