Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2016

Open Access 01-12-2016 | Research

Transcriptomic analysis of the effects of Toll-like receptor 4 and its ligands on the gene expression network of hepatic stellate cells

Authors: Yangyang Ouyang, Jinsheng Guo, Chenzhao Lin, Jie Lin, Yirong Cao, Yuanqin Zhang, Yujin Wu, Shiyao Chen, Jiyao Wang, Luonan Chen, Scott L. Friedman

Published in: Fibrogenesis & Tissue Repair | Issue 1/2016

Login to get access

Abstract

Background

Intact Toll-like receptor 4 (TLR4) has been identified in hepatic stellate cells (HSCs), the primary fibrogenic cell type in liver. Here, we investigated the impact of TLR4 signaling on the gene expression network of HSCs by comparing the transcriptomic changes between wild-type (JS1) and TLR4 knockout (JS2) murine HSCs in response to two TLR4 ligands, lipopolysacchride (LPS), or high-mobility group box 1 (HMGB1).

Results

Whole mouse genome microarray was performed for gene expression analysis. Gene interaction and co-expression networks were built on the basis of ontology and pathway analysis by Kyoto Encyclopedia of Genes and Genomes (KEGG). Gene expression profiles are markedly different between Wild type (JS1) and TLR4 knockout (JS2) HSCs under basal conditions or following stimulation with LPS or HMGB1. The differentially expressed genes between TLR4 intact and null HSCs were enriched in signaling pathways including p53, mTOR, NOD-like receptor, Jak-STAT, chemokine, focal adhesion with some shared downstream kinases, and transcriptional factors. Venn analysis revealed that TLR4-dependent, LPS-responsive genes were clustered into pathways including Toll-like receptor and PI3K-Akt, whereas TLR4-dependent, HMGB1-responsive genes were clustered into pathways including metabolism and phagosome signaling. Genes differentially expressed that were categorized to be TLR4-dependent and both LPS- and HMGB1-responsive were enriched in cell cycle, ubiquitin mediated proteolysis, and mitogen-activated protein kinase (MAPK) signaling pathways.

Conclusions

TLR4 mediates complex gene expression alterations in HSCs. The affected pathways regulate a wide spectrum of HSC functions, including inflammation, fibrogenesis, and chemotaxis, as well as cell growth and metabolism. There are common and divergent regulatory signaling downstream of LPS and HMGB1 stimulation via TLR4 on HSCs. These findings emphasize the complex cascades downstream of TLR4 in HSCs that could influence their cellular biology and function.
Appendix
Available only for authorised users
Literature
3.
4.
go back to reference Friedman SL. Liver fibrosis: from mechanisms to treatment. Gastroenterol Clin Biol. 2007;31:812–4.CrossRefPubMed Friedman SL. Liver fibrosis: from mechanisms to treatment. Gastroenterol Clin Biol. 2007;31:812–4.CrossRefPubMed
5.
go back to reference Friedman SL. Stellate cells: a moving target in hepatic fibrogenesis. Hepatology. 2004;40:1041–3.CrossRefPubMed Friedman SL. Stellate cells: a moving target in hepatic fibrogenesis. Hepatology. 2004;40:1041–3.CrossRefPubMed
6.
go back to reference Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis. 2001;21:397–416.CrossRefPubMed Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis. 2001;21:397–416.CrossRefPubMed
7.
go back to reference Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004;430:257–63.CrossRefPubMed Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature. 2004;430:257–63.CrossRefPubMed
8.
go back to reference Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999;11:115–22.CrossRefPubMed Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999;11:115–22.CrossRefPubMed
9.
go back to reference Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7.CrossRefPubMed Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7.CrossRefPubMed
10.
go back to reference Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.CrossRefPubMed Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.CrossRefPubMed
11.
go back to reference Tang D, Kang R, Livesey KM, Zeh 3rd HJ, Lotze MT. High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid Redox Signal. 2011;15:2185–95.PubMedCentralCrossRefPubMed Tang D, Kang R, Livesey KM, Zeh 3rd HJ, Lotze MT. High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid Redox Signal. 2011;15:2185–95.PubMedCentralCrossRefPubMed
12.
go back to reference Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.CrossRefPubMed Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.CrossRefPubMed
13.
go back to reference Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101:296–301.PubMedCentralCrossRefPubMed Yang H, Ochani M, Li J, Qiang X, Tanovic M, Harris HE, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101:296–301.PubMedCentralCrossRefPubMed
14.
go back to reference Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.CrossRefPubMed Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.CrossRefPubMed
15.
go back to reference Semino C, Angelini G, Poggi A, Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood. 2005;106:609–16.CrossRefPubMed Semino C, Angelini G, Poggi A, Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood. 2005;106:609–16.CrossRefPubMed
16.
go back to reference Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–60.PubMedCentralCrossRefPubMed Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–60.PubMedCentralCrossRefPubMed
17.
go back to reference Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P. HMGB1: guiding immunity from within. Trends Immunol. 2005;26:381–7.CrossRefPubMed Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P. HMGB1: guiding immunity from within. Trends Immunol. 2005;26:381–7.CrossRefPubMed
18.
go back to reference Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.CrossRefPubMed Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5:331–42.CrossRefPubMed
19.
go back to reference Albayrak A, Uyanik MH, Cerrah S, Altas S, Dursun H, Demir M, et al. Is HMGB1 a new indirect marker for revealing fibrosis in chronic hepatitis and a new therapeutic target in treatment? Viral Immunol. 2010;23:633–8.CrossRefPubMed Albayrak A, Uyanik MH, Cerrah S, Altas S, Dursun H, Demir M, et al. Is HMGB1 a new indirect marker for revealing fibrosis in chronic hepatitis and a new therapeutic target in treatment? Viral Immunol. 2010;23:633–8.CrossRefPubMed
20.
go back to reference Han J, Zhong J, Wei W, Wang Y, Huang Y, Yang P, et al. Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes. 2008;57:2118–27.PubMedCentralCrossRefPubMed Han J, Zhong J, Wei W, Wang Y, Huang Y, Yang P, et al. Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes. 2008;57:2118–27.PubMedCentralCrossRefPubMed
21.
go back to reference Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–55.CrossRefPubMed Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin C, Brenner DA. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology. 2003;37:1043–55.CrossRefPubMed
22.
go back to reference Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology. 2009;49:960–8.PubMedCentralCrossRefPubMed Guo J, Loke J, Zheng F, Hong F, Yea S, Fukata M, et al. Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses. Hepatology. 2009;49:960–8.PubMedCentralCrossRefPubMed
23.
go back to reference Zhang Z, Lin C, Peng L, Ouyang Y, Cao Y, Wang J, et al. High mobility group box 1 activates Toll like receptor 4 signaling in hepatic stellate cells. Life Sci. 2012;91:207–12.CrossRefPubMed Zhang Z, Lin C, Peng L, Ouyang Y, Cao Y, Wang J, et al. High mobility group box 1 activates Toll like receptor 4 signaling in hepatic stellate cells. Life Sci. 2012;91:207–12.CrossRefPubMed
24.
go back to reference Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Semin Liver Dis. 2010;30:215–25.CrossRefPubMed Wasmuth HE, Tacke F, Trautwein C. Chemokines in liver inflammation and fibrosis. Semin Liver Dis. 2010;30:215–25.CrossRefPubMed
25.
go back to reference Carloni V, Romanelli RG, Pinzani M, Laffi G, Gentilini P. Focal adhesion kinase and phospholipase C gamma involvement in adhesion and migration of human hepatic stellate cells. Gastroenterology. 1997;112:522–31.CrossRefPubMed Carloni V, Romanelli RG, Pinzani M, Laffi G, Gentilini P. Focal adhesion kinase and phospholipase C gamma involvement in adhesion and migration of human hepatic stellate cells. Gastroenterology. 1997;112:522–31.CrossRefPubMed
26.
go back to reference Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 2003;278:8083–90.CrossRefPubMed Reif S, Lang A, Lindquist JN, Yata Y, Gabele E, Scanga A, et al. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem. 2003;278:8083–90.CrossRefPubMed
27.
go back to reference Petersen BL, Rengtved P, Bank MI, Carstensen H. High expression of markers of apoptosis in Langerhans cell histiocytosis. Histopathology. 2003;42:186–93.CrossRefPubMed Petersen BL, Rengtved P, Bank MI, Carstensen H. High expression of markers of apoptosis in Langerhans cell histiocytosis. Histopathology. 2003;42:186–93.CrossRefPubMed
28.
go back to reference Ahsan MK, Mehal WZ. Activation of adenosine receptor A2A increases HSC proliferation and inhibits death and senescence by down-regulation of p53 and Rb. Front Pharmacol. 2014;5:69.PubMedCentralCrossRefPubMed Ahsan MK, Mehal WZ. Activation of adenosine receptor A2A increases HSC proliferation and inhibits death and senescence by down-regulation of p53 and Rb. Front Pharmacol. 2014;5:69.PubMedCentralCrossRefPubMed
29.
go back to reference Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond). 2012;9:49.CrossRef Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond). 2012;9:49.CrossRef
30.
go back to reference Aleffi S, Navari N, Delogu W, Galastri S, Novo E, Rombouts K, et al. Mammalian target of rapamycin mediates the angiogenic effects of leptin in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2011;301:G210–9.CrossRefPubMed Aleffi S, Navari N, Delogu W, Galastri S, Novo E, Rombouts K, et al. Mammalian target of rapamycin mediates the angiogenic effects of leptin in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol. 2011;301:G210–9.CrossRefPubMed
31.
go back to reference Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–94. e571.CrossRefPubMed Marra F, Tacke F. Roles for chemokines in liver disease. Gastroenterology. 2014;147:577–94. e571.CrossRefPubMed
34.
go back to reference Liu Y, Liu H, Meyer C, Li J, Nadalin S, Konigsrainer A, et al. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem. 2013;288:30708–19.PubMedCentralCrossRefPubMed Liu Y, Liu H, Meyer C, Li J, Nadalin S, Konigsrainer A, et al. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem. 2013;288:30708–19.PubMedCentralCrossRefPubMed
35.
go back to reference Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity. 2007;26:117–29.CrossRefPubMed Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity. 2007;26:117–29.CrossRefPubMed
37.
go back to reference Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004;40:1312–21.CrossRefPubMed Yu MC, Chen CH, Liang X, Wang L, Gandhi CR, Fung JJ, et al. Inhibition of T-cell responses by hepatic stellate cells via B7-H1-mediated T-cell apoptosis in mice. Hepatology. 2004;40:1312–21.CrossRefPubMed
38.
go back to reference Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C, Ross MA, et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology. 2006;44:1171–81.CrossRefPubMed Chen CH, Kuo LM, Chang Y, Wu W, Goldbach C, Ross MA, et al. In vivo immune modulatory activity of hepatic stellate cells in mice. Hepatology. 2006;44:1171–81.CrossRefPubMed
39.
go back to reference Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17:1537–45.PubMedCentralCrossRefPubMed Draghici S, Khatri P, Tarca AL, Amin K, Done A, Voichita C, et al. A systems biology approach for pathway level analysis. Genome Res. 2007;17:1537–45.PubMedCentralCrossRefPubMed
40.
go back to reference Prieto C, Risueno A, Fontanillo C, De las Rivas J. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One. 2008;3:e3911.PubMedCentralCrossRefPubMed Prieto C, Risueno A, Fontanillo C, De las Rivas J. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles. PLoS One. 2008;3:e3911.PubMedCentralCrossRefPubMed
41.
go back to reference Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.CrossRefPubMed Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.CrossRefPubMed
42.
go back to reference Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics. 2006;7:40.PubMedCentralCrossRefPubMed Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics. 2006;7:40.PubMedCentralCrossRefPubMed
43.
go back to reference Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.CrossRefPubMed Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297:1551–5.CrossRefPubMed
Metadata
Title
Transcriptomic analysis of the effects of Toll-like receptor 4 and its ligands on the gene expression network of hepatic stellate cells
Authors
Yangyang Ouyang
Jinsheng Guo
Chenzhao Lin
Jie Lin
Yirong Cao
Yuanqin Zhang
Yujin Wu
Shiyao Chen
Jiyao Wang
Luonan Chen
Scott L. Friedman
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue 1/2016
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/s13069-016-0039-z

Other articles of this Issue 1/2016

Fibrogenesis & Tissue Repair 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine