We use cookies to improve your experience. By continuing to browse this site, you accept our cookie policy.×

Cholera: pathophysiology and emerging therapeutic targets

    Chatchai Muanprasat

    * Author for correspondence

    Research Center of Transport Protein for Medical Innovation & Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok 10400, Thailand.

    &
    Varanuj Chatsudthipong

    Research Center of Transport Protein for Medical Innovation & Department of Physiology, Faculty of Science, Mahidol University, Rama 6 Rd, Rajathevi, Bangkok 10400, Thailand

    Published Online:https://doi.org/10.4155/fmc.13.42

    Cholera is a diarrheal disease that remains an important global health problem with several hundreds of thousands of reported cases each year. This disease is caused by intestinal infection with Vibrio cholerae, which is a highly motile gram-negative bacterium with a single-sheathed flagellum. In the course of cholera pathogenesis, V. cholerae expresses a transcriptional activator ToxT, which subsequently transactivates expressions of two crucial virulence factors: toxin-coregulated pilus and cholera toxin (CT). These factors are responsible for intestinal colonization of V. cholerae and induction of fluid secretion, respectively. In intestinal epithelial cells, CT binds to GM1 ganglioside receptors on the apical membrane and undergoes retrograde vesicular trafficking to endoplasmic reticulum, where it exploits endoplasmic reticulum-associated protein degradation systems to release a catalytic A1 subunit of CT (CT A1) into cytoplasm. CT A1, in turn, catalyzes ADP ribosylation of α subunits of stimulatory G proteins, leading to a persistent activation of adenylate cyclase and an elevation of intracellular cAMP. Increased intracellular cAMP in human intestinal epithelial cells accounts for pathogenesis of profuse diarrhea and severe fluid loss in cholera. This review provides an overview of the pathophysiology of cholera diarrhea and discusses emerging drug targets for cholera, which include V. cholerae virulence factors, V. cholerae motility, CT binding to GM1 receptor, CT internalization and intoxication, as well as cAMP metabolism and transport proteins involved in cAMP-activated Cl- secretion. Future directions and perspectives of research on drug discovery and development for cholera are discussed.

    References

    • Sack DA, Sack RB, Nair GB, Siddique AK. Cholera. Lancet363(9404),223–233 (2004).
    • Griffith DC, Kelly-Hope LA, Miller MA. Review of reported cholera outbreaks worldwide, 1995–2005. Am. J. Trop. Med. Hyg.75(5),973–977 (2006).
    • Nelson EJ, Nelson DS, Salam MA, Sack DA. Antibiotics for both moderate and severe cholera. N. Engl. J. Med.364(1),5–7 (2011).
    • Rodo X, Pascual M, Fuchs G, Faruque AS. ENSO and cholera: a nonstationary link related to climate change? Proc. Natl Acad. Sci. USA99(20),12901–12906 (2002).
    • Constantin De Magny G, Murtugudde R, Sapiano MR et al. Environmental signatures associated with cholera epidemics. Proc. Natl Acad. Sci. USA105(46),17676–17681 (2008).
    • Traerup SL, Ortiz RA, Markandya A. The costs of climate change: a study of cholera in Tanzania. Int. J. Environ. Res. Public Health8(12),4386–4405 (2011).
    • Sack DA, Sack RB, Chaignat CL. Getting serious about cholera. N. Engl. J. Med.355(7),649–651 (2006).
    • De Hostos EL, Choy RK, Nguyen T. Developing novel antisecretory drugs to treat infectious diarrhea. Future Med. Chem.3(10),1317–1325 (2011).
    • Sur D, Lopez AL, Kanungo S et al. Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. Lancet374(9702),1694–1702 (2009).
    • 10  Van Loon FP, Clemens JD, Chakraborty J et al. Field trial of inactivated oral cholera vaccines in Bangladesh: results from 5 years of follow-up. Vaccine14(2),162–166 (1996).
    • 11  Clemens JD, Sack DA, Harris JR et al. Impact of B subunit killed whole-cell and killed whole-cell-only oral vaccines against cholera upon treated diarrhoeal illness and mortality in an area endemic for cholera. Lancet1(8599),1375–1379 (1988).
    • 12  Lucas ME, Deen JL, Von Seidlein L et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N. Engl. J. Med.352(8),757–767 (2005).
    • 13  Mahalanabis D, Lopez AL, Sur D et al. A randomized, placebo-controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India. PLoS ONE3(6),e2323 (2008).
    • 14  Trach DD, Clemens JD, Ke NT et al. Field trial of a locally produced, killed, oral cholera vaccine in Vietnam. Lancet349(9047),231–235 (1997).
    • 15  Thiem VD, Deen JL, von Seidlein L et al. Long-term effectiveness against cholera of oral killed whole-cell vaccine produced in Vietnam. Vaccine24(20),4297–4303 (2006).
    • 16  Harris JB, Larocque RC, Qadri F, Ryan ET, Calderwood SB. Cholera. Lancet379(9835),2466–2476 (2012).
    • 17  Clemens J, Shin S, Sur D, Nair GB, Holmgren J. New-generation vaccines against cholera. Nat. Rev. Gastroenterol. Hepatol. (NY)8(12),701–710 (2011).
    • 18  Hodges K, Gill R. Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes1(1),4–21 (2010).
    • 19  Krebs SJ, Taylor RK. Protection and attachment of Vibrio cholerae mediated by the toxin-coregulated pilus in the infant mouse model. J. Bacteriol.193(19),5260–5270 (2011).
    • 20  Sanchez J, Holmgren J. Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol. Life Sci.65(9),1347–1360 (2008).
    • 21  Fazil MH, Singh DV. Vibrio cholerae infection, novel drug targets and phage therapy. Future Microbiol.6(10),1199–1208 (2011).
    • 22  Childers BM, Klose KE. Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol.2(3),335–344 (2007).
    • 23  Ritchie JM, Waldor MK. Vibrio cholerae interactions with the gastrointestinal tract: lessons from animal studies. Curr. Top Microbiol. Immunol.337,37–59 (2009).
    • 24  Krukonis ES, Dirita VJ. From motility to virulence: sensing and responding to environmental signals in Vibrio cholerae. Curr. Opin. Microbiol.6(2),186–190 (2003).
    • 25  Juarez O, Morgan JE, Nilges MJ, Barquera B. Energy transducing redox steps of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. Proc. Natl Acad. Sci. USA107(28),12505–12510 (2010).
    • 26  Kazmierczak MJ, Wiedmann M, Boor KJ. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev.69(4),527–543 (2005).
    • 27  Hase CC. Analysis of the role of flagellar activity in virulence gene expression in Vibrio cholerae. Microbiology147(Pt 4),831–837 (2001).
    • 28  Hase CC, Mekalanos JJ. Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA96(6),3183–3187 (1999).
    • 29  Syed KA, Beyhan S, Correa N et al. The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J. Bacteriol.191(21),6555–6570 (2009).
    • 30  Field M. Intestinal ion transport and the pathophysiology of diarrhea. J. Clin. Invest.111(7),931–943 (2003).
    • 31  Preston P, Wartosch L, Gunzel D et al. Disruption of the K+ channel beta-subunit KCNE3 reveals an important role in intestinal and tracheal Cl- transport. J. Biol. Chem.285(10),7165–7175 (2010).
    • 32  Vallon V, Grahammer F, Volkl H et al. KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc. Natl Acad. Sci. USA102(49),17864–17869 (2005).
    • 33  Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell99(6),625–634 (1999).
    • 34  Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science310(5748),670–674 (2005).
    • 35  Shakhnovich EA, Hung DT, Pierson E, Lee K, Mekalanos JJ. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl Acad. Sci. USA104(7),2372–2377 (2007).
    • 36  Shakhnovich EA, Sturtevant D, Mekalanos JJ. Molecular mechanisms of virstatin resistance by non-O1/non-O139 strains of Vibrio cholerae. Mol. Microbiol.66(6),1331–1341 (2007).
    • 37  Chatterjee S, Asakura M, Chowdhury N et al. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae. FEMS Microbiol. Lett.306(1),54–60 (2010).
    • 38  Stonehouse EA, Hulbert RR, Nye MB, Skorupski K, Taylor RK. H-NS binding and repression of the ctx promoter in Vibrio cholerae. J. Bacteriol.193(4),979–988 (2011).
    • 39  Juarez O, Shea ME, Makhatadze GI, Barquera B. The role and specificity of the catalytic and regulatory cation-binding sites of the Na+-pumping NADH:quinone oxidoreductase from Vibrio cholerae. J. Biol. Chem.286(30),26383–26390 (2011).
    • 40  Hase CC, Mekalanos JJ. TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc. Natl Acad. Sci. USA95(2),730–734 (1998).
    • 41  Rasmussen L, White EL, Pathak A et al. A high-throughput screening assay for inhibitors of bacterial motility identifies a novel inhibitor of the Na+-driven flagellar motor and virulence gene expression in Vibrio cholerae. Antimicrob. Agents Chemother.55(9),4134–4143 (2011).
    • 42  Merritt EA, Sarfaty S, Van Den Akker F, L’Hoir C, Martial JA, Hol WG. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci.3(2),166–175 (1994).
    • 43  Minke WE, Roach C, Hol WG, Verlinde CL. Structure-based exploration of the ganglioside GM1 binding sites of Escherichia coli heat-labile enterotoxin and cholera toxin for the discovery of receptor antagonists. Biochemistry38(18),5684–5692 (1999).
    • 44  Pickens JC, Merritt EA, Ahn M, Verlinde CL, Hol WG, Fan E. Anchor-based design of improved cholera toxin and E. coli heat-labile enterotoxin receptor binding antagonists that display multiple binding modes. Chem. Biol.9(2),215–224 (2002).
    • 45  Mitchell DD, Pickens JC, Korotkov K, Fan E, Hol WG. 3,5-substituted phenyl galactosides as leads in designing effective cholera toxin antagonists; synthesis and crystallographic studies. Bioorg. Med. Chem.12(5),907–920 (2004).
    • 46  Pickens JC, Mitchell DD, Liu J et al. Nonspanning bivalent ligands as improved surface receptor binding inhibitors of the cholera toxin B pentamer. Chem. Biol.11(9),1205–1215 (2004).
    • 47  Merritt EA, Zhang Z, Pickens JC, Ahn M, Hol WG, Fan E. Characterization and crystal structure of a high-affinity pentavalent receptor-binding inhibitor for cholera toxin and E. coli heat-labile enterotoxin. J. Am. Chem. Soc.124(30),8818–8824 (2002).
    • 48  Zhang Z, Merritt EA, Ahn M et al. Solution and crystallographic studies of branched multivalent ligands that inhibit the receptor-binding of cholera toxin. J. Am. Chem. Soc.124(44),12991–12998 (2002).
    • 49  Polyzos A, Alderton MR, Dawson RM, Hartley PG. Biofunctionalized surfactant mesophases as polyvalent inhibitors of cholera toxin. Bioconjug. Chem.18(5),1442–1449 (2007).
    • 50  Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI. Rafting with cholera toxin: endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol. Lett.266(2),129–137 (2007).
    • 51  Tsai B, Rodighiero C, Lencer WI, Rapoport TA. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell104(6),937–948 (2001).
    • 52  Winkeler A, Godderz D, Herzog V, Schmitz A. BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett.554(3),439–442 (2003).
    • 53  Cho JA, Chinnapen DJ, Aamar E, Te Welscher YM, Lencer WI, Massol R. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins. Front. Cell Infect. Microbiol.2,51 (2012).
    • 54  Nishikawa S, Brodsky JL, Nakatsukasa K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J. Biochem.137(5),551–555 (2005).
    • 55  Massey S, Burress H, Taylor M et al. Structural and functional interactions between the cholera toxin A1 subunit and ERdj3/HEDJ, a chaperone of the endoplasmic reticulum. Infect. Immun.79(11),4739–4747 (2011).
    • 56  Bernardi KM, Williams JM, Kikkert M et al. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin retro-translocation. Mol. Biol. Cell21(1),140–151 (2010).
    • 57  Smith MH, Ploegh HL, Weissman JS. Road to ruin: targeting proteins for degradation in the endoplasmic reticulum. Science334(6059),1086–1090 (2011).
    • 58  Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell143(4),579–591 (2010).
    • 59  Nery FC, Armata IA, Farley JE et al. TorsinA participates in endoplasmic reticulum-associated degradation. Nat. Commun.2,393 (2011).
    • 60  Dixit G, Mikoryak C, Hayslett T, Bhat A, Draper RK. Cholera toxin up-regulates endoplasmic reticulum proteins that correlate with sensitivity to the toxin. Exp. Biol. Med. (Maywood)233(2),163–175 (2008).
    • 61  Bernardi KM, Forster ML, Lencer WI, Tsai B. Derlin-1 facilitates the retro-translocation of cholera toxin. Mol. Biol. Cell19(3),877–884 (2008).
    • 62  Taylor M, Navarro-Garcia F, Huerta J et al. Hsp90 is required for transfer of the cholera toxin A1 subunit from the endoplasmic reticulum to the cytosol. J. Biol. Chem.285(41),31261–31267 (2010).
    • 63  Fujinaga Y, Wolf AA, Rodighiero C et al. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol. Biol. Cell14(12),4783–4793 (2003).
    • 64  Saslowsky DE, Lencer WI. Conversion of apical plasma membrane sphingomyelin to ceramide attenuates the intoxication of host cells by cholera toxin. Cell. Microbiol.10(1),67–80 (2008).
    • 65  Pande AH, Scaglione P, Taylor M et al. Conformational instability of the cholera toxin A1 polypeptide. J. Mol. Biol.374(4),1114–1128 (2007).
    • 66  Massey S, Banerjee T, Pande AH, Taylor M, Tatulian SA, Teter K. Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication. J. Mol. Biol.393(5),1083–1096 (2009).
    • 67  Taylor M, Banerjee T, Navarro-Garcia F et al. A therapeutic chemical chaperone inhibits cholera intoxication and unfolding/translocation of the cholera toxin A1 subunit. PLoS ONE6(4),e18825 (2011).
    • 68  Banerjee T, Pande A, Jobling MG et al. Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit. Biochemistry49(41),8839–8846 (2010).
    • 69  Morinaga N, Yahiro K, Noda M. Resveratrol, a natural polyphenolic compound, inhibits cholera toxin-induced cyclic AMP accumulation in Vero cells. Toxicon56(1),29–35 (2010).
    • 70  Morinaga N, Iwamaru Y, Yahiro K, Tagashira M, Moss J, Noda M. Differential activities of plant polyphenols on the binding and internalization of cholera toxin in Vero cells. J. Biol. Chem.280(24),23303–23309 (2005).
    • 71  Saito T, Miyake M, Toba M, Okamatsu H, Shimizu S, Noda M. Inhibition by apple polyphenols of ADP-ribosyltransferase activity of cholera toxin and toxin-induced fluid accumulation in mice. Microbiol. Immunol.46(4),249–255 (2002).
    • 72  Geibel J, Sritharan K, Geibel R et al. Calcium-sensing receptor abrogates secretagogue-induced increases in intestinal net fluid secretion by enhancing cyclic nucleotide destruction. Proc. Natl Acad. Sci. USA103(25),9390–9397 (2006).
    • 73  Li C, Dandridge KS, Di A et al. Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J. Exp. Med.202(7),975–986 (2005).
    • 74  Kots AY, Choi BK, Estrella-Jimenez ME et al. Pyridopyrimidine derivatives as inhibitors of cyclic nucleotide synthesis: application for treatment of diarrhea. Proc. Natl Acad. Sci. USA105(24),8440–8445 (2008).
    • 75  Tradtrantip L, Yangthara B, Padmawar P, Morrison C, Verkman AS. Thiophenecarboxylate suppressor of cyclic nucleotides discovered in a small-molecule screen blocks toxin-induced intestinal fluid secretion. Mol. Pharmacol.75(1),134–142 (2009).
    • 76  Cheng SX, Okuda M, Hall AE, Geibel JP, Hebert SC. Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am. J. Physiol. Gastrointest. Liver Physiol.283(1),G240–G250 (2002).
    • 77  Li C, Naren AP. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol. Ther.108(2),208–223 (2005).
    • 78  Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol. Rev.82(1),245–289 (2002).
    • 79  Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. Cell Physiol.281(5),C1734–C1742 (2001).
    • 80  Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS. Nanomolar CFTR inhibition by pore-occluding divalent polyethylene glycol-malonic acid hydrazides. Chem. Biol.15(7),718–728 (2008).
    • 81  Sonawane ND, Zhao D, Zegarra-Moran O, Galietta LJ, Verkman AS. Lectin conjugates as potent, nonabsorbable CFTR inhibitors for reducing intestinal fluid secretion in cholera. Gastroenterology132(4),1234–1244 (2007).
    • 82  Ma T, Thiagarajah JR, Yang H et al. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J. Clin. Invest.110(11),1651–1658 (2002).
    • 83  Thiagarajah JR, Broadbent T, Hsieh E, Verkman AS. Prevention of toxin-induced intestinal ion and fluid secretion by a small-molecule CFTR inhibitor. Gastroenterology126(2),511–519 (2004).
    • 84  Sonawane ND, Muanprasat C, Nagatani R Jr, Song Y, Verkman AS. In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents. J. Pharm. Sci.94(1),134–143 (2005).
    • 85  Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J. Gen. Physiol.124(2),125–137 (2004).
    • 86  Gabriel SE, Davenport SE, Steagall RJ, Vimal V, Carlson T, Rozhon EJ. A novel plant-derived inhibitor of cAMP-mediated fluid and chloride secretion. Am. J. Physiol.276(1Pt 1),G58–G63 (1999).
    • 87  Wongsamitkul N, Sirianant L, Muanprasat C, Chatsudthipong V. A plant-derived hydrolyzable tannin inhibits CFTR chloride channel: a potential treatment of diarrhea. Pharm. Res.27(3),490–497 (2010).
    • 88  Illek B, Lizarzaburu ME, Lee V, Nantz MH, Kurth MJ, Fischer H. Structural determinants for activation and block of CFTR-mediated chloride currents by apigenin. Am. J. Physiol. Cell Physiol.279(6),C1838–C1846 (2000).
    • 89  Schuier M, Sies H, Illek B, Fischer H. Cocoa-related flavonoids inhibit CFTR-mediated chloride transport across T84 human colon epithelia. J. Nutr.135(10),2320–2325 (2005).
    • 90  Muanprasat C, Sirianant L, Soodvilai S, Chokchaisiri R, Suksamrarn A, Chatsudthipong V. Novel action of the chalcone isoliquiritigenin as a cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor: potential therapy for cholera and polycystic kidney disease. J. Pharmacol. Sci.118(1),82–91 (2012).
    • 91  Luerang W, Khammee T, Kumpum W, Suksamrarn S, Chatsudthipong V, Muanprasat C. Hydroxyxanthone as an inhibitor of cAMP-activated apical chloride channel in human intestinal epithelial cell. Life Sci.90(25–26),988–994 (2012).
    • 92  Chatsudthipong V, Muanprasat C. Stevioside and related compounds: therapeutic benefits beyond sweetness. Pharmacol. Ther.121(1),41–54 (2009).
    • 93  Pariwat P, Homvisasevongsa S, Muanprasat C, Chatsudthipong V. A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J. Pharmacol. Exp. Ther.324(2),798–805 (2008).
    • 94  Debellis L, Diana A, Arcidiacono D et al. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. PLoS ONE4(3),e5074 (2009).
    • 95  Mccardell BA, Kothary MH, Hall RH, Sathyamoorthy V. Identification of a CHO cell-elongating factor produced by Vibrio cholerae O1. Microb. Pathog.29(1),1–8 (2000).
    • 96  Olivier V, Haines GK 3rd, Tan Y, Satchell KJ. Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect. Immun.75(10),5035–5042 (2007).
    • 97  Trucksis M, Conn TL, Wasserman SS, Sears CL. Vibrio cholerae ACE stimulates Ca(2+)-dependent Cl(-)/HCO(3)(-) secretion in T84 cells in vitro. Am. J. Physiol. Cell Physiol.279(3),C567–C577 (2000).
    • 98  Goldblum SE, Rai U, Tripathi A et al. The active Zot domain (aa 288–293) increases ZO-1 and myosin 1C serine/threonine phosphorylation, alters interaction between ZO-1 and its binding partners, and induces tight junction disassembly through proteinase activated receptor 2 activation. FASEB J.25(1),144–158 (2011).
    • 99  Bhattacharya SK, Bhattacharya MK, Ramamurthy T et al. Acute secretory travellers’ diarrhoea caused by Vibrio cholerae non-01 which does not produce cholera-like or heat-stable enterotoxins. J. Diarrhoeal Dis. Res.10(3),161–163 (1992).
    • 100  Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc. Natl Acad. Sci. USA90(11),5267–5271 (1993).
    • 101  Saha PK, Koley H, Mukhopadhyay AK et al. Nontoxigenic Vibrio cholerae 01 serotype Inaba biotype El Tor associated with a cluster of cases of cholera in southern India. J. Clin. Microbiol.34(5),1114–1117 (1996).