Skip to main content
Top
Published in: BMC Neurology 1/2021

Open Access 01-12-2021 | Tuberculosis | Research

Low cerebrospinal fluid Amyloid-βeta 1–42 in patients with tuberculous meningitis

Authors: Giacomo Stroffolini, Giulia Guastamacchia, Sabrina Audagnotto, Cristiana Atzori, Mattia Trunfio, Marco Nigra, Alessandro Di Stefano, Giovanni Di Perri, Andrea Calcagno

Published in: BMC Neurology | Issue 1/2021

Login to get access

Abstract

Background

Tuberculous meningitis (TBM) is an important disease leading to morbidity, disability and mortality that primarily affects children and immune-depressed patients. Specific neuromarkers predicting outcomes, severity and inflammatory response are still lacking. In recent years an increasing number of evidences show a possible role for infective agents in developing neurodegenerative diseases.

Methods

We retrospectively included 13 HIV-negative patients presenting with TBM and we compared them with two control groups: one of patients with a confirmed diagnosis of AD, and one of those with syphilis where lumbar punctures excluded central nervous system involvement. Lumbar punctures were performed for clinical reasons and CSF biomarkers were routinely available: we analyzed blood brain barrier permeability (CSF to serum albumin ratio, “CSAR”), intrathecal IgG synthesis, (CSF to serum IgG ratio), inflammation (neopterin), amyloid deposition (Aβ1–42), neuronal damage (T-tau, P-tau, 14.3.3) and astrocytosis (S-100 β).

Results

TBM patients were 83 % male and 67 % Caucasian with a median age of 51 years (24.5–63.5 IQR). Apart from altered CSAR (median value 18.4, 17.1–30.9 IQR), neopterin (14.3 ng/ml, 9.7–18.8) and IgG ratios (15.4, 7.9–24.9), patients showed very low levels of Aβ1–42 in their CSF (348.5 pg/mL,125-532.2), even lower compared to AD and controls [603 pg/mL (IQR 528–797) and 978 (IQR 789–1178)]. Protein 14.3.3 tested altered in 38.5 % cases. T-tau, P-tau and S100Beta were in the range of normality. Altered low level of Aβ1–42 correlated over time with classical TBM findings and altered neuromarkers.

Conclusions

CSF Biomarkers from patients with TBM were compatible with inflammation, blood brain barrier damage and impairment in amyloid-beta metabolism. Amyloid-beta could be tested as a prognostic markers, backing the routine use of available neuromarkers. To our knowledge this is the first case showing such low levels of Aβ1–42 in TBM; its accumulation, drove by neuroinflammation related to infections, can be central in understanding neurodegenerative diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184(2):101–22. ex 1. Reiber H, Peter JB. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J Neurol Sci. 2001;184(2):101–22. ex 1.
2.
go back to reference Reiber H. Knowledge-base for interpretation of cerebrospinal fluid data patterns. Essentials in neurology and psychiatry. Arq Neuropsiquiatr. 2016;74(6):501–12.CrossRef Reiber H. Knowledge-base for interpretation of cerebrospinal fluid data patterns. Essentials in neurology and psychiatry. Arq Neuropsiquiatr. 2016;74(6):501–12.CrossRef
3.
go back to reference Reiber H. Cerebrospinal fluid data compilation and knowledge-based interpretation of bacterial, viral, parasitic, oncological, chronic inflammatory and demyelinating diseases. Diagnostic patterns not to be missed in neurology and psychiatry. Arq Neuropsiquiatr. 2016;74(4):337–50.CrossRef Reiber H. Cerebrospinal fluid data compilation and knowledge-based interpretation of bacterial, viral, parasitic, oncological, chronic inflammatory and demyelinating diseases. Diagnostic patterns not to be missed in neurology and psychiatry. Arq Neuropsiquiatr. 2016;74(4):337–50.CrossRef
4.
go back to reference Ursula K. Rohlwink, Katya Mauff, Katalin A. Wilkinson, Nico Enslin, Emmanuel Wegoye,Robert J. Wilkinson, and Anthony A. Figaji. Biomarkers of Cerebral Injury and Inflammation in Pediatric Tuberculous Meningitis. Clin Infect Dis 2017:65:1298–307 Ursula K. Rohlwink, Katya Mauff, Katalin A. Wilkinson, Nico Enslin, Emmanuel Wegoye,Robert J. Wilkinson, and Anthony A. Figaji. Biomarkers of Cerebral Injury and Inflammation in Pediatric Tuberculous Meningitis. Clin Infect Dis 2017:65:1298–307
5.
go back to reference Ursula K. Rohlwink, Katya Mauff, and Anthony Figaji. Correspondence. Clin Infect Dis 2018;67(4):642–3CrossRef Ursula K. Rohlwink, Katya Mauff, and Anthony Figaji. Correspondence. Clin Infect Dis 2018;67(4):642–3CrossRef
6.
go back to reference Bu X-L, Yao X-Q, Jiao S-S, Zeng F, Liu Y-H, Xiang Y., Liang C-R, Wang Q-H, Wang X., Cao H-Y et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22(12):1519–25.CrossRef Bu X-L, Yao X-Q, Jiao S-S, Zeng F, Liu Y-H, Xiang Y., Liang C-R, Wang Q-H, Wang X., Cao H-Y et al. A study on the association between infectious burden and Alzheimer’s disease. Eur J Neurol. 2015;22(12):1519–25.CrossRef
7.
go back to reference Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic lzheimer’s Disease. J Alzheimers Dis. 2015;48(2):319–53CrossRef Harris SA, Harris EA. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic lzheimer’s Disease. J Alzheimers Dis. 2015;48(2):319–53CrossRef
8.
go back to reference Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 2019;38(17):e101064.CrossRef Tejera D, Mercan D, Sanchez-Caro JM, et al. Systemic inflammation impairs microglial Aβ clearance through NLRP3 inflammasome. EMBO J. 2019;38(17):e101064.CrossRef
9.
go back to reference Lövheim H, Gilthorpe J, Johansson A, Eriksson S, Hallmans G, Alzheimers FE. Herpes simplex infection and the risk of Alzheimer’s disease: A nested case-control study. Dement. 2015; 11(6): 587–592. Published online 2014 Oct 7 Lövheim H, Gilthorpe J, Johansson A, Eriksson S, Hallmans G, Alzheimers FE. Herpes simplex infection and the risk of Alzheimer’s disease: A nested case-control study. Dement. 2015; 11(6): 587–592. Published online 2014 Oct 7
10.
go back to reference Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. 2009 - J Pathol Volume217, Issue1 January 2009 Pages 131–138 Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. 2009 - J Pathol Volume217, Issue1 January 2009 Pages 131–138
11.
go back to reference Itzhaki RF et al. The role of Viruses and of APOE in Dementia. Ann. N.Y. Acad. Sci. 1019: 15–18 (2004).CrossRef Itzhaki RF et al. The role of Viruses and of APOE in Dementia. Ann. N.Y. Acad. Sci. 1019: 15–18 (2004).CrossRef
12.
go back to reference Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer’s Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet. 2018;9:362. Fülöp T, Itzhaki RF, Balin BJ, Miklossy J, Barron AE. Role of Microbes in the Development of Alzheimer’s Disease: State of the Art - An International Symposium Presented at the 2017 IAGG Congress in San Francisco. Front Genet. 2018;9:362.
13.
go back to reference Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87:2324–32.CrossRef Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87:2324–32.CrossRef
14.
go back to reference Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro. 2017;9(4):1759091417724915.CrossRef Cabral CM, McGovern KE, MacDonald WR, Franco J, Koshy AA. Dissecting Amyloid Beta Deposition Using Distinct Strains of the Neurotropic Parasite Toxoplasma gondii as a Novel Tool. ASN Neuro. 2017;9(4):1759091417724915.CrossRef
15.
go back to reference Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8(340):340ra72.CrossRef Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med. 2016;8(340):340ra72.CrossRef
16.
go back to reference Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regeneration Research. 2018;13(2):211–221.CrossRef Hogestyn JM, Mock DJ, Mayer-Proschel M. Contributions of neurotropic human herpesviruses herpes simplex virus 1 and human herpesvirus 6 to neurodegenerative disease pathology. Neural Regeneration Research. 2018;13(2):211–221.CrossRef
17.
go back to reference Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer’s Disease. Curr Neuropharmacol. 2017;15:996–1009.CrossRef Sochocka M, Zwolińska K, Leszek J. The Infectious Etiology of Alzheimer’s Disease. Curr Neuropharmacol. 2017;15:996–1009.CrossRef
19.
go back to reference Di Stefano A, Alcantarini C, Atzori C, Lipani F, Imperiale D, Burdino E, Audagnotto S, Mighetto L, Milia MG, Di Perri G, Calcagno A. Cerebrospinal fluid biomarkers in patients with central nervous system infections: a retrospective study. CNS Spectr. 2019:1–7. Di Stefano A, Alcantarini C, Atzori C, Lipani F, Imperiale D, Burdino E, Audagnotto S, Mighetto L, Milia MG, Di Perri G, Calcagno A. Cerebrospinal fluid biomarkers in patients with central nervous system infections: a retrospective study. CNS Spectr. 2019:1–7.
20.
go back to reference Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150.CrossRef Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–150.CrossRef
21.
go back to reference Shimada T, Fournier AE, Yamagata K. Neuroprotective function of 14-3-3 proteins in neurodegeneration. Biomed Res Int. 2013;2013:564534CrossRef Shimada T, Fournier AE, Yamagata K. Neuroprotective function of 14-3-3 proteins in neurodegeneration. Biomed Res Int. 2013;2013:564534CrossRef
22.
go back to reference Wang J, Ben J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13(11):703CrossRef Wang J, Ben J. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol. 2017;13(11):703CrossRef
23.
go back to reference Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction. Int J Mol Sci. 2014;15(3):4671–713. Mietelska-Porowska A, Wasik U, Goras M, Filipek A, Niewiadomska G. Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction. Int J Mol Sci. 2014;15(3):4671–713.
24.
go back to reference Soscia SJ, Kirby J, Washicosky K, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505. Soscia SJ, Kirby J, Washicosky K, et al. The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One. 2010;5(3):e9505.
25.
go back to reference Moir RD, Vijaya Kumar D, Choi S, Tanzi RE. The emerging antimicrobial protection hypothesis of Alzheimer’s disease. Innov Aging. 2017;1(Suppl 1):1152.CrossRef Moir RD, Vijaya Kumar D, Choi S, Tanzi RE. The emerging antimicrobial protection hypothesis of Alzheimer’s disease. Innov Aging. 2017;1(Suppl 1):1152.CrossRef
27.
go back to reference Bloom GS. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505–8. Bloom GS. Amyloid-β and Tau: The Trigger and Bullet in Alzheimer Disease Pathogenesis. JAMA Neurol. 2014;71(4):505–8.
28.
go back to reference Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection [published correction appears in Neuron. 2018 Dec 19;100(6):1527–1532]. Neuron. 2018;99(1):56–63.e3. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, et al. Alzheimer’s Disease-Associated β-Amyloid Is Rapidly Seeded by Herpesviridae to Protect against Brain Infection [published correction appears in Neuron. 2018 Dec 19;100(6):1527–1532]. Neuron. 2018;99(1):56–63.e3.
29.
go back to reference Magnus S, Magnus G et al. Low cerebrospinal fluid b-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment. Neurosci lett. 2001;314(1–2):33–6. Magnus S, Magnus G et al. Low cerebrospinal fluid b-amyloid 42 in patients with acute bacterial meningitis and normalization after treatment. Neurosci lett. 2001;314(1–2):33–6.
30.
go back to reference Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ. Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging. 2004;25:619–27. Itzhaki RF, Wozniak MA, Appelt DM, Balin BJ. Infiltration of the brain by pathogens causes Alzheimer’s disease. Neurobiol Aging. 2004;25:619–27.
31.
go back to reference Itzhaki, RF et al. Microbes and Alzheimer’s Disease. J Alzheimer’s Dis. 2016;51(4);979–84.CrossRef Itzhaki, RF et al. Microbes and Alzheimer’s Disease. J Alzheimer’s Dis. 2016;51(4);979–84.CrossRef
33.
go back to reference Karine Bourgadea, Gilles Dupuis et al. Anti-Viral Properties of Amyloid- Peptides. J Alzheimer’s Disease 54 (2016) 859–878.CrossRef Karine Bourgadea, Gilles Dupuis et al. Anti-Viral Properties of Amyloid- Peptides. J Alzheimer’s Disease 54 (2016) 859–878.CrossRef
37.
go back to reference Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016; 15(7): 673–684.CrossRef Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016; 15(7): 673–684.CrossRef
38.
go back to reference Palmqvist S, Janelidze S, Stomrud E, et al. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease-Related β-Amyloid Status [published online ahead of print, 2019 Jun 24]. JAMA Neurol. 2019;e191632. Palmqvist S, Janelidze S, Stomrud E, et al. Performance of Fully Automated Plasma Assays as Screening Tests for Alzheimer Disease-Related β-Amyloid Status [published online ahead of print, 2019 Jun 24]. JAMA Neurol. 2019;e191632.
39.
go back to reference Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210–3219.CrossRef Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127(9):3210–3219.CrossRef
40.
go back to reference Abbott NJ, Pizzo, ME, Preston, JE et al. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol (2018) 135: 387CrossRef Abbott NJ, Pizzo, ME, Preston, JE et al. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol (2018) 135: 387CrossRef
Metadata
Title
Low cerebrospinal fluid Amyloid-βeta 1–42 in patients with tuberculous meningitis
Authors
Giacomo Stroffolini
Giulia Guastamacchia
Sabrina Audagnotto
Cristiana Atzori
Mattia Trunfio
Marco Nigra
Alessandro Di Stefano
Giovanni Di Perri
Andrea Calcagno
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Neurology / Issue 1/2021
Electronic ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-021-02468-2

Other articles of this Issue 1/2021

BMC Neurology 1/2021 Go to the issue