Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Type 2 Diabetes | Research

The role of mitochondrial DNA copy number in cardiometabolic disease: a bidirectional two-sample mendelian randomization study

Authors: Pei Qin, Tianhang Qin, Lei Liang, Xinying Li, Bin Jiang, Xiaojie Wang, Jianping Ma, Fulan Hu, Ming Zhang, Dongsheng Hu

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Background

This study used a bidirectional 2-sample Mendelian randomization study to investigate the potential causal links between mtDNA copy number and cardiometabolic disease (obesity, hypertension, hyperlipidaemia, type 2 diabetes [T2DM], coronary artery disease [CAD], stroke, ischemic stroke, and heart failure).

Methods

Genetic associations with mtDNA copy number were obtained from a genome-wide association study (GWAS) summary statistics from the UK biobank (n = 395,718) and cardio-metabolic disease were from largest available GWAS summary statistics. Inverse variance weighting (IVW) was conducted, with weighted median, MR-Egger, and MR-PRESSO as sensitivity analyses. We repeated this in the opposite direction using instruments for cardio-metabolic disease.

Results

Genetically predicted mtDNA copy number was not associated with risk of obesity (P = 0.148), hypertension (P = 0.515), dyslipidemia (P = 0.684), T2DM (P = 0.631), CAD (P = 0.199), stroke (P = 0.314), ischemic stroke (P = 0.633), and heart failure (P = 0.708). Regarding the reverse directions, we only found that genetically predicted dyslipidemia was associated with decreased levels of mtDNA copy number in the IVW analysis (β= − 0.060, 95% CI − 0.044 to − 0.076; P = 2.416e−14) and there was suggestive of evidence for a potential causal association between CAD and mtDNA copy number (β= − 0.021, 95% CI − 0.003 to − 0.039; P = 0.025). Sensitivity and replication analyses showed the stable findings.

Conclusions

Findings of this Mendelian randomization study did not support a causal effect of mtDNA copy number in the development of cardiometabolic disease, but found dyslipidemia and CAD can lead to reduced mtDNA copy number. These findings have implications for mtDNA copy number as a biomarker of dyslipidemia and CAD in clinical practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.CrossRefPubMed Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290:457–65.CrossRefPubMed
2.
go back to reference Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31:61.CrossRef Miller FJ, Rosenfeldt FL, Zhang C, Linnane AW, Nagley P. Precise determination of mitochondrial DNA copy number in human skeletal and cardiac muscle by a PCR-based assay: lack of change of copy number with age. Nucleic Acids Res. 2003;31:61.CrossRef
3.
go back to reference Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genom. 2009;36:125–31.CrossRef Clay Montier LL, Deng JJ, Bai Y. Number matters: control of mammalian mitochondrial DNA copy number. J Genet Genom. 2009;36:125–31.CrossRef
4.
go back to reference Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion. 2013;13:481–92.CrossRefPubMed Malik AN, Czajka A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion. 2013;13:481–92.CrossRefPubMed
5.
6.
go back to reference GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1204–22.CrossRef GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1204–22.CrossRef
7.
go back to reference Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2:1247–55.CrossRefPubMedPubMedCentral Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, et al. Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol. 2017;2:1247–55.CrossRefPubMedPubMedCentral
8.
go back to reference Sundquist K, Sundquist J, Palmer K, Memon AA. Role of mitochondrial DNA copy number in incident cardiovascular diseases and the association between cardiovascular disease and type 2 diabetes: a follow-up study on middle-aged women. Atherosclerosis. 2022;341:58–62.CrossRefPubMed Sundquist K, Sundquist J, Palmer K, Memon AA. Role of mitochondrial DNA copy number in incident cardiovascular diseases and the association between cardiovascular disease and type 2 diabetes: a follow-up study on middle-aged women. Atherosclerosis. 2022;341:58–62.CrossRefPubMed
9.
go back to reference Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, et al. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLoS ONE. 2018;13:e0206003.CrossRefPubMedPubMedCentral Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, et al. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLoS ONE. 2018;13:e0206003.CrossRefPubMedPubMedCentral
10.
go back to reference Sundquist K, Sundquist J, Wang X, Palmer K, Memon AA. Baseline mitochondrial DNA copy number and heart failure incidence and its role in overall and heart failure mortality in middle-aged women. Front Cardiovasc Med. 2022;9:1012403.CrossRefPubMedPubMedCentral Sundquist K, Sundquist J, Wang X, Palmer K, Memon AA. Baseline mitochondrial DNA copy number and heart failure incidence and its role in overall and heart failure mortality in middle-aged women. Front Cardiovasc Med. 2022;9:1012403.CrossRefPubMedPubMedCentral
11.
go back to reference Lei L, Guo J, Shi X, Zhang G, Kang H, Sun C, et al. Mitochondrial DNA copy number in peripheral blood cell and hypertension risk among mining workers: a case–control study in Chinese coal miners. J Hum Hypertens. 2017;31:585–90.CrossRefPubMed Lei L, Guo J, Shi X, Zhang G, Kang H, Sun C, et al. Mitochondrial DNA copy number in peripheral blood cell and hypertension risk among mining workers: a case–control study in Chinese coal miners. J Hum Hypertens. 2017;31:585–90.CrossRefPubMed
12.
go back to reference Skuratovskaia D, Litvinova L, Vulf M, Zatolokin P, Popadin K, Mazunin I. From normal to obesity and back: the associations between mitochondrial DNA copy number, gender, and body mass index. Cells. 2019;8:430.CrossRefPubMedPubMedCentral Skuratovskaia D, Litvinova L, Vulf M, Zatolokin P, Popadin K, Mazunin I. From normal to obesity and back: the associations between mitochondrial DNA copy number, gender, and body mass index. Cells. 2019;8:430.CrossRefPubMedPubMedCentral
13.
go back to reference DeBarmore B, Longchamps RJ, Zhang Y, Kalyani RR, Guallar E, Arking DE, et al. Mitochondrial DNA copy number and diabetes: the atherosclerosis risk in communities (ARIC) study. BMJ Open Diabetes Res Care. 2020;8:e001204.CrossRefPubMedPubMedCentral DeBarmore B, Longchamps RJ, Zhang Y, Kalyani RR, Guallar E, Arking DE, et al. Mitochondrial DNA copy number and diabetes: the atherosclerosis risk in communities (ARIC) study. BMJ Open Diabetes Res Care. 2020;8:e001204.CrossRefPubMedPubMedCentral
14.
go back to reference Fazzini F, Lamina C, Raftopoulou A, Koller A, Fuchsberger C, Pattaro C, et al. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med. 2021;290:190–202.CrossRefPubMedPubMedCentral Fazzini F, Lamina C, Raftopoulou A, Koller A, Fuchsberger C, Pattaro C, et al. Association of mitochondrial DNA copy number with metabolic syndrome and type 2 diabetes in 14 176 individuals. J Intern Med. 2021;290:190–202.CrossRefPubMedPubMedCentral
15.
go back to reference Liu X, Longchamps RJ, Wiggins KL, Raffield LM, Bielak LF, Zhao W, et al. Association of mitochondrial DNA copy number with cardiometabolic diseases. Cell Genom. 2021;1:100006.CrossRefPubMedPubMedCentral Liu X, Longchamps RJ, Wiggins KL, Raffield LM, Bielak LF, Zhao W, et al. Association of mitochondrial DNA copy number with cardiometabolic diseases. Cell Genom. 2021;1:100006.CrossRefPubMedPubMedCentral
16.
go back to reference Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.CrossRefPubMedPubMedCentral Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37:658–65.CrossRefPubMedPubMedCentral
17.
go back to reference Wang W, Luo J, van Willems K, Hagg S, Grassmann F, Lm TH, et al. Assessment of the bi-directional relationship between blood mitochondrial DNA copy number and type 2 diabetes mellitus: a multivariable-adjusted regression and mendelian randomisation study. Diabetologia. 2022;65:1676–86.CrossRefPubMedPubMedCentral Wang W, Luo J, van Willems K, Hagg S, Grassmann F, Lm TH, et al. Assessment of the bi-directional relationship between blood mitochondrial DNA copy number and type 2 diabetes mellitus: a multivariable-adjusted regression and mendelian randomisation study. Diabetologia. 2022;65:1676–86.CrossRefPubMedPubMedCentral
18.
go back to reference Chong MR, Narula S, Morton R, Judge C, Akhabir L, Cawte N, et al. Mitochondrial DNA copy number as a marker and mediator of stroke prognosis: observational and mendelian randomization analyses. Neurology. 2022;98:470–82.CrossRef Chong MR, Narula S, Morton R, Judge C, Akhabir L, Cawte N, et al. Mitochondrial DNA copy number as a marker and mediator of stroke prognosis: observational and mendelian randomization analyses. Neurology. 2022;98:470–82.CrossRef
19.
go back to reference Burgess S, Thompson SG. Mendelian randomization: methods for using genetic variants in causal estimation. Boca Raton: Chapman and Hall/CRC; 2015.CrossRef Burgess S, Thompson SG. Mendelian randomization: methods for using genetic variants in causal estimation. Boca Raton: Chapman and Hall/CRC; 2015.CrossRef
20.
go back to reference Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375:n2233.CrossRefPubMedPubMedCentral Skrivankova VW, Richmond RC, Woolf BAR, Davies NM, Swanson SA, VanderWeele TJ, et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375:n2233.CrossRefPubMedPubMedCentral
21.
go back to reference Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. Elife. 2022;11:11.CrossRef Chong M, Mohammadi-Shemirani P, Perrot N, Nelson W, Morton R, Narula S, et al. GWAS and ExWAS of blood mitochondrial DNA copy number identifies 71 loci and highlights a potential causal role in dementia. Elife. 2022;11:11.CrossRef
22.
go back to reference Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, et al. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet. 2022;141:127–46.CrossRefPubMed Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, et al. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet. 2022;141:127–46.CrossRefPubMed
23.
go back to reference Hägg S, Jylhävä J, Wang Y, Czene K, Grassmann F. Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genet. 2021;140:849–61.CrossRefPubMed Hägg S, Jylhävä J, Wang Y, Czene K, Grassmann F. Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genet. 2021;140:849–61.CrossRefPubMed
24.
go back to reference Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13.CrossRefPubMedPubMedCentral Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13.CrossRefPubMedPubMedCentral
25.
go back to reference Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.CrossRefPubMedPubMedCentral Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30.CrossRefPubMedPubMedCentral
26.
go back to reference Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37.CrossRefPubMedPubMedCentral Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50:524–37.CrossRefPubMedPubMedCentral
27.
go back to reference Shah S, Henry A. Genome-wide association and mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11:163.CrossRefPubMedPubMedCentral Shah S, Henry A. Genome-wide association and mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11:163.CrossRefPubMedPubMedCentral
28.
go back to reference Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.CrossRefPubMedPubMedCentral Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics. 2019;35:4851–3.CrossRefPubMedPubMedCentral
29.
go back to reference Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007081.CrossRefPubMedPubMedCentral Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13:e1007081.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14.CrossRefPubMedPubMedCentral
32.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.CrossRefPubMedPubMedCentral Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.CrossRefPubMedPubMedCentral
33.
go back to reference Verbanck M, Chen CY. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.CrossRefPubMedPubMedCentral Verbanck M, Chen CY. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8.CrossRefPubMedPubMedCentral
34.
go back to reference Martens LG, Luo J, Wermer MJH, van Willems K, Hagg S, Grassmann F, et al. The association between mitochondrial DNA abundance and stroke: a combination of multivariable-adjusted survival and mendelian randomization analyses. Atherosclerosis. 2022;354:1–7.CrossRefPubMed Martens LG, Luo J, Wermer MJH, van Willems K, Hagg S, Grassmann F, et al. The association between mitochondrial DNA abundance and stroke: a combination of multivariable-adjusted survival and mendelian randomization analyses. Atherosclerosis. 2022;354:1–7.CrossRefPubMed
35.
go back to reference Song L, Liu T, Song Y, Sun Y, Li H, Xiao N, et al. mtDNA copy number contributes to all-cause mortality of lacunar infarct in a Chinese prospective stroke population. J Cardiovasc Transl Res. 2020;13:783–9.CrossRefPubMed Song L, Liu T, Song Y, Sun Y, Li H, Xiao N, et al. mtDNA copy number contributes to all-cause mortality of lacunar infarct in a Chinese prospective stroke population. J Cardiovasc Transl Res. 2020;13:783–9.CrossRefPubMed
36.
go back to reference Sánchez-Santos A, Martínez-Hernández MG, Contreras-Ramos A, Ortega-Camarillo C, Baiza-Gutman LA. Hyperglycemia-induced mouse trophoblast spreading is mediated by reactive oxygen species. Mol Reprod Dev. 2018;85:303–15.CrossRefPubMed Sánchez-Santos A, Martínez-Hernández MG, Contreras-Ramos A, Ortega-Camarillo C, Baiza-Gutman LA. Hyperglycemia-induced mouse trophoblast spreading is mediated by reactive oxygen species. Mol Reprod Dev. 2018;85:303–15.CrossRefPubMed
37.
go back to reference Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, et al. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxidative Med Cell Longev. 2019;2019:7092151.CrossRef Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, et al. Vascular inflammation and oxidative stress: major triggers for cardiovascular disease. Oxidative Med Cell Longev. 2019;2019:7092151.CrossRef
38.
go back to reference Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11:1845–63.CrossRefPubMedPubMedCentral Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance. Theranostics. 2021;11:1845–63.CrossRefPubMedPubMedCentral
39.
go back to reference Liu CS, Kuo CL, Cheng WL, Huang CS, Lee CF, Wei YH. Alteration of the copy number of mitochondrial DNA in leukocytes of patients with hyperlipidemia. Ann N Y Acad Sci. 2005;1042:70–5.CrossRefPubMed Liu CS, Kuo CL, Cheng WL, Huang CS, Lee CF, Wei YH. Alteration of the copy number of mitochondrial DNA in leukocytes of patients with hyperlipidemia. Ann N Y Acad Sci. 2005;1042:70–5.CrossRefPubMed
Metadata
Title
The role of mitochondrial DNA copy number in cardiometabolic disease: a bidirectional two-sample mendelian randomization study
Authors
Pei Qin
Tianhang Qin
Lei Liang
Xinying Li
Bin Jiang
Xiaojie Wang
Jianping Ma
Fulan Hu
Ming Zhang
Dongsheng Hu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-02074-1

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.