Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2016

Open Access 01-12-2016 | Research

Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis

Authors: Robert M. DiFazio, Joshua T. Mattila, Edwin C. Klein, Lauren R. Cirrincione, Mondraya Howard, Eileen A. Wong, JoAnne L. Flynn

Published in: Fibrogenesis & Tissue Repair | Issue 1/2016

Login to get access

Abstract

Background

Tuberculosis (TB) chemotherapy clears bacterial burden in the lungs of patients and allows the tuberculous lesions to heal through a fibrotic process. The healing process leaves pulmonary scar tissue that can impair lung function. The goal of this study was to identify fibrotic mediators as a stepping-stone to begin exploring mechanisms of tissue repair in TB.

Methods

Hematoxylin and eosin staining and Masson’s trichrome stain were utilized to determine levels of collagenization in tuberculous granulomas from non-human primates. Immunohistochemistry was then employed to further interrogate these granulomas for markers associated with fibrogenesis, including transforming growth factor-β (TGFβ), α-smooth muscle actin (αSMA), phosphorylated SMAD-2/3, and CD163. These markers were compared across states of drug treatment using one-way ANOVA, and Pearson’s test was used to determine the association of these markers with one another.

Results

TGFβ and αSMA were present in granulomas from primates with active TB disease. These molecules were reduced in abundance after TB chemotherapy. Phosphorylated SMAD-2/3, a signaling intermediate of TGFβ, was observed in greater amounts after 1 month of drug treatment than in active disease, suggesting that this particular pathway is blocked in active disease. Collagen production during tissue repair is strongly associated with TGFβ in this model, but not with CD163+ macrophages.

Conclusions

Tissue repair and fibrosis in TB that occurs during drug treatment is associated with active TGFβ that is produced during active disease. Further work will identify mechanisms of fibrosis and work towards mitigating lung impairment with treatments that target those mechanisms.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352–66.PubMed Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol. 2012;12(5):352–66.PubMed
5.
go back to reference Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol. 2013;191(2):773–84.CrossRefPubMedPubMedCentral Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol. 2013;191(2):773–84.CrossRefPubMedPubMedCentral
6.
go back to reference Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb). 2011;91(6):497–509.CrossRef Hunter RL. Pathology of post primary tuberculosis of the lung: an illustrated critical review. Tuberculosis (Edinb). 2011;91(6):497–509.CrossRef
7.
go back to reference Canetti G. The tubercle bacillus in the pulmonary lesion of man. New York: Springer; 1955. p. 230. Canetti G. The tubercle bacillus in the pulmonary lesion of man. New York: Springer; 1955. p. 230.
8.
go back to reference Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med. 2014;20(1):75–9.CrossRefPubMedPubMedCentral Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med. 2014;20(1):75–9.CrossRefPubMedPubMedCentral
9.
go back to reference Cutroneo KR. How is type I procollagen synthesis regulated at the gene level during tissue fibrosis. J Cell Biochem. 2003;90(1):1–5.CrossRefPubMed Cutroneo KR. How is type I procollagen synthesis regulated at the gene level during tissue fibrosis. J Cell Biochem. 2003;90(1):1–5.CrossRefPubMed
10.
go back to reference Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001;99(3):308–19.CrossRefPubMed Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001;99(3):308–19.CrossRefPubMed
13.
go back to reference Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–14.CrossRefPubMed Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol. 2011;187(6):3003–14.CrossRefPubMed
14.
go back to reference Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L341–53.CrossRefPubMedPubMedCentral Sun L, Louie MC, Vannella KM, Wilke CA, LeVine AM, Moore BB, et al. New concepts of IL-10-induced lung fibrosis: fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis. Am J Physiol Lung Cell Mol Physiol. 2011;300(3):L341–53.CrossRefPubMedPubMedCentral
15.
go back to reference Redente EF, Keith RC, Janssen W, Henson PM, Ortiz LA, Downey GP, et al. Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol. 2014;50(4):825–37.CrossRefPubMedPubMedCentral Redente EF, Keith RC, Janssen W, Henson PM, Ortiz LA, Downey GP, et al. Tumor necrosis factor-alpha accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am J Respir Cell Mol Biol. 2014;50(4):825–37.CrossRefPubMedPubMedCentral
16.
go back to reference Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40(1):40–50.CrossRefPubMedPubMedCentral Fielding CA, Jones GW, McLoughlin RM, McLeod L, Hammond VJ, Uceda J, et al. Interleukin-6 signaling drives fibrosis in unresolved inflammation. Immunity. 2014;40(1):40–50.CrossRefPubMedPubMedCentral
17.
go back to reference Gistera A, Robertson AK, Andersson J, Ketelhuth DF, Ovchinnikova O, Nilsson SK, et al. Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci Transl Med. 2013;5(196):196ra00.CrossRef Gistera A, Robertson AK, Andersson J, Ketelhuth DF, Ovchinnikova O, Nilsson SK, et al. Transforming growth factor-beta signaling in T cells promotes stabilization of atherosclerotic plaques through an interleukin-17-dependent pathway. Sci Transl Med. 2013;5(196):196ra00.CrossRef
18.
go back to reference Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194(6):809–21.CrossRefPubMedPubMedCentral Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med. 2001;194(6):809–21.CrossRefPubMedPubMedCentral
21.
go back to reference Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor ß1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A. 1991;88(15):6642–6.CrossRefPubMedPubMedCentral Broekelmann TJ, Limper AH, Colby TV, McDonald JA. Transforming growth factor ß1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis. Proc Natl Acad Sci U S A. 1991;88(15):6642–6.CrossRefPubMedPubMedCentral
22.
go back to reference Khalil N, Bereznay O, Sporn M, Greenberg AH. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med. 1989;170(3):727–37.CrossRefPubMed Khalil N, Bereznay O, Sporn M, Greenberg AH. Macrophage production of transforming growth factor beta and fibroblast collagen synthesis in chronic pulmonary inflammation. J Exp Med. 1989;170(3):727–37.CrossRefPubMed
23.
go back to reference Limper AH, Colby TV, Sanders MS, Asakura S, Roche PC, DeRemee RA. Immunohistochemical localization of transforming growth factor-beta 1 in the nonnecrotizing granulomas of pulmonary sarcoidosis. Am J Respir Crit Care Med. 1994;149(1):197–204.CrossRefPubMed Limper AH, Colby TV, Sanders MS, Asakura S, Roche PC, DeRemee RA. Immunohistochemical localization of transforming growth factor-beta 1 in the nonnecrotizing granulomas of pulmonary sarcoidosis. Am J Respir Crit Care Med. 1994;149(1):197–204.CrossRefPubMed
24.
go back to reference Khalil N, Parekh TV, O’Connor R, Antman N, Kepron W, Yehualaeshet T, et al. Regulation of the effects of TGF-beta1 by activation of latent TGF-beta1 and differential expression of TGF-beta receptors (TbetaR-I and TbetaR-II) in idiopathic pulmonary fibrosis. Thorax. 2001;56:907–15.CrossRefPubMedPubMedCentral Khalil N, Parekh TV, O’Connor R, Antman N, Kepron W, Yehualaeshet T, et al. Regulation of the effects of TGF-beta1 by activation of latent TGF-beta1 and differential expression of TGF-beta receptors (TbetaR-I and TbetaR-II) in idiopathic pulmonary fibrosis. Thorax. 2001;56:907–15.CrossRefPubMedPubMedCentral
25.
go back to reference Lekkerkerker AN, Aarbiou J, van Es T, Janssen RAJ. Cellular players in lung fibrosis. Curr Pharm Des. 2012;18:4093–102.CrossRefPubMed Lekkerkerker AN, Aarbiou J, van Es T, Janssen RAJ. Cellular players in lung fibrosis. Curr Pharm Des. 2012;18:4093–102.CrossRefPubMed
26.
go back to reference Pechkovsky DV, Prasse A, Kollert F, Engel KM, Dentler J, Luttmann W, et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol. 2010;137(1):89–101.CrossRefPubMed Pechkovsky DV, Prasse A, Kollert F, Engel KM, Dentler J, Luttmann W, et al. Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator production and intracellular signal transduction. Clin Immunol. 2010;137(1):89–101.CrossRefPubMed
27.
go back to reference Pasipanodya JG, Miller TL, Vecino M, Munguia G, Garmon R, Bae S, et al. Pulmonary impairment after tuberculosis. Chest. 2007;131(6):1817–24.CrossRefPubMed Pasipanodya JG, Miller TL, Vecino M, Munguia G, Garmon R, Bae S, et al. Pulmonary impairment after tuberculosis. Chest. 2007;131(6):1817–24.CrossRefPubMed
28.
go back to reference Pasipanodya J, McNabb SJN, Hilsenrath P, Bae S, Lykens K, Vecino E, et al. Pulmonary impairment after tuberculosis and its contribution to TB burden. BMC Public Health. 2010;10:259.CrossRefPubMedPubMedCentral Pasipanodya J, McNabb SJN, Hilsenrath P, Bae S, Lykens K, Vecino E, et al. Pulmonary impairment after tuberculosis and its contribution to TB burden. BMC Public Health. 2010;10:259.CrossRefPubMedPubMedCentral
29.
go back to reference Hnizdo E, Singh T, Churchyard G. Chronic pulmonary function impairment caused by initial and recurrent pulomary tuberculosis following treatment. Thorax. 2000;55:32–8.CrossRefPubMedPubMedCentral Hnizdo E, Singh T, Churchyard G. Chronic pulmonary function impairment caused by initial and recurrent pulomary tuberculosis following treatment. Thorax. 2000;55:32–8.CrossRefPubMedPubMedCentral
30.
go back to reference Bansal V, Prasad R. Pulmonary rehabilitation in chronic respiratory diseases. Indian J Chest Dis Allied Sci. 2014;56:147–8.PubMed Bansal V, Prasad R. Pulmonary rehabilitation in chronic respiratory diseases. Indian J Chest Dis Allied Sci. 2014;56:147–8.PubMed
31.
go back to reference Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A, Rook GA. Lung remodeling in pulmonary tuberculosis. J Infect Dis. 2005;192(7):1201–9.CrossRefPubMed Dheda K, Booth H, Huggett JF, Johnson MA, Zumla A, Rook GA. Lung remodeling in pulmonary tuberculosis. J Infect Dis. 2005;192(7):1201–9.CrossRefPubMed
32.
go back to reference Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun. 2008;76(6):2333–40.CrossRefPubMedPubMedCentral Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun. 2008;76(6):2333–40.CrossRefPubMedPubMedCentral
33.
34.
go back to reference Marshall BG, Wangoo A, Cook HT, Shaw RJ. Increased inflammatory cytokines and new collagen formation in cutaneous tuberculosis and sarcoidosis. Thorax. 1996;51:1253–61.CrossRefPubMedPubMedCentral Marshall BG, Wangoo A, Cook HT, Shaw RJ. Increased inflammatory cytokines and new collagen formation in cutaneous tuberculosis and sarcoidosis. Thorax. 1996;51:1253–61.CrossRefPubMedPubMedCentral
35.
go back to reference Toossi Z, Young TG, Averill LE, Hamilton BD, Shiratsuchi H, Ellner JJ. Induction of transforming growth factor beta 1 by purified protein derivative of Mycobacterium tuberculosis. Infect Immun. 1995;63(1):224–8.PubMedPubMedCentral Toossi Z, Young TG, Averill LE, Hamilton BD, Shiratsuchi H, Ellner JJ. Induction of transforming growth factor beta 1 by purified protein derivative of Mycobacterium tuberculosis. Infect Immun. 1995;63(1):224–8.PubMedPubMedCentral
36.
go back to reference Aung H, Wu M, Johnson JL, Hirsch CS, Toossi Z. Bioactivation of latent transforming growth factor beta1 by Mycobacterium tuberculosis in human mononuclear phagocytes. Scand J Immunol. 2005;61(6):558–65.CrossRefPubMed Aung H, Wu M, Johnson JL, Hirsch CS, Toossi Z. Bioactivation of latent transforming growth factor beta1 by Mycobacterium tuberculosis in human mononuclear phagocytes. Scand J Immunol. 2005;61(6):558–65.CrossRefPubMed
37.
go back to reference Aung H, Toossi Z, McKenna SM, Gogate P, Sierra J, Sada E, et al. Expression of transforming growth factor-β but not tumor necrosis factor-α, interferon-γ, and interleukin-4 in granulomatous lung lesions in tuberculosis. Tuber Lung Dis. 2000;80(2):61–7.CrossRefPubMed Aung H, Toossi Z, McKenna SM, Gogate P, Sierra J, Sada E, et al. Expression of transforming growth factor-β but not tumor necrosis factor-α, interferon-γ, and interleukin-4 in granulomatous lung lesions in tuberculosis. Tuber Lung Dis. 2000;80(2):61–7.CrossRefPubMed
38.
go back to reference Shin HJ, Kwon YS. Treatment of drug susceptible pulmonary tuberculosis. Tuberc Respir Dis (Seoul). 2015;78(3):161–7.CrossRef Shin HJ, Kwon YS. Treatment of drug susceptible pulmonary tuberculosis. Tuberc Respir Dis (Seoul). 2015;78(3):161–7.CrossRef
39.
go back to reference Dheda K, Barry CE, Maartens G. Tuberculosis. The Lancet. 2016;387(10024):1211-26. Pubmed ID: 26377143. Dheda K, Barry CE, Maartens G. Tuberculosis. The Lancet. 2016;387(10024):1211-26. Pubmed ID: 26377143.
40.
go back to reference Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci U S A. 2012;109(35):14188–93.CrossRefPubMedPubMedCentral Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci U S A. 2012;109(35):14188–93.CrossRefPubMedPubMedCentral
41.
go back to reference Van Linthout S, Miteva K, Tschope C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102(2):258–69.CrossRefPubMed Van Linthout S, Miteva K, Tschope C. Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res. 2014;102(2):258–69.CrossRefPubMed
42.
go back to reference Lin PL, Coleman MT, Carney JP, Lopresti BJ, Tomko J, Fillmore D, et al. Radiologic responses in cynomolgus macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother. 2013;57(9):4237.CrossRefPubMedCentral Lin PL, Coleman MT, Carney JP, Lopresti BJ, Tomko J, Fillmore D, et al. Radiologic responses in cynomolgus macaques for assessing tuberculosis chemotherapy regimens. Antimicrob Agents Chemother. 2013;57(9):4237.CrossRefPubMedCentral
43.
go back to reference Capuano 3rd SV, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun. 2003;71(10):5831–44.CrossRefPubMedPubMedCentral Capuano 3rd SV, Croix DA, Pawar S, Zinovik A, Myers A, Lin PL, et al. Experimental Mycobacterium tuberculosis infection of cynomolgus macaques closely resembles the various manifestations of human M. tuberculosis infection. Infect Immun. 2003;71(10):5831–44.CrossRefPubMedPubMedCentral
44.
go back to reference Coleman MT, Chen RY, Lee M, Lin PL, Dodd LE, Maiello P, et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med. 2014;6(265):265ra167.CrossRefPubMed Coleman MT, Chen RY, Lee M, Lin PL, Dodd LE, Maiello P, et al. PET/CT imaging reveals a therapeutic response to oxazolidinones in macaques and humans with tuberculosis. Sci Transl Med. 2014;6(265):265ra167.CrossRefPubMed
45.
go back to reference den Boon S, van Lill S, Borgdorff MW, Enarson DA, Verver S, Bateman ED, et al. High prevalence of tuberculosis in previously treated patients, Cape Town, South Africa. Emerg Infect Dis. 2007;13(8):1189–94.CrossRef den Boon S, van Lill S, Borgdorff MW, Enarson DA, Verver S, Bateman ED, et al. High prevalence of tuberculosis in previously treated patients, Cape Town, South Africa. Emerg Infect Dis. 2007;13(8):1189–94.CrossRef
46.
go back to reference van Rie A, Warren R, Richardson M, Victor TC, Gie RP, Enarson DA, et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med. 1999;341:1174–9.CrossRefPubMed van Rie A, Warren R, Richardson M, Victor TC, Gie RP, Enarson DA, et al. Exogenous reinfection as a cause of recurrent tuberculosis after curative treatment. N Engl J Med. 1999;341:1174–9.CrossRefPubMed
47.
go back to reference Shachor Y, Schindler D, Siegal A, Lieberman D, Mikulski Y, Bruderman I. Increased incidence of pulmonary tuberculosis in chronic interstitial lung disease. Thorax. 1989;44(2):151–3.CrossRefPubMedPubMedCentral Shachor Y, Schindler D, Siegal A, Lieberman D, Mikulski Y, Bruderman I. Increased incidence of pulmonary tuberculosis in chronic interstitial lung disease. Thorax. 1989;44(2):151–3.CrossRefPubMedPubMedCentral
48.
go back to reference Chung MJ, Goo JM, Im JG. Pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis. Eur J Radiol. 2004;52(2):175–9.CrossRefPubMed Chung MJ, Goo JM, Im JG. Pulmonary tuberculosis in patients with idiopathic pulmonary fibrosis. Eur J Radiol. 2004;52(2):175–9.CrossRefPubMed
49.
go back to reference Ahn CH, Nash DR, Hurst GA. Ventilatory defects in atypical mycobacteriosis. Am Rev Respir Dis. 1976;113(3):273–9.PubMed Ahn CH, Nash DR, Hurst GA. Ventilatory defects in atypical mycobacteriosis. Am Rev Respir Dis. 1976;113(3):273–9.PubMed
50.
go back to reference Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007;87(9):858–70.CrossRefPubMed Bellini A, Mattoli S. The role of the fibrocyte, a bone marrow-derived mesenchymal progenitor, in reactive and reparative fibroses. Lab Invest. 2007;87(9):858–70.CrossRefPubMed
52.
53.
go back to reference Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114(9):1308–16.CrossRefPubMedPubMedCentral Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, et al. Imatinib mesylate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest. 2004;114(9):1308–16.CrossRefPubMedPubMedCentral
54.
go back to reference Hu Y, Peng J, Feng D, Chu L, Li X, Jin Z, et al. Role of extracellular signal-regulated kinase, p38 kinase, and activator protein-1 in transforming growth factor-beta1-induced alpha smooth muscle actin expression in human fetal lung fibroblasts in vitro. Lung. 2006;184(1):33–42.CrossRefPubMed Hu Y, Peng J, Feng D, Chu L, Li X, Jin Z, et al. Role of extracellular signal-regulated kinase, p38 kinase, and activator protein-1 in transforming growth factor-beta1-induced alpha smooth muscle actin expression in human fetal lung fibroblasts in vitro. Lung. 2006;184(1):33–42.CrossRefPubMed
55.
go back to reference Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C, et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun. 2009;77(10):4631–42.CrossRefPubMedPubMedCentral Lin PL, Rodgers M, Smith L, Bigbee M, Myers A, Bigbee C, et al. Quantitative comparison of active and latent tuberculosis in the cynomolgus macaque model. Infect Immun. 2009;77(10):4631–42.CrossRefPubMedPubMedCentral
Metadata
Title
Active transforming growth factor-β is associated with phenotypic changes in granulomas after drug treatment in pulmonary tuberculosis
Authors
Robert M. DiFazio
Joshua T. Mattila
Edwin C. Klein
Lauren R. Cirrincione
Mondraya Howard
Eileen A. Wong
JoAnne L. Flynn
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue 1/2016
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/s13069-016-0043-3

Other articles of this Issue 1/2016

Fibrogenesis & Tissue Repair 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine