Skip to main content
Top
Published in: Gut Pathogens 1/2017

Open Access 01-12-2017 | Research

Differential regulation of riboflavin supply genes in Vibrio cholerae

Authors: Ignacio Sepúlveda Cisternas, Alexia Torres, Andrés Fuentes Flores, Víctor Antonio García Angulo

Published in: Gut Pathogens | Issue 1/2017

Login to get access

Abstract

Background

Riboflavin is the precursor of important redox cofactors such as flavin mononucleotide (FMN) and flavin adenine dinucleotide, required for several biological processes. Vibrio cholerae, a pathogenic bacterium responsible for the cholera disease, possesses the ability to biosynthesize de novo as well as to uptake riboflavin through the riboflavin biosynthetic pathway (RBP) and the RibN importer, respectively. The intra-organism relationship between riboflavin biosynthesis and uptake functions has not been studied.

Results

This work determined the transcriptional organization of RBP genes and ribN in V. cholerae through reverse transcription polymerase chain reaction and analyzed their expression when growing with or without extracellular riboflavin using real time PCR. The RBP is organized in three transcriptional units, the major one containing ribD, ribE, ribA and ribH together with genes involved in functions not directly related to riboflavin biosynthesis such as nrdR and nusB. In addition, two independent monocistronic units contain ribA2 and ribB, the later conserving a putative FMN riboswitch. The ribN gene is encoded in operon with a gene coding for a predicted outer membrane protein and a gene encoding a protein with a glutaredoxin domain. Regulation analysis showed that among these transcriptional units, only ribB is negatively regulated by riboflavin and that its repression depends on the RibN riboflavin importer. Moreover, external riboflavin highly induced ribB transcription in a ΔribN strain. Also, a genomic database search found a negative correlation between the presence of nrdR and nusB and the FMN riboswitch in bacterial RBP operons.

Conclusions

Growing in the presence of riboflavin downregulates only a single element among the transcriptional units of riboflavin supply pathways. Thus, endogenous riboflavin biosynthesis seems to be negatively regulated by extracellular riboflavin through its specific effect on transcription of ribB in V. cholerae.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev MMBR. 2011;75:321–60.CrossRefPubMed Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol Mol Biol Rev MMBR. 2011;75:321–60.CrossRefPubMed
2.
go back to reference Monteverde DR, Gómez-Consarnau L, Suffridge C, Sañudo-Wilhelmy SA. Life’s utilization of B vitamins on early Earth. Geobiology. 2016;15:3–18.CrossRefPubMed Monteverde DR, Gómez-Consarnau L, Suffridge C, Sañudo-Wilhelmy SA. Life’s utilization of B vitamins on early Earth. Geobiology. 2016;15:3–18.CrossRefPubMed
3.
go back to reference Nakabachi A, Ishikawa H. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol. 1999;45:1–6.CrossRefPubMed Nakabachi A, Ishikawa H. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol. 1999;45:1–6.CrossRefPubMed
4.
go back to reference Crossley RA, Gaskin DJH, Holmes K, Mulholland F, Wells JM, Kelly DJ, et al. Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl Environ Microbiol. 2007;73:7819–25.CrossRefPubMedPubMedCentral Crossley RA, Gaskin DJH, Holmes K, Mulholland F, Wells JM, Kelly DJ, et al. Riboflavin biosynthesis is associated with assimilatory ferric reduction and iron acquisition by Campylobacter jejuni. Appl Environ Microbiol. 2007;73:7819–25.CrossRefPubMedPubMedCentral
5.
go back to reference Ashoori M, Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: a review. Br J Nutr. 2014;111:1985–91.CrossRefPubMed Ashoori M, Saedisomeolia A. Riboflavin (vitamin B2) and oxidative stress: a review. Br J Nutr. 2014;111:1985–91.CrossRefPubMed
6.
go back to reference Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008;105:3968–73.CrossRefPubMedPubMedCentral Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR. Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci USA. 2008;105:3968–73.CrossRefPubMedPubMedCentral
8.
go back to reference Haase I, Gräwert T, Illarionov B, Bacher A, Fischer M. Recent advances in riboflavin biosynthesis. Methods Mol Biol Clifton NJ. 2014;1146:15–40.CrossRef Haase I, Gräwert T, Illarionov B, Bacher A, Fischer M. Recent advances in riboflavin biosynthesis. Methods Mol Biol Clifton NJ. 2014;1146:15–40.CrossRef
9.
10.
go back to reference Vogl C, Grill S, Schilling O, Stülke J, Mack M, Stolz J. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol. 2007;189:7367–75.CrossRefPubMedPubMedCentral Vogl C, Grill S, Schilling O, Stülke J, Mack M, Stolz J. Characterization of riboflavin (vitamin B2) transport proteins from Bacillus subtilis and Corynebacterium glutamicum. J Bacteriol. 2007;189:7367–75.CrossRefPubMedPubMedCentral
11.
go back to reference Deka RK, Brautigam CA, Biddy BA, Liu WZ, Norgard MV. Evidence for an ABC-type riboflavin transporter system in pathogenic spirochetes. mBio. 2013;4:e00615.CrossRefPubMedPubMedCentral Deka RK, Brautigam CA, Biddy BA, Liu WZ, Norgard MV. Evidence for an ABC-type riboflavin transporter system in pathogenic spirochetes. mBio. 2013;4:e00615.CrossRefPubMedPubMedCentral
12.
go back to reference Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, García-Angulo VA. Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS ONE. 2015;10:e0126124.CrossRefPubMedPubMedCentral Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, García-Angulo VA. Extensive identification of bacterial riboflavin transporters and their distribution across bacterial species. PLoS ONE. 2015;10:e0126124.CrossRefPubMedPubMedCentral
13.
go back to reference Rodionova IA, Li X, Plymale AE, Motamedchaboki K, Konopka AE, Romine MF, et al. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum. Environ Microbiol Rep. 2014;7:204–10.CrossRefPubMed Rodionova IA, Li X, Plymale AE, Motamedchaboki K, Konopka AE, Romine MF, et al. Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental bacteria from the Chloroflexi phylum. Environ Microbiol Rep. 2014;7:204–10.CrossRefPubMed
14.
go back to reference García Angulo VA, Bonomi HR, Posadas DM, Serer MI, Torres AG, Zorreguieta A, et al. Identification and characterization of RibN, a novel family of riboflavin transporters from Rhizobium Leguminosarum and other proteobacteria. J Bacteriol. 2013;195:4611–9.CrossRefPubMedPubMedCentral García Angulo VA, Bonomi HR, Posadas DM, Serer MI, Torres AG, Zorreguieta A, et al. Identification and characterization of RibN, a novel family of riboflavin transporters from Rhizobium Leguminosarum and other proteobacteria. J Bacteriol. 2013;195:4611–9.CrossRefPubMedPubMedCentral
15.
go back to reference Grill S, Yamaguchi H, Wagner H, Zwahlen L, Kusch U, Mack M. Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol. 2007;188:377–87.CrossRefPubMed Grill S, Yamaguchi H, Wagner H, Zwahlen L, Kusch U, Mack M. Identification and characterization of two Streptomyces davawensis riboflavin biosynthesis gene clusters. Arch Microbiol. 2007;188:377–87.CrossRefPubMed
16.
go back to reference Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002;30:3141–51.CrossRefPubMedPubMedCentral Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucleic Acids Res. 2002;30:3141–51.CrossRefPubMedPubMedCentral
17.
go back to reference Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol. 2006;188:2752–60.CrossRefPubMedPubMedCentral Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D. The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol. 2006;188:2752–60.CrossRefPubMedPubMedCentral
18.
go back to reference McKethan BL, Spiro S. Cooperative and allosterically controlled nucleotide binding regulates the DNA binding activity of NrdR. Mol Microbiol. 2013;90:278–89.PubMed McKethan BL, Spiro S. Cooperative and allosterically controlled nucleotide binding regulates the DNA binding activity of NrdR. Mol Microbiol. 2013;90:278–89.PubMed
19.
go back to reference Naveen V, Hsiao C-D. NrdR transcription regulation: global proteome analysis and its role in Escherichia coli viability and virulence. PLoS ONE. 2016;11:e0157165.CrossRefPubMedPubMedCentral Naveen V, Hsiao C-D. NrdR transcription regulation: global proteome analysis and its role in Escherichia coli viability and virulence. PLoS ONE. 2016;11:e0157165.CrossRefPubMedPubMedCentral
20.
go back to reference Bubunenko M, Court DL, Al Refaii A, Saxena S, Korepanov A, Friedman DI, et al. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol Microbiol. 2013;87:382–93.CrossRefPubMed Bubunenko M, Court DL, Al Refaii A, Saxena S, Korepanov A, Friedman DI, et al. Nus transcription elongation factors and RNase III modulate small ribosome subunit biogenesis in Escherichia coli. Mol Microbiol. 2013;87:382–93.CrossRefPubMed
21.
go back to reference Stagno JR, Altieri AS, Bubunenko M, Tarasov SG, Li J, Court DL, et al. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res. 2011;39:7803–15.CrossRefPubMedPubMedCentral Stagno JR, Altieri AS, Bubunenko M, Tarasov SG, Li J, Court DL, et al. Structural basis for RNA recognition by NusB and NusE in the initiation of transcription antitermination. Nucleic Acids Res. 2011;39:7803–15.CrossRefPubMedPubMedCentral
22.
go back to reference Brutinel ED, Dean AM, Gralnick JA. Description of a riboflavin biosynthetic gene variant prevalent in the phylum Proteobacteria. J Bacteriol. 2013;195:5479–86.CrossRefPubMedPubMedCentral Brutinel ED, Dean AM, Gralnick JA. Description of a riboflavin biosynthetic gene variant prevalent in the phylum Proteobacteria. J Bacteriol. 2013;195:5479–86.CrossRefPubMedPubMedCentral
23.
go back to reference Sun EI, Leyn SA, Kazanov MD, Saier MH Jr, Novichkov PS, Rodionov DA. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria. BMC Genom. 2013;14:597.CrossRef Sun EI, Leyn SA, Kazanov MD, Saier MH Jr, Novichkov PS, Rodionov DA. Comparative genomics of metabolic capacities of regulons controlled by cis-regulatory RNA motifs in bacteria. BMC Genom. 2013;14:597.CrossRef
24.
go back to reference Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol. 2009;6:276–80.CrossRefPubMed Ott E, Stolz J, Lehmann M, Mack M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol. 2009;6:276–80.CrossRefPubMed
25.
go back to reference Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J. 2015;282:3230–42.CrossRefPubMed Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M, Mack M. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J. 2015;282:3230–42.CrossRefPubMed
27.
go back to reference García Angulo VA, Bonomi HR, Posadas DM, Serer MI, Torres AG, Zorreguieta A, et al. Identification and characterization of RibN, a novel family of riboflavin transporters from Rhizobium leguminosarum and other proteobacteria. J Bacteriol. 2013;195:4611–9.CrossRefPubMedPubMedCentral García Angulo VA, Bonomi HR, Posadas DM, Serer MI, Torres AG, Zorreguieta A, et al. Identification and characterization of RibN, a novel family of riboflavin transporters from Rhizobium leguminosarum and other proteobacteria. J Bacteriol. 2013;195:4611–9.CrossRefPubMedPubMedCentral
28.
go back to reference García-Angulo VA. Overlapping riboflavin supply pathways in bacteria. Crit Rev Microbiol. 2017;43:196–209.CrossRefPubMed García-Angulo VA. Overlapping riboflavin supply pathways in bacteria. Crit Rev Microbiol. 2017;43:196–209.CrossRefPubMed
29.
go back to reference Bonomi HR, Marchesini MI, Klinke S, Ugalde JE, Zylberman V, Ugalde RA, et al. An atypical riboflavin pathway is essential for Brucella abortus virulence. PLoS ONE. 2010;5:e9435.CrossRefPubMedPubMedCentral Bonomi HR, Marchesini MI, Klinke S, Ugalde JE, Zylberman V, Ugalde RA, et al. An atypical riboflavin pathway is essential for Brucella abortus virulence. PLoS ONE. 2010;5:e9435.CrossRefPubMedPubMedCentral
30.
go back to reference Yurgel SN, Rice J, Domreis E, Lynch J, Sa N, Qamar Z, et al. Sinorhizobium meliloti flavin secretion and bacteria–host interaction: role of the bifunctional RibBA protein. Mol Plant Microbe Interact MPMI. 2014;27:437–45.CrossRefPubMed Yurgel SN, Rice J, Domreis E, Lynch J, Sa N, Qamar Z, et al. Sinorhizobium meliloti flavin secretion and bacteria–host interaction: role of the bifunctional RibBA protein. Mol Plant Microbe Interact MPMI. 2014;27:437–45.CrossRefPubMed
32.
go back to reference Muanprasat C, Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem. 2013;5:781–98.CrossRefPubMed Muanprasat C, Chatsudthipong V. Cholera: pathophysiology and emerging therapeutic targets. Future Med Chem. 2013;5:781–98.CrossRefPubMed
33.
go back to reference Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J, Davis BM, et al. High-resolution definition of the vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res. 2013;41:9033–48.CrossRefPubMedPubMedCentral Chao MC, Pritchard JR, Zhang YJ, Rubin EJ, Livny J, Davis BM, et al. High-resolution definition of the vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data. Nucleic Acids Res. 2013;41:9033–48.CrossRefPubMedPubMedCentral
34.
go back to reference Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.CrossRefPubMed Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.CrossRefPubMed
35.
go back to reference Frelin O, Huang L, Hasnain G, Jeffryes JG, Ziemak MJ, Rocca JR, et al. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis. Biochem J. 2015;466:137–45.CrossRefPubMedPubMedCentral Frelin O, Huang L, Hasnain G, Jeffryes JG, Ziemak MJ, Rocca JR, et al. A directed-overflow and damage-control N-glycosidase in riboflavin biosynthesis. Biochem J. 2015;466:137–45.CrossRefPubMedPubMedCentral
36.
go back to reference Abreu-Goodger C, Merino E. RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res. 2005;33:W690–2.CrossRefPubMedPubMedCentral Abreu-Goodger C, Merino E. RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res. 2005;33:W690–2.CrossRefPubMedPubMedCentral
37.
go back to reference Doerks T, Andrade MA, Lathe W, von Mering C, Bork P. Global analysis of bacterial transcription factors to predict cellular target processes. Trends Genet TIG. 2004;20:126–31.CrossRefPubMed Doerks T, Andrade MA, Lathe W, von Mering C, Bork P. Global analysis of bacterial transcription factors to predict cellular target processes. Trends Genet TIG. 2004;20:126–31.CrossRefPubMed
38.
go back to reference Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 2001;11:356–72.CrossRefPubMed Wolf YI, Rogozin IB, Kondrashov AS, Koonin EV. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 2001;11:356–72.CrossRefPubMed
39.
go back to reference Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: prokaryotic operon database. Nucleic Acids Res. 2012;40:D627–31.CrossRefPubMed Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: prokaryotic operon database. Nucleic Acids Res. 2012;40:D627–31.CrossRefPubMed
42.
go back to reference Adams NE, Thiaville JJ, Proestos J, Juárez-Vázquez AL, McCoy AJ, Barona-Gómez F, et al. Promiscuous and adaptable enzymes fill “holes” in the tetrahydrofolate pathway in Chlamydia species. mBio. 2014;5:e01378–01314.CrossRef Adams NE, Thiaville JJ, Proestos J, Juárez-Vázquez AL, McCoy AJ, Barona-Gómez F, et al. Promiscuous and adaptable enzymes fill “holes” in the tetrahydrofolate pathway in Chlamydia species. mBio. 2014;5:e01378–01314.CrossRef
43.
go back to reference Philmus B, Shaffer BT, Kidarsa TA, Yan Q, Raaijmakers JM, Begley TP, et al. Investigations into the biosynthesis, regulation, and self-resistance of Toxoflavin in Pseudomonas protegens Pf-5. Chembiochem Eur J Chem Biol. 2015;16:1782–90.CrossRef Philmus B, Shaffer BT, Kidarsa TA, Yan Q, Raaijmakers JM, Begley TP, et al. Investigations into the biosynthesis, regulation, and self-resistance of Toxoflavin in Pseudomonas protegens Pf-5. Chembiochem Eur J Chem Biol. 2015;16:1782–90.CrossRef
44.
go back to reference Wyckoff EE, Payne SM. The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol. 2011;81:1446–58.CrossRefPubMedPubMedCentral Wyckoff EE, Payne SM. The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol. 2011;81:1446–58.CrossRefPubMedPubMedCentral
45.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–8.CrossRef
46.
go back to reference Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.CrossRefPubMedPubMedCentral Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97:6640–5.CrossRefPubMedPubMedCentral
47.
go back to reference Martinez-Guerrero CE, Ciria R, Abreu-Goodger C, Moreno-Hagelsieb G, Merino E. GeConT 2: gene context analysis for orthologous proteins, conserved domains and metabolic pathways. Nucleic Acids Res. 2008;36:W176–80.CrossRefPubMedPubMedCentral Martinez-Guerrero CE, Ciria R, Abreu-Goodger C, Moreno-Hagelsieb G, Merino E. GeConT 2: gene context analysis for orthologous proteins, conserved domains and metabolic pathways. Nucleic Acids Res. 2008;36:W176–80.CrossRefPubMedPubMedCentral
Metadata
Title
Differential regulation of riboflavin supply genes in Vibrio cholerae
Authors
Ignacio Sepúlveda Cisternas
Alexia Torres
Andrés Fuentes Flores
Víctor Antonio García Angulo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Gut Pathogens / Issue 1/2017
Electronic ISSN: 1757-4749
DOI
https://doi.org/10.1186/s13099-017-0159-z

Other articles of this Issue 1/2017

Gut Pathogens 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.