Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Tuberculosis | Research article

Quantitative investigation of factors relevant to the T cell spot test for tuberculosis infection in active tuberculosis

Authors: Kui Li, Caiyong Yang, Zicheng Jiang, Shengxi Liu, Jun Liu, Chuanqi Fan, Tao Li, Xuemin Dong

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Previous qualitative studies suggested that the false negative rate of the T cell spot test for tuberculosis infection (T-SPOT.TB) is associated with many risk factors in tuberculosis patients. However, more precise quantitative studies are lacking. The purpose of this study was to investigate the factors affecting quantified spot-forming cells (SFCs) to early secreted antigenic target 6 kDa (ESAT-6) or culture filtrate protein 10 kDa (CFP-10) in patients with active tuberculosis.

Methods

We retrospectively analyzed the data of 360 patients who met the inclusion criteria. Using the SFCs to ESAT-6 or CFP-10 levels as dependent variables, variables with statistical significance in the univariate analysis were subjected to optimal scaling regression analysis. The combination of ESAT-6 and CFP-10 (i.e., T-SPOT.TB) was analyzed by the exact logistic regression model.

Results

The results showed that the SFCs to ESAT-6 regression model had statistical significance (P < 0.001) and that previous treatment and CD4+ and platelet counts were its independent risk factors (all P < 0.05). Their importance levels were 0.095, 0.596 and 0.100, respectively, with a total of 0.791. The SFCs to CFP-10 regression model also had statistical significance (P < 0.001); platelet distribution width and alpha-2 globulin were its independent risk factors (all P < 0.05). Their importance levels were 0.287 and 0.247, respectively, with a total of 0.534. The quantification graph showed that quantified SFCs to ESAT-6 or CFP-10 grading had a linear correlation with risk factors. Albumin-globulin ratio, CD4+ and CD8+ were independent risk factors for false negative T-SPOT.TB (all P < 0.05).

Conclusions

In T-SPOT.TB-assisted diagnosis of patients with active tuberculosis, previous treatment, decreased CD4+ and platelet count might lead to the decreased SFCs to ESAT-6, decreased alpha-2 globulin and high platelet distribution width might lead to the decreased SFCs to CFP-10, decreased albumin-globulin ratio, CD4+ and CD8+ might lead to an increase in the false negative rate of the T-SPOT.TB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Doan TN, Eisen DP, Rose MT, Slack A, Stearnes G, McBryde ES. Interferon-gamma release assay for the diagnosis of latent tuberculosis infection: a latent-class analysis. PLoS One. 2017;12(11):e0188631.CrossRef Doan TN, Eisen DP, Rose MT, Slack A, Stearnes G, McBryde ES. Interferon-gamma release assay for the diagnosis of latent tuberculosis infection: a latent-class analysis. PLoS One. 2017;12(11):e0188631.CrossRef
2.
go back to reference Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983;65(1–2):109–21.CrossRef Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A. A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods. 1983;65(1–2):109–21.CrossRef
3.
go back to reference Yang C, Zhang S, Yao L, Fan L. Evaluation of risk factors for false-negative results with an antigen-specific peripheral blood-based quantitative T cell assay (T-SPOT®. TB) in the diagnosis of active tuberculosis: a large-scale retrospective study in China. J Int Med Res. 2018;46(5):1815–25.CrossRef Yang C, Zhang S, Yao L, Fan L. Evaluation of risk factors for false-negative results with an antigen-specific peripheral blood-based quantitative T cell assay (T-SPOT®. TB) in the diagnosis of active tuberculosis: a large-scale retrospective study in China. J Int Med Res. 2018;46(5):1815–25.CrossRef
4.
go back to reference Oni T, Patel J, Gideon HP, Seldon R, Wood K, Hlombe Y, et al. Enhanced diagnosis of HIV-1-associated tuberculosis by relating T-SPOT.TB and CD4 counts. Eur Respir J. 2010;36(3):594–600.CrossRef Oni T, Patel J, Gideon HP, Seldon R, Wood K, Hlombe Y, et al. Enhanced diagnosis of HIV-1-associated tuberculosis by relating T-SPOT.TB and CD4 counts. Eur Respir J. 2010;36(3):594–600.CrossRef
5.
go back to reference Zhang J, Sun J, Li Y, Wang Y, Sun XH, Ma JH, et al. Clinical analysis of positive T-SPOT. TB in 1873 cases with active tuberculosis. Chin J Antituberc. 2015;37(7):778–83. Zhang J, Sun J, Li Y, Wang Y, Sun XH, Ma JH, et al. Clinical analysis of positive T-SPOT. TB in 1873 cases with active tuberculosis. Chin J Antituberc. 2015;37(7):778–83.
6.
go back to reference Sharninghausen JC, Shapiro AE, Koelle DM, Kim HN. Risk factors for indeterminate outcome on interferon gamma release assay in non-US-born persons screened for latent tuberculosis infection. Open Forum Infect Dis. 2018;5(8):ofy184.CrossRef Sharninghausen JC, Shapiro AE, Koelle DM, Kim HN. Risk factors for indeterminate outcome on interferon gamma release assay in non-US-born persons screened for latent tuberculosis infection. Open Forum Infect Dis. 2018;5(8):ofy184.CrossRef
7.
go back to reference Kobashi Y, Sugiu T, Mouri K, Obase Y, Miyashita N, Oka M. Indeterminate results of QuantiFERON TB-2G test performed in routine clinical practice. Eur Respir J. 2009;33(4):812–5.CrossRef Kobashi Y, Sugiu T, Mouri K, Obase Y, Miyashita N, Oka M. Indeterminate results of QuantiFERON TB-2G test performed in routine clinical practice. Eur Respir J. 2009;33(4):812–5.CrossRef
8.
go back to reference Cho K, Cho E, Kwon S, Im S, Sohn I, Song S, et al. Factors associated with indeterminate and false negative results of QuantiFERON-TB gold in-tube test in active tuberculosis. Tuberc Respir Dis (Seoul). 2012;72(5):416–25.CrossRef Cho K, Cho E, Kwon S, Im S, Sohn I, Song S, et al. Factors associated with indeterminate and false negative results of QuantiFERON-TB gold in-tube test in active tuberculosis. Tuberc Respir Dis (Seoul). 2012;72(5):416–25.CrossRef
9.
go back to reference Nguyen DT, Teeter LD, Graves J, Graviss EA. Characteristics associated with negative interferon-γ release assay results in culture-confirmed tuberculosis patients, Texas, USA, 2013-2015. Emerg Infect Dis. 2018;24(3):534–40.CrossRef Nguyen DT, Teeter LD, Graves J, Graviss EA. Characteristics associated with negative interferon-γ release assay results in culture-confirmed tuberculosis patients, Texas, USA, 2013-2015. Emerg Infect Dis. 2018;24(3):534–40.CrossRef
10.
go back to reference Bosshard V, Roux-Lombard P, Perneger T, Metzger M, Vivien R, Rochat T, et al. Do results of the T-SPOT. TB interferon-gamma release assay change after treatment of tuberculosis? Respir Med. 2009;103(1):30–4.CrossRef Bosshard V, Roux-Lombard P, Perneger T, Metzger M, Vivien R, Rochat T, et al. Do results of the T-SPOT. TB interferon-gamma release assay change after treatment of tuberculosis? Respir Med. 2009;103(1):30–4.CrossRef
11.
go back to reference Park IN, Shim TS. Qualitative and quantitative results of interferon-γ release assays for monitoring the response to anti-tuberculosis treatment. Korean J Intern Med. 2016;32(2):302–8.CrossRef Park IN, Shim TS. Qualitative and quantitative results of interferon-γ release assays for monitoring the response to anti-tuberculosis treatment. Korean J Intern Med. 2016;32(2):302–8.CrossRef
12.
go back to reference Pan LP, Jia HY, Liu F, Sun HS, Gao MQ, Du FJ, et al. Risk factors for false-negative T-SPOT.TB assay results in patients with pulmonary and extra-pulmonary TB. J Inf Secur. 2015;70(4):367–80. Pan LP, Jia HY, Liu F, Sun HS, Gao MQ, Du FJ, et al. Risk factors for false-negative T-SPOT.TB assay results in patients with pulmonary and extra-pulmonary TB. J Inf Secur. 2015;70(4):367–80.
13.
go back to reference Banfield S, Pascoe E, Thambiran A, Siafarikas A, Burgner D. Factors associated with the performance of a blood-based interferon-γ release assay in diagnosing tuberculosis. PLoS One. 2012;7(6):e38556.CrossRef Banfield S, Pascoe E, Thambiran A, Siafarikas A, Burgner D. Factors associated with the performance of a blood-based interferon-γ release assay in diagnosing tuberculosis. PLoS One. 2012;7(6):e38556.CrossRef
14.
go back to reference Faurholt-Jepsen D, Aabye MG, Jensen AV, Range N, Praygod G, Jeremiah K, et al. Diabetes is associated with lower tuberculosis antigen-specific interferon gamma release in Tanzanian tuberculosis patients and non-tuberculosis controls. Scand J Infect Dis. 2014;46(5):384–91.CrossRef Faurholt-Jepsen D, Aabye MG, Jensen AV, Range N, Praygod G, Jeremiah K, et al. Diabetes is associated with lower tuberculosis antigen-specific interferon gamma release in Tanzanian tuberculosis patients and non-tuberculosis controls. Scand J Infect Dis. 2014;46(5):384–91.CrossRef
15.
go back to reference Beffa P, Zellweger A, Janssens JP, Wrighton-Smith P, Zellweger JP. Indeterminate test results of T-SPOT.TB performed under routine field conditions. Eur Respir J. 2008;31(4):842–6.CrossRef Beffa P, Zellweger A, Janssens JP, Wrighton-Smith P, Zellweger JP. Indeterminate test results of T-SPOT.TB performed under routine field conditions. Eur Respir J. 2008;31(4):842–6.CrossRef
16.
go back to reference Hang NT, Lien LT, Kobayashi N, Shimbo T, Sakurada S, Thuong PH, et al. Analysis of factors lowering sensitivity of interferon-γ release assay for tuberculosis. PLoS One. 2011;6(8):e23806.CrossRef Hang NT, Lien LT, Kobayashi N, Shimbo T, Sakurada S, Thuong PH, et al. Analysis of factors lowering sensitivity of interferon-γ release assay for tuberculosis. PLoS One. 2011;6(8):e23806.CrossRef
17.
go back to reference Kwon YS, Kim YH, Jeon K, Jeong BH, Ryu YJ, Choi JC, et al. Factors that predict negative results of QuantiFERON-TB gold in-tube test in patients with culture-confirmed tuberculosis: a multicenter retrospective cohort study. PLoS One. 2015;10(6):e0129792.CrossRef Kwon YS, Kim YH, Jeon K, Jeong BH, Ryu YJ, Choi JC, et al. Factors that predict negative results of QuantiFERON-TB gold in-tube test in patients with culture-confirmed tuberculosis: a multicenter retrospective cohort study. PLoS One. 2015;10(6):e0129792.CrossRef
18.
go back to reference de Visser V, Sotgiu G, Lange C, Aabye MG, Bakker M, Bartalesi F, et al. False-negative interferon-γ release assay results in active tuberculosis: a TBNET study. Eur Respir J. 2015;45(1):279–83.CrossRef de Visser V, Sotgiu G, Lange C, Aabye MG, Bakker M, Bartalesi F, et al. False-negative interferon-γ release assay results in active tuberculosis: a TBNET study. Eur Respir J. 2015;45(1):279–83.CrossRef
19.
go back to reference Kobashi Y, Mouri K, Yagi S, Obase Y, Miyashita N, Okimoto N, et al. Clinical utility of the QuantiFERON TB-2G test for elderly patients with active tuberculosis. Chest. 2008;133(5):1196–202.CrossRef Kobashi Y, Mouri K, Yagi S, Obase Y, Miyashita N, Okimoto N, et al. Clinical utility of the QuantiFERON TB-2G test for elderly patients with active tuberculosis. Chest. 2008;133(5):1196–202.CrossRef
20.
go back to reference Lee YM, Kim SM, Park SJ, Park KH, Lee SO, Choi SH, et al. Indeterminate T-SPOT.TB test results in patients with suspected extrapulmonary tuberculosis in routine clinical practice. Infect Chemother. 2013;45(1):44–50.CrossRef Lee YM, Kim SM, Park SJ, Park KH, Lee SO, Choi SH, et al. Indeterminate T-SPOT.TB test results in patients with suspected extrapulmonary tuberculosis in routine clinical practice. Infect Chemother. 2013;45(1):44–50.CrossRef
22.
go back to reference American Diabetes Association. Standards of medical care in diabetes-2014. Diabetes Care. 2014;37:S14–80.CrossRef American Diabetes Association. Standards of medical care in diabetes-2014. Diabetes Care. 2014;37:S14–80.CrossRef
23.
go back to reference Seaton A, Seaton D, Leitch AG. Crofton and Douglas’s respiratory diseases. In: Leitch AG, editor. Pulmonary tuberculosis: clinical features. 4th ed. Oxford: Blackwell Press; 1989. p. 409–10. Seaton A, Seaton D, Leitch AG. Crofton and Douglas’s respiratory diseases. In: Leitch AG, editor. Pulmonary tuberculosis: clinical features. 4th ed. Oxford: Blackwell Press; 1989. p. 409–10.
24.
go back to reference Janssens JP, Roux-Lombard P, Perneger T, Metzger M, Vivien R, Rochat T. Quantitative scoring of an interferon-gamma assay for differentiating active from latent tuberculosis. Eur Respir J. 2007;30(4):722–8.CrossRef Janssens JP, Roux-Lombard P, Perneger T, Metzger M, Vivien R, Rochat T. Quantitative scoring of an interferon-gamma assay for differentiating active from latent tuberculosis. Eur Respir J. 2007;30(4):722–8.CrossRef
25.
go back to reference Aiken AM, Hill PC, Fox A, McAdam KP, Jackson-Sillah D, Lugos MD, et al. Reversion of the ELISPOT test after treatment in Gambian tuberculosis cases. BMC Infect Dis. 2006;6:66.CrossRef Aiken AM, Hill PC, Fox A, McAdam KP, Jackson-Sillah D, Lugos MD, et al. Reversion of the ELISPOT test after treatment in Gambian tuberculosis cases. BMC Infect Dis. 2006;6:66.CrossRef
26.
go back to reference Carrara S, Vincenti D, Petrosillo N, Amicosante M, Girardi E, Goletti D. Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis. 2004;38(5):754–6.CrossRef Carrara S, Vincenti D, Petrosillo N, Amicosante M, Girardi E, Goletti D. Use of a T cell-based assay for monitoring efficacy of antituberculosis therapy. Clin Infect Dis. 2004;38(5):754–6.CrossRef
27.
go back to reference Kang WL, Wang GR, Wu MY, Yang KY, Er-Tai A, Wu SC, et al. Interferon-gamma release assay is not appropriate for the diagnosis of active tuberculosis in high-burden tuberculosis settings: A retrospective multicenter investigation. Chin Med J. 2018;131(3):268–75.CrossRef Kang WL, Wang GR, Wu MY, Yang KY, Er-Tai A, Wu SC, et al. Interferon-gamma release assay is not appropriate for the diagnosis of active tuberculosis in high-burden tuberculosis settings: A retrospective multicenter investigation. Chin Med J. 2018;131(3):268–75.CrossRef
28.
go back to reference Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol. 2017;43(2):133–41.CrossRef Khan N, Vidyarthi A, Amir M, Mushtaq K, Agrewala JN. T-cell exhaustion in tuberculosis: pitfalls and prospects. Crit Rev Microbiol. 2017;43(2):133–41.CrossRef
29.
go back to reference Kim HJ, Yoon HI, Park KU, Lee CT, Lee JH. The impact of previous tuberculosis history on T-SPOT.TB® interferon-gamma release assay results. Int J Tuberc Lung Dis. 2011;15(4):510–6.CrossRef Kim HJ, Yoon HI, Park KU, Lee CT, Lee JH. The impact of previous tuberculosis history on T-SPOT.TB® interferon-gamma release assay results. Int J Tuberc Lung Dis. 2011;15(4):510–6.CrossRef
30.
go back to reference de Almeida AS, Fiske CT, Sterling TR, Kalams SA. Increased frequency of regulatory T cells and T lymphocyte activation in persons with previously treated extrapulmonary tuberculosis. Clin Vaccine Immunol. 2012;19(1):45–52.CrossRef de Almeida AS, Fiske CT, Sterling TR, Kalams SA. Increased frequency of regulatory T cells and T lymphocyte activation in persons with previously treated extrapulmonary tuberculosis. Clin Vaccine Immunol. 2012;19(1):45–52.CrossRef
31.
go back to reference Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé KC, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest. 2014;124(3):1268–82.CrossRef Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé KC, et al. CXCL5-secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in tuberculosis. J Clin Invest. 2014;124(3):1268–82.CrossRef
32.
go back to reference Lam FW, Vijayan KV, Rumbaut RE. Platelets and their interactions with other immune cells. Compr Physiol. 2015;5(3):1265–80.CrossRef Lam FW, Vijayan KV, Rumbaut RE. Platelets and their interactions with other immune cells. Compr Physiol. 2015;5(3):1265–80.CrossRef
33.
go back to reference Frojmovic MM, Milton JG. Human platelet size, shape, and related functions in health and disease. Physiol Rev. 1982;62(1):185–261.CrossRef Frojmovic MM, Milton JG. Human platelet size, shape, and related functions in health and disease. Physiol Rev. 1982;62(1):185–261.CrossRef
34.
go back to reference Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.CrossRef Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.CrossRef
35.
go back to reference de Stoppelaar SF, Van’t Veer C, Roelofs JJ, Claushuis TA, de Boer OJ, Tanck MW, et al. Platelet and endothelial cell P-selectin are required for host defense against Klebsiella pneumoniae-induced pneumosepsis. J Thromb Haemost. 2015;13(6):1128–38.CrossRef de Stoppelaar SF, Van’t Veer C, Roelofs JJ, Claushuis TA, de Boer OJ, Tanck MW, et al. Platelet and endothelial cell P-selectin are required for host defense against Klebsiella pneumoniae-induced pneumosepsis. J Thromb Haemost. 2015;13(6):1128–38.CrossRef
36.
go back to reference Kim EY, Park MS, Kim YS, Kim SK, Chang J, Kang YA. Risk factors for false-negative results of QuantiFERON-TB gold in-tube assay in non-HIV-infected patients with culture-confirmed tuberculosis. Diagn Microbiol Infect Dis. 2011;70(3):324–9.CrossRef Kim EY, Park MS, Kim YS, Kim SK, Chang J, Kang YA. Risk factors for false-negative results of QuantiFERON-TB gold in-tube assay in non-HIV-infected patients with culture-confirmed tuberculosis. Diagn Microbiol Infect Dis. 2011;70(3):324–9.CrossRef
37.
go back to reference Bisaso KR, Owen JS, Ojara FW, Namuwenge PM, Mugisha A, Mbuagbaw L, et al. Characterizing plasma albumin concentration changes in TB/HIV patients on anti retroviral and anti –tuberculosis therapy. In Silico Pharmacol. 2014;2(1):3.CrossRef Bisaso KR, Owen JS, Ojara FW, Namuwenge PM, Mugisha A, Mbuagbaw L, et al. Characterizing plasma albumin concentration changes in TB/HIV patients on anti retroviral and anti –tuberculosis therapy. In Silico Pharmacol. 2014;2(1):3.CrossRef
38.
go back to reference Singanayagam A, Manalan K, Connell DW, Chalmers JD, Sridhar S, Ritchie AI, et al. Evaluation of serum inflammatory biomarkers as predictors of treatment outcome in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2016;20(12):1653–60.CrossRef Singanayagam A, Manalan K, Connell DW, Chalmers JD, Sridhar S, Ritchie AI, et al. Evaluation of serum inflammatory biomarkers as predictors of treatment outcome in pulmonary tuberculosis. Int J Tuberc Lung Dis. 2016;20(12):1653–60.CrossRef
39.
go back to reference Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of childhood malnutrition on host defense and infection. Clin Microbiol Rev. 2017;30(4):919–71.CrossRef Ibrahim MK, Zambruni M, Melby CL, Melby PC. Impact of childhood malnutrition on host defense and infection. Clin Microbiol Rev. 2017;30(4):919–71.CrossRef
40.
go back to reference Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol. 2014;192(1):136–44.CrossRef Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol. 2014;192(1):136–44.CrossRef
41.
go back to reference Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol. 2008;180(7):4476–86.CrossRef Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol. 2008;180(7):4476–86.CrossRef
42.
go back to reference Yao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW. CD4+ T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+ T and CD3–lymphocytes: mechanisms of CD4+ T cell immunity. J Immunol. 2014;192(5):2120–32.CrossRef Yao S, Huang D, Chen CY, Halliday L, Wang RC, Chen ZW. CD4+ T cells contain early extrapulmonary tuberculosis (TB) dissemination and rapid TB progression and sustain multieffector functions of CD8+ T and CD3–lymphocytes: mechanisms of CD4+ T cell immunity. J Immunol. 2014;192(5):2120–32.CrossRef
43.
go back to reference Kim SH, Song KH, Choi SJ, Kim HB, Kim NJ, Oh MD, et al. Diagnostic usefulness of a T-cell-based assay for extrapulmonary tuberculosis in immunocompromised patients. Am J Med. 2009;122(2):189–95.CrossRef Kim SH, Song KH, Choi SJ, Kim HB, Kim NJ, Oh MD, et al. Diagnostic usefulness of a T-cell-based assay for extrapulmonary tuberculosis in immunocompromised patients. Am J Med. 2009;122(2):189–95.CrossRef
44.
go back to reference Wang X, Barnes PF, Dobos-Elder KM, Townsend JC, Chung YT, Shams H, et al. ESAT-6 inhibits production of IFN-γ by mycobacterium tuberculosis-responsive human T cells. J Immunol. 2009;182(6):3668–77.CrossRef Wang X, Barnes PF, Dobos-Elder KM, Townsend JC, Chung YT, Shams H, et al. ESAT-6 inhibits production of IFN-γ by mycobacterium tuberculosis-responsive human T cells. J Immunol. 2009;182(6):3668–77.CrossRef
45.
go back to reference Lewinsohn DA, Heinzel AS, Gardner JM, Zhu L, Alderson MR, Lewinsohn DM. Mycobacterium tuberculosis-specific CD8+ T cells preferentially recognize heavily infected cells. Am J Respir Crit Care Med. 2003;168(11):1346–52.CrossRef Lewinsohn DA, Heinzel AS, Gardner JM, Zhu L, Alderson MR, Lewinsohn DM. Mycobacterium tuberculosis-specific CD8+ T cells preferentially recognize heavily infected cells. Am J Respir Crit Care Med. 2003;168(11):1346–52.CrossRef
Metadata
Title
Quantitative investigation of factors relevant to the T cell spot test for tuberculosis infection in active tuberculosis
Authors
Kui Li
Caiyong Yang
Zicheng Jiang
Shengxi Liu
Jun Liu
Chuanqi Fan
Tao Li
Xuemin Dong
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-4310-y

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.