Skip to main content
Top
Published in: Annals of Intensive Care 1/2018

Open Access 01-12-2018 | Research

Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias

Authors: Perrine Bortolotti, Delphine Colling, Vincent Colas, Benoit Voisin, Florent Dewavrin, Julien Poissy, Patrick Girardie, Maeva Kyheng, Fabienne Saulnier, Raphael Favory, Sebastien Preau

Published in: Annals of Intensive Care | Issue 1/2018

Login to get access

Abstract

Background

Whether the respiratory changes of the inferior vena cava diameter during a deep standardized inspiration can reliably predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmia is unknown.

Methods

This prospective two-center study included nonventilated arrhythmic patients with infection-induced acute circulatory failure. Hemodynamic status was assessed at baseline and after a volume expansion of 500 mL 4% gelatin. The inferior vena cava diameters were measured with transthoracic echocardiography using the bi-dimensional mode on a subcostal long-axis view. Standardized respiratory cycles consisted of a deep inspiration with concomitant control of buccal pressures and passive exhalation. The collapsibility index of the inferior vena cava was calculated as [(expiratory–inspiratory)/expiratory] diameters.

Results

Among the 55 patients included in the study, 29 (53%) were responders to volume expansion. The areas under the ROC curve for the collapsibility index and inspiratory diameter of the inferior vena cava were both of 0.93 [95% CI 0.86; 1]. A collapsibility index ≥ 39% predicted fluid responsiveness with a sensitivity of 93% and a specificity of 88%. An inspiratory diameter < 11 mm predicted fluid responsiveness with a sensitivity of 83% and a specificity of 88%. A correlation between the inspiratory effort and the inferior vena cava collapsibility was found in responders but was absent in nonresponder patients.

Conclusions

In spontaneously breathing patients with cardiac arrhythmias, the collapsibility index and inspiratory diameter of the inferior vena cava assessed during a deep inspiration may be noninvasive bedside tools to predict fluid responsiveness in acute circulatory failure related to infection. These results, obtained in a small and selected population, need to be confirmed in a larger-scale study before considering any clinical application.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sakr Y, Vincent J-L, Schuerholz T, Filipescu D, Romain A, Hjelmqvist H, et al. Early- versus late- onset shock in european intensive care units. Shock. 2007;28:636.PubMed Sakr Y, Vincent J-L, Schuerholz T, Filipescu D, Romain A, Hjelmqvist H, et al. Early- versus late- onset shock in european intensive care units. Shock. 2007;28:636.PubMed
2.
go back to reference Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:1–74.CrossRef Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:1–74.CrossRef
3.
go back to reference Preau S, Dewavrin F, Demaeght V, Chiche A, Voisin B, Minacori F, et al. The use of static and dynamic haemodynamic parameters before volume expansion: a prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med. 2016;35:93–102.CrossRefPubMed Preau S, Dewavrin F, Demaeght V, Chiche A, Voisin B, Minacori F, et al. The use of static and dynamic haemodynamic parameters before volume expansion: a prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med. 2016;35:93–102.CrossRefPubMed
4.
go back to reference Boyd JH, Forbes J, Nakada T-A, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRefPubMed Boyd JH, Forbes J, Nakada T-A, Walley KR, Russell JA. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39:259–65.CrossRefPubMed
5.
go back to reference Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S, et al. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit Care Med. 2017;45:386–94.CrossRefPubMed Sakr Y, Rubatto Birri PN, Kotfis K, Nanchal R, Shah B, Kluge S, et al. Higher fluid balance increases the risk of death from sepsis: results from a large international audit. Crit Care Med. 2017;45:386–94.CrossRefPubMed
6.
8.
go back to reference Klein Klouwenberg PMC, Frencken JF, Kuipers S, Ong DSY, Peelen LM, van Vught LA, et al. Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis. A cohort study. Am J Respir Crit Care Med. 2017;195:205–11.CrossRefPubMed Klein Klouwenberg PMC, Frencken JF, Kuipers S, Ong DSY, Peelen LM, van Vught LA, et al. Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis. A cohort study. Am J Respir Crit Care Med. 2017;195:205–11.CrossRefPubMed
9.
go back to reference Michard F. Predicting fluid responsiveness in ICU patients*: a critical analysis of the evidence. Chest. 2002;121:2000–8.CrossRefPubMed Michard F. Predicting fluid responsiveness in ICU patients*: a critical analysis of the evidence. Chest. 2002;121:2000–8.CrossRefPubMed
10.
go back to reference Kim N, Shim J-K, Choi HG, Kim MK, Kim JY, Kwak Y-L. Comparison of positive end-expiratory pressure-induced increase in central venous pressure and passive leg raising to predict fluid responsiveness in patients with atrial fibrillation. Br J Anaesth. 2016;116:350–6.CrossRefPubMed Kim N, Shim J-K, Choi HG, Kim MK, Kim JY, Kwak Y-L. Comparison of positive end-expiratory pressure-induced increase in central venous pressure and passive leg raising to predict fluid responsiveness in patients with atrial fibrillation. Br J Anaesth. 2016;116:350–6.CrossRefPubMed
11.
go back to reference Marques N, Martinello C, Kramer G, Costantine M, Vadhera R, Saade G, et al. Passive leg raising during pregnancy. Am J Perinatol. 2015;32:393–8.CrossRefPubMed Marques N, Martinello C, Kramer G, Costantine M, Vadhera R, Saade G, et al. Passive leg raising during pregnancy. Am J Perinatol. 2015;32:393–8.CrossRefPubMed
12.
go back to reference Mahjoub Y, Touzeau J, Airapetian N, Lorne E, Hijazi M, Zogheib E, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38:1824–9.CrossRefPubMed Mahjoub Y, Touzeau J, Airapetian N, Lorne E, Hijazi M, Zogheib E, et al. The passive leg-raising maneuver cannot accurately predict fluid responsiveness in patients with intra-abdominal hypertension. Crit Care Med. 2010;38:1824–9.CrossRefPubMed
13.
go back to reference Muller L, Bobbia X, Toumi M, Louart G, Molinari N, Ragonnet B, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16:R188.CrossRefPubMedPubMedCentral Muller L, Bobbia X, Toumi M, Louart G, Molinari N, Ragonnet B, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16:R188.CrossRefPubMedPubMedCentral
14.
go back to reference Airapetian N, Maizel J, Alyamani O, Mahjoub Y, Lorne E, Levrard M, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015;19:400.CrossRefPubMedPubMedCentral Airapetian N, Maizel J, Alyamani O, Mahjoub Y, Lorne E, Levrard M, et al. Does inferior vena cava respiratory variability predict fluid responsiveness in spontaneously breathing patients? Crit Care. 2015;19:400.CrossRefPubMedPubMedCentral
15.
go back to reference Preau S, Bortolotti P, Colling D, Dewavrin F, Colas V, Voisin B, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2016;45:e290–7.CrossRef Preau S, Bortolotti P, Colling D, Dewavrin F, Colas V, Voisin B, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2016;45:e290–7.CrossRef
16.
go back to reference Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA. 2011;306:2248–54.CrossRefPubMedPubMedCentral Walkey AJ, Wiener RS, Ghobrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA. 2011;306:2248–54.CrossRefPubMedPubMedCentral
17.
go back to reference Walkey AJ, Hammill BG, Curtis LH, Benjamin EJ. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest. 2014;146:1187–95.CrossRefPubMedPubMedCentral Walkey AJ, Hammill BG, Curtis LH, Benjamin EJ. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest. 2014;146:1187–95.CrossRefPubMedPubMedCentral
18.
go back to reference Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.CrossRefPubMed Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18:891–975.CrossRefPubMed
19.
go back to reference Maluso P, Olson J, Sarani B. Abdominal compartment hypertension and abdominal compartment syndrome. Crit Care Clin. 2016;32:213–22.CrossRefPubMed Maluso P, Olson J, Sarani B. Abdominal compartment hypertension and abdominal compartment syndrome. Crit Care Clin. 2016;32:213–22.CrossRefPubMed
20.
go back to reference Expert Round Table on Echocardiography in ICU. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med. 2014;40:654–66.CrossRef Expert Round Table on Echocardiography in ICU. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med. 2014;40:654–66.CrossRef
21.
go back to reference Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70:425–31.CrossRefPubMed Lewis JF, Kuo LC, Nelson JG, Limacher MC, Quinones MA. Pulsed Doppler echocardiographic determination of stroke volume and cardiac output: clinical validation of two new methods using the apical window. Circulation. 1984;70:425–31.CrossRefPubMed
22.
go back to reference Obuchowski NA, McClish DK. Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Stat Med. 1997;16:1529–42.CrossRefPubMed Obuchowski NA, McClish DK. Sample size determination for diagnostic accuracy studies involving binormal ROC curve indices. Stat Med. 1997;16:1529–42.CrossRefPubMed
23.
go back to reference Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.CrossRefPubMed Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.CrossRefPubMed
24.
go back to reference Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed Le Gall JR, Lemeshow S, Saulnier F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA. 1993;270:2957–63.CrossRefPubMed
25.
go back to reference Lakhal K, Ehrmann S, Perrotin D, Wolff M, Boulain T. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive). Intensive Care Med. 2013;39:1953–62.CrossRefPubMed Lakhal K, Ehrmann S, Perrotin D, Wolff M, Boulain T. Fluid challenge: tracking changes in cardiac output with blood pressure monitoring (invasive or non-invasive). Intensive Care Med. 2013;39:1953–62.CrossRefPubMed
27.
go back to reference Marik PE, Cardiol JVJG. The hemodynamic management of elderly patients with sepsis. J Geriatr Cardiol. 2007;2007(4):120–6. Marik PE, Cardiol JVJG. The hemodynamic management of elderly patients with sepsis. J Geriatr Cardiol. 2007;2007(4):120–6.
28.
go back to reference Sehgal V, Bajwa SJS, Consalvo JA, Bajaj A. Clinical conundrums in management of sepsis in the elderly. J Transl Intern Med. 2015;3:767.CrossRef Sehgal V, Bajwa SJS, Consalvo JA, Bajaj A. Clinical conundrums in management of sepsis in the elderly. J Transl Intern Med. 2015;3:767.CrossRef
29.
go back to reference El-Sharkawy AM, Sahota O, Maughan RJ, Lobo DN. The pathophysiology of fluid and electrolyte balance in the older adult surgical patient. Clin Nutr. 2014;33:6–13.CrossRefPubMed El-Sharkawy AM, Sahota O, Maughan RJ, Lobo DN. The pathophysiology of fluid and electrolyte balance in the older adult surgical patient. Clin Nutr. 2014;33:6–13.CrossRefPubMed
31.
go back to reference Gignon L, Roger C, Bastide S, Alonso S, Zieleskiewicz L, Quintard H, et al. Influence of diaphragmatic motion on inferior vena cava diameter respiratory variations in healthy volunteers. Anesthesiology. 2016;124:1338–46.CrossRefPubMed Gignon L, Roger C, Bastide S, Alonso S, Zieleskiewicz L, Quintard H, et al. Influence of diaphragmatic motion on inferior vena cava diameter respiratory variations in healthy volunteers. Anesthesiology. 2016;124:1338–46.CrossRefPubMed
32.
go back to reference Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1210–20.CrossRefPubMed Barbieri R, Triedman JK, Saul JP. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Physiol Regul Integr Comp Physiol. 2002;283:R1210–20.CrossRefPubMed
33.
go back to reference Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.CrossRefPubMed Kumar A, Anel R, Bunnell E, Habet K, Zanotti S, Marshall S, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med. 2004;32:691–9.CrossRefPubMed
34.
go back to reference Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med. 2010;17:96–9.CrossRefPubMed Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med. 2010;17:96–9.CrossRefPubMed
35.
go back to reference Sonoo T, Nakamura K, Ando T, Sen K, Maeda A, Kobayashi E, et al. Prospective analysis of cardiac collapsibility of inferior vena cava using ultrasonography. J Crit Care. 2015;30:945–8.CrossRefPubMed Sonoo T, Nakamura K, Ando T, Sen K, Maeda A, Kobayashi E, et al. Prospective analysis of cardiac collapsibility of inferior vena cava using ultrasonography. J Crit Care. 2015;30:945–8.CrossRefPubMed
Metadata
Title
Respiratory changes of the inferior vena cava diameter predict fluid responsiveness in spontaneously breathing patients with cardiac arrhythmias
Authors
Perrine Bortolotti
Delphine Colling
Vincent Colas
Benoit Voisin
Florent Dewavrin
Julien Poissy
Patrick Girardie
Maeva Kyheng
Fabienne Saulnier
Raphael Favory
Sebastien Preau
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2018
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-018-0427-1

Other articles of this Issue 1/2018

Annals of Intensive Care 1/2018 Go to the issue