Skip to main content
Top
Published in: BMC Infectious Diseases 1/2022

Open Access 01-12-2022 | Tuberculosis | Research

Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China

Authors: Ziwei Wu, Ziyi Chen, Siyu Long, Aiping Wu, Hongsheng Wang

Published in: BMC Infectious Diseases | Issue 1/2022

Login to get access

Abstract

Background

The COVID-19 pandemic has driven public health intervention strategies, including keeping social distance, wearing masks in crowded places, and having good health habits, to prevent the transmission of the novel coronavirus (SARS-CoV-2). However, it is unknown whether the use of these intervention strategies influences morbidity in other human infectious diseases, such as tuberculosis.

Methods

In this study, three prediction models were constructed to compare variations in PTB incidences after January 2020 without or with intervention includes strict and regular interventions, when the COVID-19 outbreak began in China. The non-interventional model was developed with an autoregressive integrated moving average (ARIMA) model that was trained with the monthly incidence of PTB in China from January 2005 to December 2019. The interventional model was established using an ARIMA model with a continuing intervention function that was trained with the monthly PTB incidence in China from January 2020 to December 2020.

Results

Starting with the assumption that no COVID-19 outbreak had occurred in China, PTB incidence was predicted, and then the actual incidence was compared with the predicted incidence. A remarkable overall decline in PTB incidence from January 2020 to December 2020 was observed, which was likely due to the potential influence of intervention policies for COVID-19. If the same intervention strategy is applied for the next 2 years, the monthly PTB incidence would reduce on average by about 1.03 per 100,000 people each month compared with the incidence predicted by the non-interventional model. The annual incidence estimated 59.15 under regular intervention per 100,000 in 2021, and the value would decline to 50.65 with strict interventions.

Conclusions

Our models quantified the potential knock-on effect on PTB incidence of the intervention strategy used to control the transmission of COVID-19 in China. Combined with the feasibility of the strategies, these results suggested that continuous regular interventions would play important roles in the future prevention and control of PTB.
Appendix
Available only for authorised users
Literature
2.
go back to reference Banuls AL, Sanou A, Van Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol. 2015;64(11):1261–9.CrossRef Banuls AL, Sanou A, Van Anh NT, Godreuil S. Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol. 2015;64(11):1261–9.CrossRef
3.
go back to reference Dye C, Hosseini M, Watt C. Did we reach the 2005 targets for tuberculosis control? Bull World Health Organ. 2007;85(5):364–9.CrossRef Dye C, Hosseini M, Watt C. Did we reach the 2005 targets for tuberculosis control? Bull World Health Organ. 2007;85(5):364–9.CrossRef
4.
go back to reference Glaziou P, Floyd K, Korenromp EL, Sismanidis C, Bierrenbach AL, Williams BG, et al. Lives saved by tuberculosis control and prospects for achieving the 2015 global target for reducing tuberculosis mortality. Bull World Health Organ. 2011;89(8):573–82.CrossRef Glaziou P, Floyd K, Korenromp EL, Sismanidis C, Bierrenbach AL, Williams BG, et al. Lives saved by tuberculosis control and prospects for achieving the 2015 global target for reducing tuberculosis mortality. Bull World Health Organ. 2011;89(8):573–82.CrossRef
5.
go back to reference Mandal S, Chadha VK, Laxminarayan R, Arinaminpathy N. Counting the lives saved by DOTS in India: a model-based approach. BMC Med. 2017;15(1):47.CrossRef Mandal S, Chadha VK, Laxminarayan R, Arinaminpathy N. Counting the lives saved by DOTS in India: a model-based approach. BMC Med. 2017;15(1):47.CrossRef
6.
go back to reference Rangaka MX, Cavalcante SC, Marais BJ, Thim S, Martinson NA, Swaminathan S, et al. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet. 2015;386(10010):2344–53.CrossRef Rangaka MX, Cavalcante SC, Marais BJ, Thim S, Martinson NA, Swaminathan S, et al. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet. 2015;386(10010):2344–53.CrossRef
8.
go back to reference Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, et al. WHO’s new End TB Strategy. Lancet. 2015;385(9979):1799–801.CrossRef Uplekar M, Weil D, Lonnroth K, Jaramillo E, Lienhardt C, Dias HM, et al. WHO’s new End TB Strategy. Lancet. 2015;385(9979):1799–801.CrossRef
9.
go back to reference Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother. 2018;14(7):1697–716.CrossRef Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother. 2018;14(7):1697–716.CrossRef
10.
go back to reference Lin HH, Wang L, Zhang H, Ruan Y, Chin DP, Dye C. Tuberculosis control in China: use of modelling to develop targets and policies. Bull World Health Organ. 2015;93(11):790–8.CrossRef Lin HH, Wang L, Zhang H, Ruan Y, Chin DP, Dye C. Tuberculosis control in China: use of modelling to develop targets and policies. Bull World Health Organ. 2015;93(11):790–8.CrossRef
11.
go back to reference Houben RMGJ, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Global Health. 2016;4(11):e806–15.CrossRef Houben RMGJ, Menzies NA, Sumner T, Huynh GH, Arinaminpathy N, Goldhaber-Fiebert JD, et al. Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. Lancet Global Health. 2016;4(11):e806–15.CrossRef
12.
go back to reference Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med. 2015;13:88.CrossRef Huynh GH, Klein DJ, Chin DP, Wagner BG, Eckhoff PA, Liu R, et al. Tuberculosis control strategies to reach the 2035 global targets in China: the role of changing demographics and reactivation disease. BMC Med. 2015;13:88.CrossRef
13.
go back to reference Xu K, Ding C, Mangan CJ, Li Y, Ren J, Yang S, et al. Tuberculosis in China: a longitudinal predictive model of the general population and recommendations for achieving WHO goals. Respirology. 2017;22(7):1423–9.CrossRef Xu K, Ding C, Mangan CJ, Li Y, Ren J, Yang S, et al. Tuberculosis in China: a longitudinal predictive model of the general population and recommendations for achieving WHO goals. Respirology. 2017;22(7):1423–9.CrossRef
14.
go back to reference Menzies NA, Cohen T, Hill AN, Yaesoubi R, Galer K, Wolf E, et al. Prospects for tuberculosis elimination in the United States: results of a transmission dynamic model. Am J Epidemiol. 2018;187(9):2011–20.CrossRef Menzies NA, Cohen T, Hill AN, Yaesoubi R, Galer K, Wolf E, et al. Prospects for tuberculosis elimination in the United States: results of a transmission dynamic model. Am J Epidemiol. 2018;187(9):2011–20.CrossRef
15.
go back to reference Dockrell HM, Smith SG. What have we learnt about BCG vaccination in the Last 20 years? Front Immunol. 2017;8:1134.CrossRef Dockrell HM, Smith SG. What have we learnt about BCG vaccination in the Last 20 years? Front Immunol. 2017;8:1134.CrossRef
16.
go back to reference Floyd K, Glaziou P, Zumla A, Raviglione M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era. Lancet Respir Med. 2018;6(4):299–314.CrossRef Floyd K, Glaziou P, Zumla A, Raviglione M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the End TB era. Lancet Respir Med. 2018;6(4):299–314.CrossRef
17.
go back to reference Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.CrossRef
18.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.CrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.CrossRef
20.
go back to reference Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12(3):165–74.CrossRef Yang Z, Zeng Z, Wang K, Wong SS, Liang W, Zanin M, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. J Thorac Dis. 2020;12(3):165–74.CrossRef
23.
go back to reference Kam HJ, Sung JO, Park RW. Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthc Inform Res. 2010;16(3):158–65.CrossRef Kam HJ, Sung JO, Park RW. Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthc Inform Res. 2010;16(3):158–65.CrossRef
24.
go back to reference Helfenstein U. Box-Jenkins modelling in medical research. Stat Methods Med Res. 1996;5(1):3–22.CrossRef Helfenstein U. Box-Jenkins modelling in medical research. Stat Methods Med Res. 1996;5(1):3–22.CrossRef
25.
go back to reference Ginestet C. Model Selection and Model Averaging. J R Stat Soc Ser A. 2010;172:937–937.CrossRef Ginestet C. Model Selection and Model Averaging. J R Stat Soc Ser A. 2010;172:937–937.CrossRef
26.
go back to reference Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011;11:218.CrossRef Liu Q, Liu X, Jiang B, Yang W. Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect Dis. 2011;11:218.CrossRef
27.
go back to reference Wang T, Liu J, Zhou Y, Cui F, Huang Z, Wang L, et al. Prevalence of hemorrhagic fever with renal syndrome in Yiyuan County, China, 2005–2014. BMC Infect Dis. 2016;16:69.CrossRef Wang T, Liu J, Zhou Y, Cui F, Huang Z, Wang L, et al. Prevalence of hemorrhagic fever with renal syndrome in Yiyuan County, China, 2005–2014. BMC Infect Dis. 2016;16:69.CrossRef
28.
go back to reference Zhou L, Zhao P, Wu D, Cheng C, Huang H. Time series model for forecasting the number of new admission inpatients. BMC Med Inform Decis Mak. 2018;18(1):39.CrossRef Zhou L, Zhao P, Wu D, Cheng C, Huang H. Time series model for forecasting the number of new admission inpatients. BMC Med Inform Decis Mak. 2018;18(1):39.CrossRef
29.
go back to reference Zhao C, Yang Y, Wu S, Wu W, Xue H, An K, et al. Search trends and prediction of human brucellosis using Baidu index data from 2011 to 2018 in China. Sci Rep. 2020;10(1):5896.CrossRef Zhao C, Yang Y, Wu S, Wu W, Xue H, An K, et al. Search trends and prediction of human brucellosis using Baidu index data from 2011 to 2018 in China. Sci Rep. 2020;10(1):5896.CrossRef
30.
go back to reference Liu Q, Li Z, Ji Y, Martinez L, Zia UH, Javaid A, et al. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist. 2019;12:2311–22.CrossRef Liu Q, Li Z, Ji Y, Martinez L, Zia UH, Javaid A, et al. Forecasting the seasonality and trend of pulmonary tuberculosis in Jiangsu Province of China using advanced statistical time-series analyses. Infect Drug Resist. 2019;12:2311–22.CrossRef
31.
go back to reference Box GEP, Tiao GC. Intervention analysis with applications to economic and environmental problems. J Am Stat Assoc. 1975;70(349):70–9.CrossRef Box GEP, Tiao GC. Intervention analysis with applications to economic and environmental problems. J Am Stat Assoc. 1975;70(349):70–9.CrossRef
33.
go back to reference Ye Q, Wang B, Mao J, Fu J, Shang S, Shu Q, et al. Epidemiological analysis of COVID-19 and practical experience from China. J Med Virol. 2020;92(7):755–69.CrossRef Ye Q, Wang B, Mao J, Fu J, Shang S, Shu Q, et al. Epidemiological analysis of COVID-19 and practical experience from China. J Med Virol. 2020;92(7):755–69.CrossRef
34.
go back to reference Lönnroth K, Corbett E, Golub J, Godfrey-Faussett P, Uplekar M, Weil D, et al. Systematic screening for active tuberculosis: rationale, definitions and key considerations. Int J Tuberc Lung Dis. 2013;17(3):289–98.CrossRef Lönnroth K, Corbett E, Golub J, Godfrey-Faussett P, Uplekar M, Weil D, et al. Systematic screening for active tuberculosis: rationale, definitions and key considerations. Int J Tuberc Lung Dis. 2013;17(3):289–98.CrossRef
35.
go back to reference Yang Q, Wang J, Ma H, Wang X. Research on COVID-19 based on ARIMA model(Delta)-Taking Hubei, China as an example to see the epidemic in Italy. J Infect Public Health. 2020;13(10):1415–8.CrossRef Yang Q, Wang J, Ma H, Wang X. Research on COVID-19 based on ARIMA model(Delta)-Taking Hubei, China as an example to see the epidemic in Italy. J Infect Public Health. 2020;13(10):1415–8.CrossRef
36.
go back to reference Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS ONE. 2018;13(9): e0201987.CrossRef Wang YW, Shen ZZ, Jiang Y. Comparison of ARIMA and GM(1,1) models for prediction of hepatitis B in China. PLoS ONE. 2018;13(9): e0201987.CrossRef
37.
go back to reference Cilloni L, Fu H, Vesga JF, Dowdy D, Pretorius C, Ahmedov S, et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine. 2020;28: 100603.CrossRef Cilloni L, Fu H, Vesga JF, Dowdy D, Pretorius C, Ahmedov S, et al. The potential impact of the COVID-19 pandemic on the tuberculosis epidemic a modelling analysis. EClinicalMedicine. 2020;28: 100603.CrossRef
38.
go back to reference Bardhan M, Hasan MM, Ray I, Sarkar A, Chahal P, Rackimuthu S, et al. Tuberculosis amidst COVID-19 pandemic in India: unspoken challenges and the way forward. Trop Med Health. 2021;49(1):84.CrossRef Bardhan M, Hasan MM, Ray I, Sarkar A, Chahal P, Rackimuthu S, et al. Tuberculosis amidst COVID-19 pandemic in India: unspoken challenges and the way forward. Trop Med Health. 2021;49(1):84.CrossRef
39.
go back to reference Zong Z, Huo F, Shi J, Jing W, Ma Y, Liang Q, et al. Relapse versus reinfection of recurrent tuberculosis patients in a national tuberculosis specialized hospital in Beijing, China. Front Microbiol. 2018;9:1858.CrossRef Zong Z, Huo F, Shi J, Jing W, Ma Y, Liang Q, et al. Relapse versus reinfection of recurrent tuberculosis patients in a national tuberculosis specialized hospital in Beijing, China. Front Microbiol. 2018;9:1858.CrossRef
40.
go back to reference Shen G, Xue Z, Shen X, Sun B, Gui X, Shen M, et al. The study recurrent tuberculosis and exogenous reinfection, Shanghai, China. Emerg Infect Dis. 2006;12(11):1776–8.CrossRef Shen G, Xue Z, Shen X, Sun B, Gui X, Shen M, et al. The study recurrent tuberculosis and exogenous reinfection, Shanghai, China. Emerg Infect Dis. 2006;12(11):1776–8.CrossRef
Metadata
Title
Incidence of pulmonary tuberculosis under the regular COVID-19 epidemic prevention and control in China
Authors
Ziwei Wu
Ziyi Chen
Siyu Long
Aiping Wu
Hongsheng Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2022
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-022-07620-y

Other articles of this Issue 1/2022

BMC Infectious Diseases 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.