Skip to main content
Top
Published in: Fibrogenesis & Tissue Repair 1/2016

Open Access 01-12-2016 | Review

Biomaterials for hollow organ tissue engineering

Authors: Eseelle K. Hendow, Pauline Guhmann, Bernice Wright, Panagiotis Sofokleous, Nina Parmar, Richard M. Day

Published in: Fibrogenesis & Tissue Repair | Issue 1/2016

Login to get access

Abstract

Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials.
Literature
1.
go back to reference Cooper DKC. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012;25(1):49–57. Cooper DKC. A brief history of cross-species organ transplantation. Proc (Bayl Univ Med Cent). 2012;25(1):49–57.
2.
go back to reference Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Special Issue: xenotransplantation recent advances in genome editing and creation of genetically modified pigs. Int J Surg. 2015;23:217–22.CrossRefPubMed Butler JR, Ladowski JM, Martens GR, Tector M, Tector AJ. Special Issue: xenotransplantation recent advances in genome editing and creation of genetically modified pigs. Int J Surg. 2015;23:217–22.CrossRefPubMed
4.
go back to reference Zhu N, Chen X. Biofabrication of tissue scaffolds. Advances in biomaterials science and biomedical applications. 2013. Zhu N, Chen X. Biofabrication of tissue scaffolds. Advances in biomaterials science and biomedical applications. 2013.
5.
go back to reference Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;4(4):467–79.CrossRef Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J. 2008;4(4):467–79.CrossRef
6.
go back to reference Hubbell JA. Biomaterials in tissue engineering. Nature. 1995;13(6):565–76. Hubbell JA. Biomaterials in tissue engineering. Nature. 1995;13(6):565–76.
7.
go back to reference Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.CrossRefPubMed Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006;367(9518):1241–6.CrossRefPubMed
8.
go back to reference Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme-Seymour EJ, Toll E, Bates AJ, Comerford AP, McLaren CA, Butler CR, Crowley C, McIntyre D, Sebire NJ, Janes SM, O'Callaghan C, Mason C, De Coppi P, Lowdell MW, Elliott MJ, Birchall MA. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. Am J Transplant. 2015;15(10):2750–7.CrossRefPubMedPubMedCentral Hamilton NJ, Kanani M, Roebuck DJ, Hewitt RJ, Cetto R, Culme-Seymour EJ, Toll E, Bates AJ, Comerford AP, McLaren CA, Butler CR, Crowley C, McIntyre D, Sebire NJ, Janes SM, O'Callaghan C, Mason C, De Coppi P, Lowdell MW, Elliott MJ, Birchall MA. Tissue-engineered tracheal replacement in a child: a 4-year follow-up study. Am J Transplant. 2015;15(10):2750–7.CrossRefPubMedPubMedCentral
9.
go back to reference Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.CrossRefPubMed Macchiarini P, Jungebluth P, Go T, Asnaghi MA, Rees LE, Cogan TA, Dodson A, Martorell J, Bellini S, Parnigotto PP, Dickinson SC, Hollander AP, Mantero S, Conconi MT, Birchall MA. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.CrossRefPubMed
10.
go back to reference Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;1-19. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci. 2011;1-19.
11.
go back to reference Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20(19)1783–90.CrossRefPubMed Nam YS, Park TG. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials. 1999;20(19)1783–90.CrossRefPubMed
12.
go back to reference Kaji H. Biofabrication techniques for biologically relevant tissue models and drug delivery devices, Micro-NanoMechatronics and Human Science (MHS), 2012 International Symposium. 2012. Kaji H. Biofabrication techniques for biologically relevant tissue models and drug delivery devices, Micro-NanoMechatronics and Human Science (MHS), 2012 International Symposium. 2012.
13.
go back to reference Sofokleous P, Stride E, Bonfield W, Edirisinghe M. Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Mater Sci Eng C. 2013;33(1):213–23.CrossRef Sofokleous P, Stride E, Bonfield W, Edirisinghe M. Design, construction and performance of a portable handheld electrohydrodynamic multi-needle spray gun for biomedical applications. Mater Sci Eng C. 2013;33(1):213–23.CrossRef
14.
go back to reference Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardio-Thorac. 2014;45(5):767–78.CrossRef Hoch E, Tovar GE, Borchers K. Bioprinting of artificial blood vessels: current approaches towards a demanding goal. Eur J Cardio-Thorac. 2014;45(5):767–78.CrossRef
16.
go back to reference Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):823–64.CrossRef Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys. 2011;49(12):823–64.CrossRef
18.
go back to reference Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.CrossRef Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.CrossRef
19.
go back to reference You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab. 2005;90(3):441–8.CrossRef You Y, Lee SW, Youk JH, Min BM, Lee SJ, Park WH. In vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) fibres and porous ultra-fine poly(glycolic acid) fibres. Polym Degrad Stab. 2005;90(3):441–8.CrossRef
20.
go back to reference Lam KH, Nieuwenhuis P, Molenaar I, Esselbrugge H, Feijen J, Dijkstra PJ, Schakenraad JM. Biodegradation of porous versus non-porous poly(L-lactic acid) films. J Mater Sci Mater Med. 1994;5(4):181–9.CrossRef Lam KH, Nieuwenhuis P, Molenaar I, Esselbrugge H, Feijen J, Dijkstra PJ, Schakenraad JM. Biodegradation of porous versus non-porous poly(L-lactic acid) films. J Mater Sci Mater Med. 1994;5(4):181–9.CrossRef
21.
go back to reference Nemeno-Guanzon JG, Lee S, Berg JR, Jo YH, Yeo JE, Nam BO, Koh YG, Lee JI. Trends in tissue engineering for blood vessels. J Biomed Biotechnol. 2012;2012:956345.CrossRefPubMedPubMedCentral Nemeno-Guanzon JG, Lee S, Berg JR, Jo YH, Yeo JE, Nam BO, Koh YG, Lee JI. Trends in tissue engineering for blood vessels. J Biomed Biotechnol. 2012;2012:956345.CrossRefPubMedPubMedCentral
23.
go back to reference Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, Bolli R. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol. 2013;108:346.CrossRefPubMedPubMedCentral Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, Bolli R. A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol. 2013;108:346.CrossRefPubMedPubMedCentral
24.
go back to reference Alberts B, Johnson A, Lewis J, et al. Blood vessels and endothelial cells, Molecular Biology of the Cell, vol. 4. New York: Garland Science; 2002. Alberts B, Johnson A, Lewis J, et al. Blood vessels and endothelial cells, Molecular Biology of the Cell, vol. 4. New York: Garland Science; 2002.
25.
go back to reference Meloni AE, Spencer M, Riu HL, Katare F, Mangialardi R, Oikawa G, Rodriguez-Arabaolaza A, Dang I, Mitchell Z, Reni K, Alvino C, Rowlinson VV, Livi J, Cesselli U, Angelini D, Emanueli G, Beltrami C, Madeddu P. Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res. 2015;116:81–91.CrossRef Meloni AE, Spencer M, Riu HL, Katare F, Mangialardi R, Oikawa G, Rodriguez-Arabaolaza A, Dang I, Mitchell Z, Reni K, Alvino C, Rowlinson VV, Livi J, Cesselli U, Angelini D, Emanueli G, Beltrami C, Madeddu P. Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res. 2015;116:81–91.CrossRef
26.
go back to reference Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, van Kuppevelt TH, Dijkstra PJ, de Vos RA, Sterk LM, Geelkerken BR, Feijen J, Vermes I. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and elastin-based scaffolds. Biotechnol Appl Biochem. 2004;39(2):141–9.CrossRefPubMed Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, van Kuppevelt TH, Dijkstra PJ, de Vos RA, Sterk LM, Geelkerken BR, Feijen J, Vermes I. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and elastin-based scaffolds. Biotechnol Appl Biochem. 2004;39(2):141–9.CrossRefPubMed
27.
go back to reference Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6373–3681.CrossRef Skardal A, Zhang J, Prestwich GD. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. Biomaterials. 2010;31(24):6373–3681.CrossRef
28.
go back to reference Zhao X, Irvine SA, Agrawal A, Cao Y, Lim PQ, Tan SY, Venkatraman SS. 3D patterned substrates for bioartificial blood vessels—the effect of hydrogels on aligned cells on a biomaterial surface. Acta Biomater. 2015;26:159–68.CrossRefPubMed Zhao X, Irvine SA, Agrawal A, Cao Y, Lim PQ, Tan SY, Venkatraman SS. 3D patterned substrates for bioartificial blood vessels—the effect of hydrogels on aligned cells on a biomaterial surface. Acta Biomater. 2015;26:159–68.CrossRefPubMed
29.
go back to reference Yao L, Liu J, Andreadis ST. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm Res-Dordr. 2008;25(5):1212–21.CrossRef Yao L, Liu J, Andreadis ST. Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels. Pharm Res-Dordr. 2008;25(5):1212–21.CrossRef
32.
go back to reference Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;38:316–42. Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges. Glob Cardiol Sci Pract. 2013;38:316–42.
34.
go back to reference Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg. 1995;21(2):314–25.CrossRefPubMed Bauters C, Asahara T, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF, Isner JM. Site-specific therapeutic angiogenesis after systemic administration of vascular endothelial growth factor. J Vasc Surg. 1995;21(2):314–25.CrossRefPubMed
36.
go back to reference Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Creation of long-lasting blood vessels. Nature. 2004;428(6979):138–9.CrossRefPubMed Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Creation of long-lasting blood vessels. Nature. 2004;428(6979):138–9.CrossRefPubMed
37.
go back to reference Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW, Vacanti JP, Whang EE. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials. 2008;29(19):2884–90.CrossRefPubMedPubMedCentral Rocha FG, Sundback CA, Krebs NJ, Leach JK, Mooney DJ, Ashley SW, Vacanti JP, Whang EE. The effect of sustained delivery of vascular endothelial growth factor on angiogenesis in tissue-engineered intestine. Biomaterials. 2008;29(19):2884–90.CrossRefPubMedPubMedCentral
38.
go back to reference Chen J, Zhang ZG, Li Y, Wang L, Xian Xu Y, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9.CrossRefPubMed Chen J, Zhang ZG, Li Y, Wang L, Xian Xu Y, Gautam SC, Lu M, Zhu Z, Chopp M. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–9.CrossRefPubMed
41.
go back to reference Othman R, Morris GE, Shah DA, Hall S, Hall G, Wells K, Shakesheff KM, Dixon JE. An automated fabrication strategy to create patterned tubular architectures at cell and tissue scales. Biofabrication. 2015;7(2):025003.CrossRefPubMed Othman R, Morris GE, Shah DA, Hall S, Hall G, Wells K, Shakesheff KM, Dixon JE. An automated fabrication strategy to create patterned tubular architectures at cell and tissue scales. Biofabrication. 2015;7(2):025003.CrossRefPubMed
42.
go back to reference Maemura T, Shin M, Kinoshita M, et al. A tissue-engineered stomach shows presence of proton pump and G-cells in a rat model, resulting in improved anemia following total gastrectomy. Artif Organs. 2008;32(3):234–9.CrossRefPubMed Maemura T, Shin M, Kinoshita M, et al. A tissue-engineered stomach shows presence of proton pump and G-cells in a rat model, resulting in improved anemia following total gastrectomy. Artif Organs. 2008;32(3):234–9.CrossRefPubMed
43.
go back to reference Maemura T, Kinoshita M, Shin M, et al. Assessment of a tissue-engineered gastric wall patch in a rat model. Artif Organs. 2012;36(4):409–17.CrossRefPubMed Maemura T, Kinoshita M, Shin M, et al. Assessment of a tissue-engineered gastric wall patch in a rat model. Artif Organs. 2012;36(4):409–17.CrossRefPubMed
44.
go back to reference Sala FG, Kunisaki SM, Ochoa ER, et al. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156(2):205–12.CrossRefPubMed Sala FG, Kunisaki SM, Ochoa ER, et al. Tissue-engineered small intestine and stomach form from autologous tissue in a preclinical large animal model. J Surg Res. 2009;156(2):205–12.CrossRefPubMed
48.
go back to reference Nakase Y, Hagiwara A, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Fukuda K, Kuriu Y, Miyagawa K, Sakakura C, Otsuji E, Shimizu Y, Ikada Y, Yamagishi H. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng. 2006;12(2):403–12.CrossRefPubMed Nakase Y, Hagiwara A, Nakamura T, Kin S, Nakashima S, Yoshikawa T, Fukuda K, Kuriu Y, Miyagawa K, Sakakura C, Otsuji E, Shimizu Y, Ikada Y, Yamagishi H. Tissue engineering of small intestinal tissue using collagen sponge scaffolds seeded with smooth muscle cells. Tissue Eng. 2006;12(2):403–12.CrossRefPubMed
49.
go back to reference Lee M, Wu BM, Stelzner M, Reichardt HM, Dunn JC. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor. Tissue Eng Part A. 2008;14(8):1395–402.CrossRefPubMed Lee M, Wu BM, Stelzner M, Reichardt HM, Dunn JC. Intestinal smooth muscle cell maintenance by basic fibroblast growth factor. Tissue Eng Part A. 2008;14(8):1395–402.CrossRefPubMed
50.
go back to reference Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil. 2012;24(1):7–9.CrossRefPubMedPubMedCentral Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil. 2012;24(1):7–9.CrossRefPubMedPubMedCentral
51.
go back to reference Grikscheit TC, Siddique A, Ochoa ER, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240(5):748–54.CrossRefPubMedPubMedCentral Grikscheit TC, Siddique A, Ochoa ER, et al. Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg. 2004;240(5):748–54.CrossRefPubMedPubMedCentral
52.
go back to reference Chen MK, Badylak SF. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J Surg Res. 2001;99(2):352–8.CrossRefPubMed Chen MK, Badylak SF. Small bowel tissue engineering using small intestinal submucosa as a scaffold. J Surg Res. 2001;99(2):352–8.CrossRefPubMed
53.
54.
go back to reference Zakhem E, Raghavan S, Gilmont RR, Bitar KN. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials. 2012;33:4810–7.CrossRefPubMedPubMedCentral Zakhem E, Raghavan S, Gilmont RR, Bitar KN. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials. 2012;33:4810–7.CrossRefPubMedPubMedCentral
55.
58.
go back to reference Gerhard VA. endocrine cell types of the gastro-intestinal tract and pancreas of a reptile (Bitis arietans): an immunocytochemical study. 1986: University of The Witwatersrand, 1986. Typescript (Photocopy). Gerhard VA. endocrine cell types of the gastro-intestinal tract and pancreas of a reptile (Bitis arietans): an immunocytochemical study. 1986: University of The Witwatersrand, 1986. Typescript (Photocopy).
59.
go back to reference Thakar R, Sultan AH. Management of obstetric anal sphincter injury. The Obstetrician & Gynaecologist. 2003;5(2):72–8.CrossRef Thakar R, Sultan AH. Management of obstetric anal sphincter injury. The Obstetrician & Gynaecologist. 2003;5(2):72–8.CrossRef
60.
go back to reference Parmar N, Kumar L, Emmanuel A, Day RM. Prospective regenerative medicine therapies for obstetric trauma-induced fecal incontinence. Regen Med. 2014;9(6):831–40.CrossRefPubMed Parmar N, Kumar L, Emmanuel A, Day RM. Prospective regenerative medicine therapies for obstetric trauma-induced fecal incontinence. Regen Med. 2014;9(6):831–40.CrossRefPubMed
61.
go back to reference Knight T, Basu J, Rivera EA, Spencer T, Jain D, Payne R. Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering. Cell AdhMigr. 2013;3:267. Knight T, Basu J, Rivera EA, Spencer T, Jain D, Payne R. Fabrication of a multi-layer three-dimensional scaffold with controlled porous micro-architecture for application in small intestine tissue engineering. Cell AdhMigr. 2013;3:267.
62.
go back to reference Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7.CrossRefPubMedPubMedCentral Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A. 2010;107(11):4872–7.CrossRefPubMedPubMedCentral
63.
go back to reference Shi LB, Cai HX, Chen LK, Wu Y, Zhu SA, Gong XN, Xia YX, Ouyang HW, Zou XH. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency. Biomaterials. 2014;35(5):1519–30.CrossRefPubMed Shi LB, Cai HX, Chen LK, Wu Y, Zhu SA, Gong XN, Xia YX, Ouyang HW, Zou XH. Tissue engineered bulking agent with adipose-derived stem cells and silk fibroin microspheres for the treatment of intrinsic urethral sphincter deficiency. Biomaterials. 2014;35(5):1519–30.CrossRefPubMed
64.
go back to reference Klauser A, Frauscher F, Strasser H, Helweg G, Kolle D, Strohmeyer D. Age-related rhabdosphincter function in female urinary stress incontinence: assessment of intraurethral sonography. J Ultrasound Med. 2004;23(5):631–7.PubMed Klauser A, Frauscher F, Strasser H, Helweg G, Kolle D, Strohmeyer D. Age-related rhabdosphincter function in female urinary stress incontinence: assessment of intraurethral sonography. J Ultrasound Med. 2004;23(5):631–7.PubMed
65.
go back to reference Welkoborsky HJ, Hinni ML, Moebius H, Bauer L, Ostertag H. Microscopic examination of iatrogenic subglottic tracheal stenosis: observations that mayelucidate its histopathologic origin. Ann Otol Rhinol Laryngol. 2014;123(1):25–31.CrossRefPubMed Welkoborsky HJ, Hinni ML, Moebius H, Bauer L, Ostertag H. Microscopic examination of iatrogenic subglottic tracheal stenosis: observations that mayelucidate its histopathologic origin. Ann Otol Rhinol Laryngol. 2014;123(1):25–31.CrossRefPubMed
67.
go back to reference Nomoto Y, Suzuki T, Tada Y, Kobayashi K, Miyake M, Hazama A, Wada I, Kanemaru S, Nakamura T, Omori K. Tissue engineering for regeneration of the tracheal epithelium. Ann Otol Rhinol Laryngol. 2006;115(7):501–6.CrossRefPubMed Nomoto Y, Suzuki T, Tada Y, Kobayashi K, Miyake M, Hazama A, Wada I, Kanemaru S, Nakamura T, Omori K. Tissue engineering for regeneration of the tracheal epithelium. Ann Otol Rhinol Laryngol. 2006;115(7):501–6.CrossRefPubMed
68.
go back to reference Hong HJ, Lee JS, Choi JW, Min BH, Lee HB, Kim CH. Transplantation of autologous chondrocytes seeded on a fibrin/hyaluronan composite gel into tracheal cartilage defects in rabbits: preliminary results. Artif Organs. 2012;36(11):998–1006.CrossRefPubMed Hong HJ, Lee JS, Choi JW, Min BH, Lee HB, Kim CH. Transplantation of autologous chondrocytes seeded on a fibrin/hyaluronan composite gel into tracheal cartilage defects in rabbits: preliminary results. Artif Organs. 2012;36(11):998–1006.CrossRefPubMed
69.
go back to reference Sutherland RS, Baskin LS, Hayward SW, Cunha GR. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol. 1996;156(2):571–7.CrossRefPubMed Sutherland RS, Baskin LS, Hayward SW, Cunha GR. Regeneration of bladder urothelium, smooth muscle, blood vessels and nerves into an acellular tissue matrix. J Urol. 1996;156(2):571–7.CrossRefPubMed
70.
go back to reference Walles T. Bioartificial tracheal grafts: can tissue engineering keep its promise? Expert Rev Med Devices. 2004;1(2):241–50.CrossRefPubMed Walles T. Bioartificial tracheal grafts: can tissue engineering keep its promise? Expert Rev Med Devices. 2004;1(2):241–50.CrossRefPubMed
71.
go back to reference Shi H, Xu Z, Qin X, Zhao X, Lu D. Experimental study of replacing circumferential tracheal defects with new prosthesis. Ann Thorac Surg. 2005;79(2):672–6.CrossRefPubMed Shi H, Xu Z, Qin X, Zhao X, Lu D. Experimental study of replacing circumferential tracheal defects with new prosthesis. Ann Thorac Surg. 2005;79(2):672–6.CrossRefPubMed
72.
go back to reference Lin CH, Hsu SH, Su JM. Surface modification of poly(epsilon-caprolactone) porous scaffolds using gelatin hydrogel as the tracheal replacement. J Tissue Eng Regen M. 2011;5(2):156–62.CrossRef Lin CH, Hsu SH, Su JM. Surface modification of poly(epsilon-caprolactone) porous scaffolds using gelatin hydrogel as the tracheal replacement. J Tissue Eng Regen M. 2011;5(2):156–62.CrossRef
73.
go back to reference Tatekawa Y, Kawazoe N, Chen GP, Shirasaki Y, Komuro H, Kaneki M. Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr Surg Int. 2010;26(6):575–80.CrossRefPubMed Tatekawa Y, Kawazoe N, Chen GP, Shirasaki Y, Komuro H, Kaneki M. Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr Surg Int. 2010;26(6):575–80.CrossRefPubMed
74.
go back to reference Zang M, Zhang Q, Chang EI, Mathur AB, Yu P. Decellularized tracheal matrix scaffold for tissue engineering. Plast Reconstr Surg. 2012;130(3):532–40.CrossRefPubMed Zang M, Zhang Q, Chang EI, Mathur AB, Yu P. Decellularized tracheal matrix scaffold for tissue engineering. Plast Reconstr Surg. 2012;130(3):532–40.CrossRefPubMed
75.
go back to reference Gonzalez-Molina J, Riegler J, Southern P, Ortega D, Frangos CC, Angelopoulos Y, Husain S, Lythgoe MF, Pankhurst QA, Day RM. Rapid magnetic cell delivery for large tubular bioengineered constructs. J R Soc Interface. 2012;9(76):3008–16.CrossRefPubMedPubMedCentral Gonzalez-Molina J, Riegler J, Southern P, Ortega D, Frangos CC, Angelopoulos Y, Husain S, Lythgoe MF, Pankhurst QA, Day RM. Rapid magnetic cell delivery for large tubular bioengineered constructs. J R Soc Interface. 2012;9(76):3008–16.CrossRefPubMedPubMedCentral
76.
go back to reference Park JH, Hong JM, Ju YM, Jung JW, Kang HW, Lee SJ, Yoo JJ, Kim SW, Kim SH, Cho DW. A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials. 2015;62:106–15.CrossRefPubMed Park JH, Hong JM, Ju YM, Jung JW, Kang HW, Lee SJ, Yoo JJ, Kim SW, Kim SH, Cho DW. A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials. 2015;62:106–15.CrossRefPubMed
77.
go back to reference Goldstein TA, Smith BD, Zeltsman D, Grande D, Smith LP. Introducing a 3-dimensionally printed, tissue-engineered graft for airway reconstruction: a pilot study. Otolaryngol Head Neck Surg. 2015;153(6):1001–6.CrossRefPubMed Goldstein TA, Smith BD, Zeltsman D, Grande D, Smith LP. Introducing a 3-dimensionally printed, tissue-engineered graft for airway reconstruction: a pilot study. Otolaryngol Head Neck Surg. 2015;153(6):1001–6.CrossRefPubMed
78.
go back to reference Zhao DE, Li RB, Liu WY, et al. Tissue-engineered heart valve on acellular aortic valve scaffold: in-vivo study. Cardiovasc Thorac Ann. 2003;11(2):153–6.CrossRef Zhao DE, Li RB, Liu WY, et al. Tissue-engineered heart valve on acellular aortic valve scaffold: in-vivo study. Cardiovasc Thorac Ann. 2003;11(2):153–6.CrossRef
79.
go back to reference Parhizkar M et al. Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique. Biofabrication. 2014;6(14):045010.CrossRefPubMed Parhizkar M et al. Novel preparation of controlled porosity particle/fibre loaded scaffolds using a hybrid micro-fluidic and electrohydrodynamic technique. Biofabrication. 2014;6(14):045010.CrossRefPubMed
80.
go back to reference Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterials. 2008;4(2):264–72.CrossRef Blaker JJ, Knowles JC, Day RM. Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomaterials. 2008;4(2):264–72.CrossRef
81.
go back to reference Park JH, Hong JM, Ju YM, Jung JW, Kang HW, Lee SJ, Yoo JJ, Kim SW, Kim SH, Cho DW, A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials. 2015;62:106–15.CrossRefPubMed Park JH, Hong JM, Ju YM, Jung JW, Kang HW, Lee SJ, Yoo JJ, Kim SW, Kim SH, Cho DW, A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials. 2015;62:106–15.CrossRefPubMed
82.
go back to reference Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electron. 1995;35(2):1698–1703. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electron. 1995;35(2):1698–1703.
Metadata
Title
Biomaterials for hollow organ tissue engineering
Authors
Eseelle K. Hendow
Pauline Guhmann
Bernice Wright
Panagiotis Sofokleous
Nina Parmar
Richard M. Day
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Fibrogenesis & Tissue Repair / Issue 1/2016
Electronic ISSN: 1755-1536
DOI
https://doi.org/10.1186/s13069-016-0040-6

Other articles of this Issue 1/2016

Fibrogenesis & Tissue Repair 1/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine