Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

The association between tuberculin skin test result and active tuberculosis risk of college students in Beijing, China: a retrospective cohort study

Authors: Demin Cao, Zhiguo Zhang, Zhen Yang, Shubo Ma, Zhaogang Sun, Huijuan Duan, Baoli Zhu, Fei Zhao

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

About 10% latent tuberculosis infections (LTBI) would progress to active tuberculosis (TB), if left prophylactic therapy. Tuberculin skin test (TST) is the most widely used method for LTBI screening in the school of China. However, for college students, the association between TST reaction size and active TB risk was unclear.

Methods

We conducted a retrospective study to assess whether the TST reaction size would predict active TB during the next two years after TST screening for college students. Multivariable Cox regression was performed to identify the size of TST reaction and other factors associated with active TB risk.

Results

A total of 67292 college students in Beijing, China were included in this study; 8021 (11.92%) individuals were TST positive (≥10 mm), and 3879 (5.76%) of them were strong TST positive (≥15 mm). During the two years of follow-up, 26 active TB cases were reported in 134575 person-years with an incidence rate of 19.32 (95% CI: 12.61–28.32) per 100000 person-years. The adjusted hazard ratios (HR) (95% CI) were 1.094 (0.247~4.846), 3.644 (1.188~11.179), 6.832 (2.436~19.163) and 9.768 (2.203~43.315) of cohorts with the TST reaction size intervals 5~9, 10~14, 15~20 and ≥ 20 mm, respectively, compared to cohort with interval 0~4 mm. Besides, the adjusted HR (95% CI) was 3.593 (1.354~9.537) of males compared to females.

Conclusions

This study indicated that the risk of active TB increased in college students when the TST reaction size was ≥10 mm, and males had a higher risk compared to females.
Appendix
Available only for authorised users
Literature
1.
go back to reference WHO. Global tuberculosis report. Geneva: World Health Organization; 2018. WHO. Global tuberculosis report. Geneva: World Health Organization; 2018.
2.
go back to reference WHO. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization; 2018. WHO. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization; 2018.
3.
go back to reference Leung CC, Rieder HL, Lange C, Yew WW. Treatment of latent infection with Mycobacterium tuberculosis: update 2010. Eur Respir J. 2011;37(3):690–711.CrossRef Leung CC, Rieder HL, Lange C, Yew WW. Treatment of latent infection with Mycobacterium tuberculosis: update 2010. Eur Respir J. 2011;37(3):690–711.CrossRef
4.
go back to reference Pan D, Lan R, Graviss EA, Lin D, Liang D, McNeil E, Lin M, Chongsuvivatwong V. Adolescent tuberculosis associated with tuberculosis exposure in classrooms and dorm rooms in Guangxi, China. Int J Infect Dis. 2019;78:8–14.CrossRef Pan D, Lan R, Graviss EA, Lin D, Liang D, McNeil E, Lin M, Chongsuvivatwong V. Adolescent tuberculosis associated with tuberculosis exposure in classrooms and dorm rooms in Guangxi, China. Int J Infect Dis. 2019;78:8–14.CrossRef
5.
go back to reference Huang Y, Zhong J, Wu Q, Liu Z, Pan A, Zhu L, Wang X. Investigation of a large school-based outbreak of tuberculosis infection in Eastern China. Pediatr Pol. 2016;91(6):541–6.CrossRef Huang Y, Zhong J, Wu Q, Liu Z, Pan A, Zhu L, Wang X. Investigation of a large school-based outbreak of tuberculosis infection in Eastern China. Pediatr Pol. 2016;91(6):541–6.CrossRef
6.
go back to reference Leung CC, Yew WW, Au KF, Tam CM, Chang KC, Mak KY, Tam SY, Chan KF, Fong KL, Tam SW. A strong tuberculin reaction in primary school children predicts tuberculosis in adolescence. Pediatr Infect Dis J. 2012;31(2):150–3.CrossRef Leung CC, Yew WW, Au KF, Tam CM, Chang KC, Mak KY, Tam SY, Chan KF, Fong KL, Tam SW. A strong tuberculin reaction in primary school children predicts tuberculosis in adolescence. Pediatr Infect Dis J. 2012;31(2):150–3.CrossRef
7.
go back to reference Leung CC, Yew WW, Chang KC, Tam CM, Chan CK, Law WS, Wong MY, Lee SN, Leung M. Risk of active tuberculosis among school children in Hong Kong. Arch Pediatr Adolesc Med. 2006;160(3):247–51.CrossRef Leung CC, Yew WW, Chang KC, Tam CM, Chan CK, Law WS, Wong MY, Lee SN, Leung M. Risk of active tuberculosis among school children in Hong Kong. Arch Pediatr Adolesc Med. 2006;160(3):247–51.CrossRef
8.
go back to reference Gao L, Lu W, Bai L, Wang X, Xu J, Catanzaro A, Cárdenas V, Li X, Yang Y, Du J, et al. Latent tuberculosis infection in rural China: baseline results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis. 2015;15(3):310–9.CrossRef Gao L, Lu W, Bai L, Wang X, Xu J, Catanzaro A, Cárdenas V, Li X, Yang Y, Du J, et al. Latent tuberculosis infection in rural China: baseline results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis. 2015;15(3):310–9.CrossRef
9.
go back to reference NHFPC. Diagnosis for pulmonary tuberculosis (WS 288—2008). In: National Health and Family Planning Commission of China; 2008. NHFPC. Diagnosis for pulmonary tuberculosis (WS 288—2008). In: National Health and Family Planning Commission of China; 2008.
10.
go back to reference NHFPC. Classification of tuberculosis (WS 196—2001). In: National Health and Family Planning Commission of China; 2001. NHFPC. Classification of tuberculosis (WS 196—2001). In: National Health and Family Planning Commission of China; 2001.
11.
go back to reference Chee CB, Soh CH, Boudville IC, Chor SS, Wang YT. Interpretation of the tuberculin skin test in Mycobacterium bovis BCG-vaccinated Singaporean schoolchildren. Am J Respir Crit Care Med. 2001;164(6):958–61.CrossRef Chee CB, Soh CH, Boudville IC, Chor SS, Wang YT. Interpretation of the tuberculin skin test in Mycobacterium bovis BCG-vaccinated Singaporean schoolchildren. Am J Respir Crit Care Med. 2001;164(6):958–61.CrossRef
12.
go back to reference NHFPC. National EPI vaccination and hepatitis B vaccine coverage rate and the related factors: results from the 1999 Nationwide survey. Chin J Vaccines Immun. 2000;6(4):193–7. NHFPC. National EPI vaccination and hepatitis B vaccine coverage rate and the related factors: results from the 1999 Nationwide survey. Chin J Vaccines Immun. 2000;6(4):193–7.
13.
go back to reference Tissot F, Zanetti G, Francioli P, Zellweger JP, Zysset F. Influence of bacille Calmette-Guérin vaccination on size of tuberculin skin test reaction: to what size? Clin Infect Dis. 2005;40(2):211–7.CrossRef Tissot F, Zanetti G, Francioli P, Zellweger JP, Zysset F. Influence of bacille Calmette-Guérin vaccination on size of tuberculin skin test reaction: to what size? Clin Infect Dis. 2005;40(2):211–7.CrossRef
14.
go back to reference Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 2008;149(3):177–84.CrossRef Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med. 2008;149(3):177–84.CrossRef
15.
go back to reference Lewinsohn DA, Lewinsohn DM, Leonard MK, Mazurek GH, LoBue PA, Shinnick TM, Cohn DL, Daley CL, Desmond E, Keane J, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2016;64(2):e1–e33.CrossRef Lewinsohn DA, Lewinsohn DM, Leonard MK, Mazurek GH, LoBue PA, Shinnick TM, Cohn DL, Daley CL, Desmond E, Keane J, et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention clinical practice guidelines: diagnosis of tuberculosis in adults and children. Clin Infect Dis. 2016;64(2):e1–e33.CrossRef
16.
go back to reference Stagg HR, Zenner D, Harris RJ, Munoz L, Lipman MC, Abubakar I. Treatment of latent tuberculosis infection: a network meta-analysis. Ann Intern Med. 2014;161(6):419–28.CrossRef Stagg HR, Zenner D, Harris RJ, Munoz L, Lipman MC, Abubakar I. Treatment of latent tuberculosis infection: a network meta-analysis. Ann Intern Med. 2014;161(6):419–28.CrossRef
17.
go back to reference Chen Q, Wang XM, Qi Y, Liu XF, Jiang LP, Hou W, Zhou L, Lu XW. The impact of directly observed therapy on preventive treatment for latent tuberculosis infection among students in Dalian, China. Biomed Environ Sci. 2015;28(8):611–5.PubMed Chen Q, Wang XM, Qi Y, Liu XF, Jiang LP, Hou W, Zhou L, Lu XW. The impact of directly observed therapy on preventive treatment for latent tuberculosis infection among students in Dalian, China. Biomed Environ Sci. 2015;28(8):611–5.PubMed
18.
go back to reference Holmes CB, Hausler H, Nunn P. A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis. 1998;2(2):96–104.PubMed Holmes CB, Hausler H, Nunn P. A review of sex differences in the epidemiology of tuberculosis. Int J Tuberc Lung Dis. 1998;2(2):96–104.PubMed
19.
go back to reference Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med. 2009;6(12):e1000199.CrossRef Neyrolles O, Quintana-Murci L. Sexual inequality in tuberculosis. PLoS Med. 2009;6(12):e1000199.CrossRef
20.
go back to reference Gao L, Li X, Liu J, Wang X, Lu W, Bai L, Xin H, Zhang H, Li H, Zhang Z, et al. Incidence of active tuberculosis in individuals with latent tuberculosis infection in rural China: follow-up results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis. 2017;17(10):1053–61.CrossRef Gao L, Li X, Liu J, Wang X, Lu W, Bai L, Xin H, Zhang H, Li H, Zhang Z, et al. Incidence of active tuberculosis in individuals with latent tuberculosis infection in rural China: follow-up results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis. 2017;17(10):1053–61.CrossRef
21.
go back to reference Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 2015;14(3):309–21.CrossRef Giefing-Kröll C, Berger P, Lepperdinger G, Grubeck-Loebenstein B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell. 2015;14(3):309–21.CrossRef
22.
go back to reference Roved J, Westerdahl H, Hasselquist D. Sex differences in immune responses: hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav. 2017;88:95–105.CrossRef Roved J, Westerdahl H, Hasselquist D. Sex differences in immune responses: hormonal effects, antagonistic selection, and evolutionary consequences. Horm Behav. 2017;88:95–105.CrossRef
23.
go back to reference Guerra-Silveira F, Abad-Franch F. Sex bias in infectious disease epidemiology: patterns and processes. PLoS One. 2013;8(4):e62390.CrossRef Guerra-Silveira F, Abad-Franch F. Sex bias in infectious disease epidemiology: patterns and processes. PLoS One. 2013;8(4):e62390.CrossRef
24.
go back to reference Horsburgh CR. Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med. 2004;350(20):2060–7.CrossRef Horsburgh CR. Priorities for the treatment of latent tuberculosis infection in the United States. N Engl J Med. 2004;350(20):2060–7.CrossRef
Metadata
Title
The association between tuberculin skin test result and active tuberculosis risk of college students in Beijing, China: a retrospective cohort study
Authors
Demin Cao
Zhiguo Zhang
Zhen Yang
Shubo Ma
Zhaogang Sun
Huijuan Duan
Baoli Zhu
Fei Zhao
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4238-2

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.