Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2010

Open Access 01-12-2010 | Review

Trace elements in glucometabolic disorders: an update

Authors: Nicolas Wiernsperger, JeanRobert Rapin

Published in: Diabetology & Metabolic Syndrome | Issue 1/2010

Login to get access

Abstract

Many trace elements, among which metals, are indispensable for proper functioning of a myriad of biochemical reactions, more particularly as enzyme cofactors. This is particularly true for the vast set of processes involved in regulation of glucose homeostasis, being it in glucose metabolism itself or in hormonal control, especially insulin. The role and importance of trace elements such as chromium, zinc, selenium, lithium and vanadium are much less evident and subjected to chronic debate. This review updates our actual knowledge concerning these five trace elements. A careful survey of the literature shows that while theoretical postulates from some key roles of these elements had led to real hopes for therapy of insulin resistance and diabetes, the limited experience based on available data indicates that beneficial effects and use of most of them are subjected to caution, given the narrow window between safe and unsafe doses. Clear therapeutic benefit in these pathologies is presently doubtful but some data indicate that these metals may have a clinical interest in patients presenting deficiencies in individual metal levels. The same holds true for an association of some trace elements such as chromium or zinc with oral antidiabetics. However, this area is essentially unexplored in adequate clinical trials, which are worth being performed.
Literature
1.
go back to reference Chaudhary DP, Sharma R, Bansal DD: Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res. 2010, 134: 119-129. 10.1007/s12011-009-8465-z.PubMedCrossRef Chaudhary DP, Sharma R, Bansal DD: Implications of magnesium deficiency in type 2 diabetes: a review. Biol Trace Elem Res. 2010, 134: 119-129. 10.1007/s12011-009-8465-z.PubMedCrossRef
2.
go back to reference Wells IC: Evidence that the etiology of the syndrome containing type 2 diabetes mellitus results from abnormal magnesium metabolism. Can J Physiol Pharmacol. 2008, 86: 16-24. 10.1139/Y07-122.PubMedCrossRef Wells IC: Evidence that the etiology of the syndrome containing type 2 diabetes mellitus results from abnormal magnesium metabolism. Can J Physiol Pharmacol. 2008, 86: 16-24. 10.1139/Y07-122.PubMedCrossRef
3.
go back to reference Evangelopoulos AA, Vallianou NG, Panagiotakos DB, Georgiou A, Zacharias GA, Alevra AN, et al: An inverse relationship between cumulating components of the metabolic syndrome and serum magnesium levels. Nutr Res. 2008, 28: 659-663. 10.1016/j.nutres.2008.07.001.PubMedCrossRef Evangelopoulos AA, Vallianou NG, Panagiotakos DB, Georgiou A, Zacharias GA, Alevra AN, et al: An inverse relationship between cumulating components of the metabolic syndrome and serum magnesium levels. Nutr Res. 2008, 28: 659-663. 10.1016/j.nutres.2008.07.001.PubMedCrossRef
4.
go back to reference Abdul-Ghani MA, DeFronzo RA: Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010, 476279 Abdul-Ghani MA, DeFronzo RA: Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol. 2010, 476279
5.
go back to reference Henriksen EJ: Dysregulation of Glycogen Synthase Kinase-3 in Skeletal Muscle and the Etiology of Insulin Resistance and Type 2 Diabetes. Curr Diabetes Rev. 2010, 6: 285-293. 10.2174/157339910793360888.PubMedCrossRef Henriksen EJ: Dysregulation of Glycogen Synthase Kinase-3 in Skeletal Muscle and the Etiology of Insulin Resistance and Type 2 Diabetes. Curr Diabetes Rev. 2010, 6: 285-293. 10.2174/157339910793360888.PubMedCrossRef
6.
go back to reference Friederich M, Hansell P, Palm F: Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev. 2009, 5: 120-144. 10.2174/157339909788166800.PubMedCrossRef Friederich M, Hansell P, Palm F: Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev. 2009, 5: 120-144. 10.2174/157339909788166800.PubMedCrossRef
7.
go back to reference Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA: Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 453892 Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA: Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm. 2010, 453892
8.
go back to reference Zeyda M, Stulnig TM: Obesity, inflammation, and insulin resistance--a mini-review. Gerontology. 2009, 55: 379-386. 10.1159/000212758.PubMedCrossRef Zeyda M, Stulnig TM: Obesity, inflammation, and insulin resistance--a mini-review. Gerontology. 2009, 55: 379-386. 10.1159/000212758.PubMedCrossRef
9.
10.
go back to reference Goldhaber SB: Trace element risk assessment: essentiality vs toxicity. Regul Toxicol Pharmacol. 2003, 38: 232-242. 10.1016/S0273-2300(02)00020-X.PubMedCrossRef Goldhaber SB: Trace element risk assessment: essentiality vs toxicity. Regul Toxicol Pharmacol. 2003, 38: 232-242. 10.1016/S0273-2300(02)00020-X.PubMedCrossRef
11.
go back to reference Wallach S: Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr. 1985, 4: 107-120.PubMedCrossRef Wallach S: Clinical and biochemical aspects of chromium deficiency. J Am Coll Nutr. 1985, 4: 107-120.PubMedCrossRef
13.
go back to reference Mahdi GS: Barley as high-chromium food. J Am Diet Assoc. 1995, 95: 749-10.1016/S0002-8223(95)00206-5.PubMedCrossRef Mahdi GS: Barley as high-chromium food. J Am Diet Assoc. 1995, 95: 749-10.1016/S0002-8223(95)00206-5.PubMedCrossRef
14.
go back to reference Levina A, Lay PA: Chemical properties and toxicity of chromium[III] nutritional supplements. Chem Res Toxicol. 2008, 21: 563-571. 10.1021/tx700385t.PubMedCrossRef Levina A, Lay PA: Chemical properties and toxicity of chromium[III] nutritional supplements. Chem Res Toxicol. 2008, 21: 563-571. 10.1021/tx700385t.PubMedCrossRef
15.
go back to reference Vincent JB: Chromium: celebrating 50 years as an essential element?. Dalton Trans. 2010, 39: 3787-3794. 10.1039/b920480f.PubMedCrossRef Vincent JB: Chromium: celebrating 50 years as an essential element?. Dalton Trans. 2010, 39: 3787-3794. 10.1039/b920480f.PubMedCrossRef
16.
go back to reference Stallings DM, Hepburn DD, Hannah M, Vincent JB, O'Donnell J: Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster. Mutat Res. 2006, 610: 101-113.PubMedCrossRef Stallings DM, Hepburn DD, Hannah M, Vincent JB, O'Donnell J: Nutritional supplement chromium picolinate generates chromosomal aberrations and impedes progeny development in Drosophila melanogaster. Mutat Res. 2006, 610: 101-113.PubMedCrossRef
17.
go back to reference Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, et al: A newly synthetic chromium complex-chromium [D-phenylalanine]3 activates AMP-activated protein kinase and stimulates glucose transport. Biochem Pharmacol. 2009, 77: 1002-1010. 10.1016/j.bcp.2008.11.018.PubMedCrossRef Zhao P, Wang J, Ma H, Xiao Y, He L, Tong C, et al: A newly synthetic chromium complex-chromium [D-phenylalanine]3 activates AMP-activated protein kinase and stimulates glucose transport. Biochem Pharmacol. 2009, 77: 1002-1010. 10.1016/j.bcp.2008.11.018.PubMedCrossRef
18.
go back to reference Sreejayan N, Marone PA, Lau FC, Yasmin T, Bagchi M, Bagchi D: Safety and toxicological evaluation of a novel chromium[III] dinicocysteinate complex. Toxicol Mech Methods. 2010, 20: 321-333. 10.3109/15376516.2010.487880.PubMedCrossRef Sreejayan N, Marone PA, Lau FC, Yasmin T, Bagchi M, Bagchi D: Safety and toxicological evaluation of a novel chromium[III] dinicocysteinate complex. Toxicol Mech Methods. 2010, 20: 321-333. 10.3109/15376516.2010.487880.PubMedCrossRef
19.
go back to reference Fuhr JP, He H, Goldfarb N, Nash DB: Use of chromium picolinate and biotin in the management of type 2 diabetes: an economic analysis. Dis Manag. 2005, 8: 265-275. 10.1089/dis.2005.8.265.PubMedCrossRef Fuhr JP, He H, Goldfarb N, Nash DB: Use of chromium picolinate and biotin in the management of type 2 diabetes: an economic analysis. Dis Manag. 2005, 8: 265-275. 10.1089/dis.2005.8.265.PubMedCrossRef
20.
go back to reference Wang YQ, Yao MH: Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem. 2009, 20: 982-991. 10.1016/j.jnutbio.2008.09.002.PubMedCrossRef Wang YQ, Yao MH: Effects of chromium picolinate on glucose uptake in insulin-resistant 3T3-L1 adipocytes involve activation of p38 MAPK. J Nutr Biochem. 2009, 20: 982-991. 10.1016/j.jnutbio.2008.09.002.PubMedCrossRef
21.
go back to reference Wang H, Kruszewski A, Brautigan DL: Cellular chromium enhances activation of insulin receptor kinase. Biochemistry. 2005, 44: 8167-8175. 10.1021/bi0473152.PubMedCrossRef Wang H, Kruszewski A, Brautigan DL: Cellular chromium enhances activation of insulin receptor kinase. Biochemistry. 2005, 44: 8167-8175. 10.1021/bi0473152.PubMedCrossRef
22.
go back to reference Qiao W, Peng Z, Wang Z, Wei J, Zhou A: Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biol Trace Elem Res. 2009, 131: 133-142. 10.1007/s12011-009-8357-2.PubMedCrossRef Qiao W, Peng Z, Wang Z, Wei J, Zhou A: Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells. Biol Trace Elem Res. 2009, 131: 133-142. 10.1007/s12011-009-8357-2.PubMedCrossRef
23.
go back to reference Peng Z, Qiao W, Wang Z, Dai Q, He J, Guo C, et al: Chromium Improves Protein Deposition Through Regulating the mRNA Levels of IGF-1, IGF-1R, and Ub in Rat Skeletal Muscle Cells. Biol Trace Elem Res. 2010, 137: 226-234. 10.1007/s12011-009-8579-3.PubMedCrossRef Peng Z, Qiao W, Wang Z, Dai Q, He J, Guo C, et al: Chromium Improves Protein Deposition Through Regulating the mRNA Levels of IGF-1, IGF-1R, and Ub in Rat Skeletal Muscle Cells. Biol Trace Elem Res. 2010, 137: 226-234. 10.1007/s12011-009-8579-3.PubMedCrossRef
24.
go back to reference Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS: Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance. Mol Endocrinol. 2008, 22: 937-950. 10.1210/me.2007-0410.PubMedCentralPubMedCrossRef Horvath EM, Tackett L, McCarthy AM, Raman P, Brozinick JT, Elmendorf JS: Antidiabetogenic effects of chromium mitigate hyperinsulinemia-induced cellular insulin resistance via correction of plasma membrane cholesterol imbalance. Mol Endocrinol. 2008, 22: 937-950. 10.1210/me.2007-0410.PubMedCentralPubMedCrossRef
25.
go back to reference Pattar GR, Tackett L, Liu P, Elmendorf JS: Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res. 2006, 610: 93-100.PubMedCentralPubMedCrossRef Pattar GR, Tackett L, Liu P, Elmendorf JS: Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions. Mutat Res. 2006, 610: 93-100.PubMedCentralPubMedCrossRef
26.
go back to reference Jain SK, Kannan K: Chromium chloride inhibits oxidative stress and TNF-alpha secretion caused by exposure to high glucose in cultured U937 monocytes. Biochem Biophys Res Commun. 2001, 289: 687-691. 10.1006/bbrc.2001.6026.PubMedCrossRef Jain SK, Kannan K: Chromium chloride inhibits oxidative stress and TNF-alpha secretion caused by exposure to high glucose in cultured U937 monocytes. Biochem Biophys Res Commun. 2001, 289: 687-691. 10.1006/bbrc.2001.6026.PubMedCrossRef
27.
go back to reference Jain SK, Rains JL, Croad JL: Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007, 43: 1124-1131. 10.1016/j.freeradbiomed.2007.05.019.PubMedCentralPubMedCrossRef Jain SK, Rains JL, Croad JL: Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007, 43: 1124-1131. 10.1016/j.freeradbiomed.2007.05.019.PubMedCentralPubMedCrossRef
28.
go back to reference Wang YQ, Dong Y, Yao MH: Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase. Clin Exp Pharmacol Physiol. 2009, 36: 843-849. 10.1111/j.1440-1681.2009.05164.x.PubMedCrossRef Wang YQ, Dong Y, Yao MH: Chromium picolinate inhibits resistin secretion in insulin-resistant 3T3-L1 adipocytes via activation of amp-activated protein kinase. Clin Exp Pharmacol Physiol. 2009, 36: 843-849. 10.1111/j.1440-1681.2009.05164.x.PubMedCrossRef
29.
go back to reference Jain SK, Croad JL, Velusamy T, Rains JL, Bull R: Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol Nutr Food Res. 2010, 54: 1371-1380. 10.1002/mnfr.200900177.PubMedCentralPubMedCrossRef Jain SK, Croad JL, Velusamy T, Rains JL, Bull R: Chromium dinicocysteinate supplementation can lower blood glucose, CRP, MCP-1, ICAM-1, creatinine, apparently mediated by elevated blood vitamin C and adiponectin and inhibition of NFkappaB, Akt, and Glut-2 in livers of zucker diabetic fatty rats. Mol Nutr Food Res. 2010, 54: 1371-1380. 10.1002/mnfr.200900177.PubMedCentralPubMedCrossRef
30.
go back to reference Sreekanth R, Pattabhi V, Rajan SS: Molecular basis of chromium insulin interactions. Biochem Biophys Res Commun. 2008, 369: 725-729. 10.1016/j.bbrc.2008.02.083.PubMedCrossRef Sreekanth R, Pattabhi V, Rajan SS: Molecular basis of chromium insulin interactions. Biochem Biophys Res Commun. 2008, 369: 725-729. 10.1016/j.bbrc.2008.02.083.PubMedCrossRef
31.
go back to reference Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, et al: Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res. 2008, 122: 1-18. 10.1007/s12011-007-8062-y.PubMedCrossRef Kazi TG, Afridi HI, Kazi N, Jamali MK, Arain MB, Jalbani N, et al: Copper, chromium, manganese, iron, nickel, and zinc levels in biological samples of diabetes mellitus patients. Biol Trace Elem Res. 2008, 122: 1-18. 10.1007/s12011-007-8062-y.PubMedCrossRef
32.
go back to reference Kraszeski JL, Wallach S, Verch RL: Effect of insulin on radiochromium distribution in diabetic rats. Endocrinology. 1979, 104: 881-885. 10.1210/endo-104-4-881.PubMedCrossRef Kraszeski JL, Wallach S, Verch RL: Effect of insulin on radiochromium distribution in diabetic rats. Endocrinology. 1979, 104: 881-885. 10.1210/endo-104-4-881.PubMedCrossRef
33.
go back to reference Morris BW, MacNeil S, Hardisty CA, Heller S, Burgin C, Gray TA: Chromium homeostasis in patients with type II [NIDDM] diabetes. J Trace Elem Med Biol. 1999, 13: 57-61.PubMedCrossRef Morris BW, MacNeil S, Hardisty CA, Heller S, Burgin C, Gray TA: Chromium homeostasis in patients with type II [NIDDM] diabetes. J Trace Elem Med Biol. 1999, 13: 57-61.PubMedCrossRef
34.
go back to reference Davis CM, Vincent JB: Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry. 1997, 36: 4382-4385. 10.1021/bi963154t.PubMedCrossRef Davis CM, Vincent JB: Chromium oligopeptide activates insulin receptor tyrosine kinase activity. Biochemistry. 1997, 36: 4382-4385. 10.1021/bi963154t.PubMedCrossRef
35.
go back to reference Yamamoto A, Wada O, Ono T: Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem. 1987, 65: 627-631. 10.1111/j.1432-1033.1987.tb11486.x.CrossRef Yamamoto A, Wada O, Ono T: Isolation of a biologically active low-molecular-mass chromium compound from rabbit liver. Eur J Biochem. 1987, 65: 627-631. 10.1111/j.1432-1033.1987.tb11486.x.CrossRef
36.
go back to reference Mertz W: Chromium in human nutrition: a review. J Nutr. 1993, 123: 626-633.PubMed Mertz W: Chromium in human nutrition: a review. J Nutr. 1993, 123: 626-633.PubMed
37.
go back to reference Shindea UA, Sharma G, Xu YJ, Dhalla NS, Goyal RK: Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus. J Trace Elem Med Biol. 2004, 18: 23-32. 10.1016/j.jtemb.2004.03.002.PubMedCrossRef Shindea UA, Sharma G, Xu YJ, Dhalla NS, Goyal RK: Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus. J Trace Elem Med Biol. 2004, 18: 23-32. 10.1016/j.jtemb.2004.03.002.PubMedCrossRef
38.
go back to reference Rabinowitz MB, Gonick HC, Levin SR, Davidson MB: Effects of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Diabetes Care. 1983, 6: 319-327. 10.2337/diacare.6.4.319.PubMedCrossRef Rabinowitz MB, Gonick HC, Levin SR, Davidson MB: Effects of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Diabetes Care. 1983, 6: 319-327. 10.2337/diacare.6.4.319.PubMedCrossRef
39.
go back to reference Dogukan A, Tuzcu M, Juturu V, Cikim G, Ozercan I, Komorowski J, et al: Effects of chromium histidinate on renal function, oxidative stress, and heat-shock proteins in fat-fed and streptozotocin-treated rats. J Ren Nutr. 2010, 20: 112-120. 10.1053/j.jrn.2009.04.009.PubMedCrossRef Dogukan A, Tuzcu M, Juturu V, Cikim G, Ozercan I, Komorowski J, et al: Effects of chromium histidinate on renal function, oxidative stress, and heat-shock proteins in fat-fed and streptozotocin-treated rats. J Ren Nutr. 2010, 20: 112-120. 10.1053/j.jrn.2009.04.009.PubMedCrossRef
40.
go back to reference Jain SK, Patel P, Rogier K, Jain SK: Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes. Antioxid Redox Signal. 2006, 8: 238-241. 10.1089/ars.2006.8.238.PubMedCrossRef Jain SK, Patel P, Rogier K, Jain SK: Trivalent chromium inhibits protein glycosylation and lipid peroxidation in high glucose-treated erythrocytes. Antioxid Redox Signal. 2006, 8: 238-241. 10.1089/ars.2006.8.238.PubMedCrossRef
41.
go back to reference Refaie FM, Esmat AY, Mohamed AF, Aboul Nour WH: Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals. 2009, Refaie FM, Esmat AY, Mohamed AF, Aboul Nour WH: Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats. Biometals. 2009,
42.
go back to reference Yang X, Li SY, Dong F, Ren J, Sreejayan N: Insulin-sensitizing and cholesterol-lowering effects of chromium [D-Phenylalanine]3. J Inorg Biochem. 2006, 100: 1187-1193. 10.1016/j.jinorgbio.2006.01.039.PubMedCrossRef Yang X, Li SY, Dong F, Ren J, Sreejayan N: Insulin-sensitizing and cholesterol-lowering effects of chromium [D-Phenylalanine]3. J Inorg Biochem. 2006, 100: 1187-1193. 10.1016/j.jinorgbio.2006.01.039.PubMedCrossRef
43.
go back to reference Striffler JS, Polansky MM, Anderson RA: Dietary chromium decreases insulin resistance in rats fed a high-fat, mineral-imbalanced diet. Metabolism. 1998, 47: 396-400. 10.1016/S0026-0495(98)90049-X.PubMedCrossRef Striffler JS, Polansky MM, Anderson RA: Dietary chromium decreases insulin resistance in rats fed a high-fat, mineral-imbalanced diet. Metabolism. 1998, 47: 396-400. 10.1016/S0026-0495(98)90049-X.PubMedCrossRef
44.
go back to reference Dong F, Yang X, Sreejayan N, Ren J: Chromium [D-phenylalanine]3 improves obesity-induced cardiac contractile defect in ob/ob mice. Obesity. 2007, 15: 2699-2711. 10.1038/oby.2007.322.PubMedCrossRef Dong F, Yang X, Sreejayan N, Ren J: Chromium [D-phenylalanine]3 improves obesity-induced cardiac contractile defect in ob/ob mice. Obesity. 2007, 15: 2699-2711. 10.1038/oby.2007.322.PubMedCrossRef
45.
go back to reference Kim DS, Kim TW, Kang JS: Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Biol. 2004, 17: 243-247. 10.1016/S0946-672X(04)80025-7.PubMedCrossRef Kim DS, Kim TW, Kang JS: Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats. J Trace Elem Med Biol. 2004, 17: 243-247. 10.1016/S0946-672X(04)80025-7.PubMedCrossRef
46.
go back to reference Kim DS, Kim TW, Park IK, Kang JS, Om AS: Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats. Metabolism. 2002, 51: 589-594. 10.1053/meta.2002.31985.PubMedCrossRef Kim DS, Kim TW, Park IK, Kang JS, Om AS: Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats. Metabolism. 2002, 51: 589-594. 10.1053/meta.2002.31985.PubMedCrossRef
47.
go back to reference Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC: Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic [JCR-LA corpulent] rats. J Nutr. 2002, 132: 1107-1114.PubMed Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC: Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic [JCR-LA corpulent] rats. J Nutr. 2002, 132: 1107-1114.PubMed
48.
go back to reference Yang X, Li SY, Dong F, Ren J, Sreejayan N: Insulin-sensitizing and cholesterol-lowering effects of chromium [D-Phenylalanine]3. J Inorg Biochem. 2006, 100: 1187-1193. 10.1016/j.jinorgbio.2006.01.039.PubMedCrossRef Yang X, Li SY, Dong F, Ren J, Sreejayan N: Insulin-sensitizing and cholesterol-lowering effects of chromium [D-Phenylalanine]3. J Inorg Biochem. 2006, 100: 1187-1193. 10.1016/j.jinorgbio.2006.01.039.PubMedCrossRef
49.
go back to reference Mozaffari MS, Abdelsayed R, Liu JY, Wimborne H, El-Remessy A, El-Marakby A: Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat. Nutr Metab. 2009, 6: 51-10.1186/1743-7075-6-51.CrossRef Mozaffari MS, Abdelsayed R, Liu JY, Wimborne H, El-Remessy A, El-Marakby A: Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat. Nutr Metab. 2009, 6: 51-10.1186/1743-7075-6-51.CrossRef
50.
go back to reference Kuryl T, Krejpcio Z, Wojciak RW, Lipko M, Debski B, Staniek H: Chromium[III] propionate and dietary fructans supplementation stimulate erythrocyte glucose uptake and beta-oxidation in lymphocytes of rats. Biol Trace Elem Res. 2006, 114: 237-248. 10.1385/BTER:114:1:237.PubMedCrossRef Kuryl T, Krejpcio Z, Wojciak RW, Lipko M, Debski B, Staniek H: Chromium[III] propionate and dietary fructans supplementation stimulate erythrocyte glucose uptake and beta-oxidation in lymphocytes of rats. Biol Trace Elem Res. 2006, 114: 237-248. 10.1385/BTER:114:1:237.PubMedCrossRef
51.
go back to reference Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, et al: Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care. 2006, 29: 1826-1832. 10.2337/dc06-0254.PubMedCrossRef Martin J, Wang ZQ, Zhang XH, Wachtel D, Volaufova J, Matthews DE, et al: Chromium picolinate supplementation attenuates body weight gain and increases insulin sensitivity in subjects with type 2 diabetes. Diabetes Care. 2006, 29: 1826-1832. 10.2337/dc06-0254.PubMedCrossRef
52.
go back to reference Singer GM, Geohas J: The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial. Diabetes Technol Ther. 2006, 8: 636-643. 10.1089/dia.2006.8.636.PubMedCrossRef Singer GM, Geohas J: The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: a placebo-controlled, double-blinded, randomized trial. Diabetes Technol Ther. 2006, 8: 636-643. 10.1089/dia.2006.8.636.PubMedCrossRef
53.
go back to reference Lai MH: Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and E supplementation for type 2 diabetes mellitus. J Clin Biochem Nutr. 2008, 43: 191-198. 10.3164/jcbn.2008064.PubMedCentralPubMedCrossRef Lai MH: Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and E supplementation for type 2 diabetes mellitus. J Clin Biochem Nutr. 2008, 43: 191-198. 10.3164/jcbn.2008064.PubMedCentralPubMedCrossRef
54.
go back to reference Althuis MD, Jordan NE, Ludington EA, Wittes JT: Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr. 2002, 76: 148-155.PubMed Althuis MD, Jordan NE, Ludington EA, Wittes JT: Glucose and insulin responses to dietary chromium supplements: a meta-analysis. Am J Clin Nutr. 2002, 76: 148-155.PubMed
55.
go back to reference Balk EM, Tatsioni A, Lichtenstein AH, Lau J, Pittas AG: Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care. 2007, 30: 2154-163. 10.2337/dc06-0996.PubMedCrossRef Balk EM, Tatsioni A, Lichtenstein AH, Lau J, Pittas AG: Effect of chromium supplementation on glucose metabolism and lipids: a systematic review of randomized controlled trials. Diabetes Care. 2007, 30: 2154-163. 10.2337/dc06-0996.PubMedCrossRef
56.
go back to reference Broadhurst CL, Domenico P: Clinical studies on chromium picolinate supplementation in diabetes mellitus--a review. Diabetes Technol Ther. 2006, 8: 677-687. 10.1089/dia.2006.8.677.PubMedCrossRef Broadhurst CL, Domenico P: Clinical studies on chromium picolinate supplementation in diabetes mellitus--a review. Diabetes Technol Ther. 2006, 8: 677-687. 10.1089/dia.2006.8.677.PubMedCrossRef
57.
go back to reference Wang ZQ, Qin J, Martin J, Zhang XH, Sereda O, Anderson RA, et al: Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007, 56: 1652-1655. 10.1016/j.metabol.2007.07.007.PubMedCrossRef Wang ZQ, Qin J, Martin J, Zhang XH, Sereda O, Anderson RA, et al: Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007, 56: 1652-1655. 10.1016/j.metabol.2007.07.007.PubMedCrossRef
58.
go back to reference Wang ZQ, Cefalu WT: Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep. 2010, 10: 145-151. 10.1007/s11892-010-0097-3.PubMedCrossRef Wang ZQ, Cefalu WT: Current concepts about chromium supplementation in type 2 diabetes and insulin resistance. Curr Diab Rep. 2010, 10: 145-151. 10.1007/s11892-010-0097-3.PubMedCrossRef
59.
go back to reference Vladeva SV, Terzieva DD, Arabadjiiska DT: Effect of chromium on the insulin resistance in patients with type II diabetes mellitus. Folia Med. 2005, 47: 59-62. Vladeva SV, Terzieva DD, Arabadjiiska DT: Effect of chromium on the insulin resistance in patients with type II diabetes mellitus. Folia Med. 2005, 47: 59-62.
60.
go back to reference Lydic ML, McNurlan M, Bembo S, Mitchell L, Komaroff E, Gelato M: Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome. Fertil Steril. 2005, 86: 243-246. 10.1016/j.fertnstert.2005.11.069.CrossRef Lydic ML, McNurlan M, Bembo S, Mitchell L, Komaroff E, Gelato M: Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome. Fertil Steril. 2005, 86: 243-246. 10.1016/j.fertnstert.2005.11.069.CrossRef
61.
go back to reference Iqbal N, Cardillo S, Volger S, Bloedon LT, Anderson RA, Boston R, et al: Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009, 7: 143-150. 10.1089/met.2008.0048.PubMedCentralPubMedCrossRef Iqbal N, Cardillo S, Volger S, Bloedon LT, Anderson RA, Boston R, et al: Chromium picolinate does not improve key features of metabolic syndrome in obese nondiabetic adults. Metab Syndr Relat Disord. 2009, 7: 143-150. 10.1089/met.2008.0048.PubMedCentralPubMedCrossRef
62.
go back to reference Haase H, Overbeck S, Rink L: Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol. 2008, 43: 394-408. 10.1016/j.exger.2007.12.002.PubMedCrossRef Haase H, Overbeck S, Rink L: Zinc supplementation for the treatment or prevention of disease: current status and future perspectives. Exp Gerontol. 2008, 43: 394-408. 10.1016/j.exger.2007.12.002.PubMedCrossRef
63.
go back to reference Faure P, Lafond JL, Coudray C, Rossini E, Halimi S, Favier A, et al: Zinc prevents the structural and functional properties of free radical treated-insulin. Biochim Biophys Acta. 1994, 1209: 260-264. 10.1016/0167-4838(94)90194-5.PubMedCrossRef Faure P, Lafond JL, Coudray C, Rossini E, Halimi S, Favier A, et al: Zinc prevents the structural and functional properties of free radical treated-insulin. Biochim Biophys Acta. 1994, 1209: 260-264. 10.1016/0167-4838(94)90194-5.PubMedCrossRef
65.
go back to reference Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ: Zinc: health effects and research priorities for the 1990s. Environ Health Perspect. 1994, 102 (Suppl 2): 5-46. 10.2307/3431820.PubMedCentralPubMedCrossRef Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ: Zinc: health effects and research priorities for the 1990s. Environ Health Perspect. 1994, 102 (Suppl 2): 5-46. 10.2307/3431820.PubMedCentralPubMedCrossRef
66.
go back to reference Maret W, Sandstead HH: Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006, 20: 3-18. 10.1016/j.jtemb.2006.01.006.PubMedCrossRef Maret W, Sandstead HH: Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006, 20: 3-18. 10.1016/j.jtemb.2006.01.006.PubMedCrossRef
67.
go back to reference Lowe NM, Fekete K, Decsi T: Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr. 2009, 89: 2040S-2051S. 10.3945/ajcn.2009.27230G.PubMedCrossRef Lowe NM, Fekete K, Decsi T: Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr. 2009, 89: 2040S-2051S. 10.3945/ajcn.2009.27230G.PubMedCrossRef
68.
go back to reference Sekler I, Sensi SL, Hershfinkel M, Silverman WF: Mechanism and regulation of cellular zinc transport. Mol Med. 2007, 13: 337-343. 10.2119/2007-00037.Sekler.PubMedCentralPubMedCrossRef Sekler I, Sensi SL, Hershfinkel M, Silverman WF: Mechanism and regulation of cellular zinc transport. Mol Med. 2007, 13: 337-343. 10.2119/2007-00037.Sekler.PubMedCentralPubMedCrossRef
69.
go back to reference Liuzzi JP, Cousins RJ: Mammalian zinc transporters. Annu Rev Nutr. 2004, 24: 151-172. 10.1146/annurev.nutr.24.012003.132402.PubMedCrossRef Liuzzi JP, Cousins RJ: Mammalian zinc transporters. Annu Rev Nutr. 2004, 24: 151-172. 10.1146/annurev.nutr.24.012003.132402.PubMedCrossRef
70.
go back to reference Lichten LA, Cousins RJ: Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009, 29: 153-176. 10.1146/annurev-nutr-033009-083312.PubMedCrossRef Lichten LA, Cousins RJ: Mammalian zinc transporters: nutritional and physiologic regulation. Annu Rev Nutr. 2009, 29: 153-176. 10.1146/annurev-nutr-033009-083312.PubMedCrossRef
71.
go back to reference Devirgiliis C, Zalewski PD, Perozzi G, Murgia C: Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. 2007, 62: 84-93.CrossRef Devirgiliis C, Zalewski PD, Perozzi G, Murgia C: Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. 2007, 62: 84-93.CrossRef
72.
go back to reference Rungby J: Zinc, zinc transporters and diabetes. Diabetologia. 2010, 53: 1549-51. 10.1007/s00125-010-1793-x.PubMedCrossRef Rungby J: Zinc, zinc transporters and diabetes. Diabetologia. 2010, 53: 1549-51. 10.1007/s00125-010-1793-x.PubMedCrossRef
73.
go back to reference Wijesekara N, Chimienti F, Wheeler MB: Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab. 2009, 11 (Suppl 4): 202-214. 10.1111/j.1463-1326.2009.01110.x.PubMedCrossRef Wijesekara N, Chimienti F, Wheeler MB: Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab. 2009, 11 (Suppl 4): 202-214. 10.1111/j.1463-1326.2009.01110.x.PubMedCrossRef
74.
go back to reference Prasad AS: Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 2008, 43: 370-377. 10.1016/j.exger.2007.10.013.PubMedCrossRef Prasad AS: Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 2008, 43: 370-377. 10.1016/j.exger.2007.10.013.PubMedCrossRef
75.
go back to reference Wiernsperger NF: Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab. 2003, 29: 579-585. 10.1016/S1262-3636(07)70072-1.PubMedCrossRef Wiernsperger NF: Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes Metab. 2003, 29: 579-585. 10.1016/S1262-3636(07)70072-1.PubMedCrossRef
76.
go back to reference Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, et al: Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet. 2009, 280: 415-423. 10.1007/s00404-009-0955-x.PubMedCrossRef Afridi HI, Kazi TG, Kazi N, Baig JA, Jamali MK, Arain MB, et al: Status of essential trace metals in biological samples of diabetic mother and their neonates. Arch Gynecol Obstet. 2009, 280: 415-423. 10.1007/s00404-009-0955-x.PubMedCrossRef
77.
go back to reference Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z: Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr. 1998, 17: 564-570.PubMedCrossRef Singh RB, Niaz MA, Rastogi SS, Bajaj S, Gaoli Z, Shoumin Z: Current zinc intake and risk of diabetes and coronary artery disease and factors associated with insulin resistance in rural and urban populations of North India. J Am Coll Nutr. 1998, 17: 564-570.PubMedCrossRef
78.
go back to reference Viktorinova A, Toserova E, Krizko M, Durackova Z: Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism. 2009, 58: 1477-1482. 10.1016/j.metabol.2009.04.035.PubMedCrossRef Viktorinova A, Toserova E, Krizko M, Durackova Z: Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus. Metabolism. 2009, 58: 1477-1482. 10.1016/j.metabol.2009.04.035.PubMedCrossRef
79.
go back to reference Serdar MA, Bakir F, Hasimi A, Celik T, Akin O, Kenar L, et al: Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries. 2009, 29: 35-40. 10.4103/0973-3930.50713.PubMedCentralPubMedCrossRef Serdar MA, Bakir F, Hasimi A, Celik T, Akin O, Kenar L, et al: Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int J Diabetes Dev Ctries. 2009, 29: 35-40. 10.4103/0973-3930.50713.PubMedCentralPubMedCrossRef
80.
go back to reference Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, et al: Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J. 1998, 74: 665-668. 10.1136/pgmj.74.877.665.PubMedCentralPubMedCrossRef Zargar AH, Shah NA, Masoodi SR, Laway BA, Dar FA, Khan AR, et al: Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J. 1998, 74: 665-668. 10.1136/pgmj.74.877.665.PubMedCentralPubMedCrossRef
82.
go back to reference Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z: Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res. Suliburska J, Bogdanski P, Pupek-Musialik D, Krejpcio Z: Dietary intake and serum and hair concentrations of minerals and their relationship with serum lipids and glucose levels in hypertensive and obese patients with insulin resistance. Biol Trace Elem Res.
83.
go back to reference Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, et al: Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008, 123: 58-65. 10.1007/s12011-008-8112-0.PubMedCrossRef Obeid O, Elfakhani M, Hlais S, Iskandar M, Batal M, Mouneimne Y, et al: Plasma copper, zinc, and selenium levels and correlates with metabolic syndrome components of lebanese adults. Biol Trace Elem Res. 2008, 123: 58-65. 10.1007/s12011-008-8112-0.PubMedCrossRef
84.
go back to reference Aguilar MV, Saavedra P, Arrieta FJ, Mateos CJ, Gonzalez MJ, Meseguer I, et al: Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab. 2007, 51: 402-406. 10.1159/000108108.PubMedCrossRef Aguilar MV, Saavedra P, Arrieta FJ, Mateos CJ, Gonzalez MJ, Meseguer I, et al: Plasma mineral content in type-2 diabetic patients and their association with the metabolic syndrome. Ann Nutr Metab. 2007, 51: 402-406. 10.1159/000108108.PubMedCrossRef
85.
go back to reference Soinio M, Marniemi J, Laakso M, Pyorala K, Lehto S, Ronnemaa T: Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care. 2007, 30: 523-528. 10.2337/dc06-1682.PubMedCrossRef Soinio M, Marniemi J, Laakso M, Pyorala K, Lehto S, Ronnemaa T: Serum zinc level and coronary heart disease events in patients with type 2 diabetes. Diabetes Care. 2007, 30: 523-528. 10.2337/dc06-1682.PubMedCrossRef
86.
go back to reference Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H: Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun. 2002, 295: 102-106. 10.1016/S0006-291X(02)00636-8.PubMedCrossRef Ilouz R, Kaidanovich O, Gurwitz D, Eldar-Finkelman H: Inhibition of glycogen synthase kinase-3beta by bivalent zinc ions: insight into the insulin-mimetic action of zinc. Biochem Biophys Res Commun. 2002, 295: 102-106. 10.1016/S0006-291X(02)00636-8.PubMedCrossRef
87.
go back to reference Jansen J, Karges W, Rink L: Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem. 2009, 20: 399-417. 10.1016/j.jnutbio.2009.01.009.PubMedCrossRef Jansen J, Karges W, Rink L: Zinc and diabetes--clinical links and molecular mechanisms. J Nutr Biochem. 2009, 20: 399-417. 10.1016/j.jnutbio.2009.01.009.PubMedCrossRef
88.
go back to reference Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH: Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004, 37: 1182-1190. 10.1016/j.freeradbiomed.2004.07.007.PubMedCrossRef Prasad AS, Bao B, Beck FW, Kucuk O, Sarkar FH: Antioxidant effect of zinc in humans. Free Radic Biol Med. 2004, 37: 1182-1190. 10.1016/j.freeradbiomed.2004.07.007.PubMedCrossRef
89.
go back to reference Mocchegiani E, Giacconi R, Malavolta M: Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med. 2008, 14: 419-428. 10.1016/j.molmed.2008.08.002.PubMedCrossRef Mocchegiani E, Giacconi R, Malavolta M: Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes. Trends Mol Med. 2008, 14: 419-428. 10.1016/j.molmed.2008.08.002.PubMedCrossRef
90.
go back to reference Bettger WJ: Zinc and selenium, site-specific versus general antioxidation. Can J Physiol Pharmacol. 1993, 71: 721-724.PubMedCrossRef Bettger WJ: Zinc and selenium, site-specific versus general antioxidation. Can J Physiol Pharmacol. 1993, 71: 721-724.PubMedCrossRef
91.
go back to reference Foster M, Samman S: Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal. 2010, 13: 1549-1573. 10.1089/ars.2010.3111.PubMedCrossRef Foster M, Samman S: Zinc and redox signaling: perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid Redox Signal. 2010, 13: 1549-1573. 10.1089/ars.2010.3111.PubMedCrossRef
92.
go back to reference Maret W: The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000, 130 (5S Suppl): 1455S-8S.PubMed Maret W: The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr. 2000, 130 (5S Suppl): 1455S-8S.PubMed
93.
go back to reference Tupe RS, Tupe SG, Tarwadi KV, Agte VV: Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions. Metabolism. 2010, 59: 1603-1611. 10.1016/j.metabol.2010.02.020.PubMedCrossRef Tupe RS, Tupe SG, Tarwadi KV, Agte VV: Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions. Metabolism. 2010, 59: 1603-1611. 10.1016/j.metabol.2010.02.020.PubMedCrossRef
94.
go back to reference Matsui H, Oyama TM, Okano Y, Hashimoto E, Kawanai T, Oyama Y: Low micromolar zinc exerts cytotoxic action under H[2]O[2]-induced oxidative stress: Excessive increase in intracellular Zn[2+] concentration. Toxicology. 2010, 276: 27-32. 10.1016/j.tox.2010.06.011.PubMedCrossRef Matsui H, Oyama TM, Okano Y, Hashimoto E, Kawanai T, Oyama Y: Low micromolar zinc exerts cytotoxic action under H[2]O[2]-induced oxidative stress: Excessive increase in intracellular Zn[2+] concentration. Toxicology. 2010, 276: 27-32. 10.1016/j.tox.2010.06.011.PubMedCrossRef
95.
go back to reference Steinhubl SR: Why have antioxidants failed in clinical trials?. Am J Cardiol. 2008, 101: 14D-19D. 10.1016/j.amjcard.2008.02.003.PubMedCrossRef Steinhubl SR: Why have antioxidants failed in clinical trials?. Am J Cardiol. 2008, 101: 14D-19D. 10.1016/j.amjcard.2008.02.003.PubMedCrossRef
96.
go back to reference Wiernsperger NF: Oxidative stress: the special case of diabetes. Biofactors. 2003, 19: 11-18. 10.1002/biof.5520190103.PubMedCrossRef Wiernsperger NF: Oxidative stress: the special case of diabetes. Biofactors. 2003, 19: 11-18. 10.1002/biof.5520190103.PubMedCrossRef
97.
go back to reference Padmavathi IJ, Kishore YD, Venu L, Ganeshan M, Harishankar N, Giridharan NV, et al: Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol. 2009, 94: 761-769. 10.1113/expphysiol.2008.045856.PubMedCrossRef Padmavathi IJ, Kishore YD, Venu L, Ganeshan M, Harishankar N, Giridharan NV, et al: Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring. Exp Physiol. 2009, 94: 761-769. 10.1113/expphysiol.2008.045856.PubMedCrossRef
98.
go back to reference Simon SF, Taylor CG: Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med. 2001, 226yang: 43-51. Simon SF, Taylor CG: Dietary zinc supplementation attenuates hyperglycemia in db/db mice. Exp Biol Med. 2001, 226yang: 43-51.
99.
go back to reference Tang Y, Yang Q, Lu J, Zhang X, Suen D, Tan Y, et al: Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem. 2010, 21: 237-246. 10.1016/j.jnutbio.2008.12.010.PubMedCrossRef Tang Y, Yang Q, Lu J, Zhang X, Suen D, Tan Y, et al: Zinc supplementation partially prevents renal pathological changes in diabetic rats. J Nutr Biochem. 2010, 21: 237-246. 10.1016/j.jnutbio.2008.12.010.PubMedCrossRef
100.
go back to reference Bruno RS, Song Y, Leonard SW, Mustacich DJ, Taylor AW, Traber MG, et al: Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem. 2007, 18: 509-518. 10.1016/j.jnutbio.2006.09.001.PubMedCrossRef Bruno RS, Song Y, Leonard SW, Mustacich DJ, Taylor AW, Traber MG, et al: Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes. J Nutr Biochem. 2007, 18: 509-518. 10.1016/j.jnutbio.2006.09.001.PubMedCrossRef
101.
go back to reference Taneja SK, Mandal R, Girhotra S: Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet. Indian J Exp Biol. 2006, 44: 705-718.PubMed Taneja SK, Mandal R, Girhotra S: Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet. Indian J Exp Biol. 2006, 44: 705-718.PubMed
102.
go back to reference Taneja SK, Mandal R: Modulation of Zn-induced hyperinsulinemia/insulin resistance in Wistar rat fed modified poultry egg. Biofactors. 2009, 35: 389-398. 10.1002/biof.51.PubMedCrossRef Taneja SK, Mandal R: Modulation of Zn-induced hyperinsulinemia/insulin resistance in Wistar rat fed modified poultry egg. Biofactors. 2009, 35: 389-398. 10.1002/biof.51.PubMedCrossRef
103.
go back to reference Sun Q, van Dam RM, Willett WC, Hu FB: Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009, 32: 629-634. 10.2337/dc08-1913.PubMedCentralPubMedCrossRef Sun Q, van Dam RM, Willett WC, Hu FB: Prospective study of zinc intake and risk of type 2 diabetes in women. Diabetes Care. 2009, 32: 629-634. 10.2337/dc08-1913.PubMedCentralPubMedCrossRef
104.
go back to reference Raz I, Karsai D, Katz M: The influence of zinc supplementation on glucose homeostasis in NIDDM. Diabetes Res. 1989, 11: 73-79.PubMed Raz I, Karsai D, Katz M: The influence of zinc supplementation on glucose homeostasis in NIDDM. Diabetes Res. 1989, 11: 73-79.PubMed
105.
go back to reference Heidarian E, Amini M, Parham M, Aminorroaya A: Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud. 2009, 6: 64-70. 10.1900/RDS.2009.6.64.PubMedCentralPubMedCrossRef Heidarian E, Amini M, Parham M, Aminorroaya A: Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud. 2009, 6: 64-70. 10.1900/RDS.2009.6.64.PubMedCentralPubMedCrossRef
106.
go back to reference Marreiro DN, Geloneze B, Tambascia MA, Lerario AC, Halpern A, Cozzolino SM: Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res. 2006, 112: 109-118. 10.1385/BTER:112:2:109.PubMedCrossRef Marreiro DN, Geloneze B, Tambascia MA, Lerario AC, Halpern A, Cozzolino SM: Effect of zinc supplementation on serum leptin levels and insulin resistance of obese women. Biol Trace Elem Res. 2006, 112: 109-118. 10.1385/BTER:112:2:109.PubMedCrossRef
107.
go back to reference Beletate V, El Dib RP, Atallah AN: Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007, CD005525- Beletate V, El Dib RP, Atallah AN: Zinc supplementation for the prevention of type 2 diabetes mellitus. Cochrane Database Syst Rev. 2007, CD005525-
108.
go back to reference Mariani E, Mangialasche F, Feliziani FT, Cecchetti R, Malavolta M, Bastiani P, et al: Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp Gerontol. 2008, 43: 445-451. 10.1016/j.exger.2007.10.012.PubMedCrossRef Mariani E, Mangialasche F, Feliziani FT, Cecchetti R, Malavolta M, Bastiani P, et al: Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects. Exp Gerontol. 2008, 43: 445-451. 10.1016/j.exger.2007.10.012.PubMedCrossRef
109.
go back to reference Russell ST, Tisdale MJ: Antidiabetic properties of zinc-alpha2-glycoprotein in ob/ob mice. Endocrinology. 2010, 151: 948-957. 10.1210/en.2009-0827.PubMedCrossRef Russell ST, Tisdale MJ: Antidiabetic properties of zinc-alpha2-glycoprotein in ob/ob mice. Endocrinology. 2010, 151: 948-957. 10.1210/en.2009-0827.PubMedCrossRef
110.
go back to reference Selva DM, Lecube A, Hernandez C, Baena JA, Fort JM, Simo R: Lower zinc-alpha2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance. J Clin Endocrinol Metab. 2009, 94: 4499-4507. 10.1210/jc.2009-0758.PubMedCrossRef Selva DM, Lecube A, Hernandez C, Baena JA, Fort JM, Simo R: Lower zinc-alpha2-glycoprotein production by adipose tissue and liver in obese patients unrelated to insulin resistance. J Clin Endocrinol Metab. 2009, 94: 4499-4507. 10.1210/jc.2009-0758.PubMedCrossRef
111.
go back to reference Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, et al: Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun. 2006, 351: 165-170. 10.1016/j.bbrc.2006.10.014.PubMedCrossRef Adachi Y, Yoshida J, Kodera Y, Kiss T, Jakusch T, Enyedy EA, et al: Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes. Biochem Biophys Res Commun. 2006, 351: 165-170. 10.1016/j.bbrc.2006.10.014.PubMedCrossRef
112.
go back to reference Yoshikawa Y, Adachi Y, Sakurai H: A new type of orally active anti-diabetic Zn[II]-dithiocarbamate complex. Life Sci. 2007, 80: 759-766. 10.1016/j.lfs.2006.11.003.PubMedCrossRef Yoshikawa Y, Adachi Y, Sakurai H: A new type of orally active anti-diabetic Zn[II]-dithiocarbamate complex. Life Sci. 2007, 80: 759-766. 10.1016/j.lfs.2006.11.003.PubMedCrossRef
113.
go back to reference Navarro-Alarcon M, Cabrera-Vique C: Selenium in food and the human body: a review. Sci Total Environ. 2008, 400: 115-141. 10.1016/j.scitotenv.2008.06.024.PubMedCrossRef Navarro-Alarcon M, Cabrera-Vique C: Selenium in food and the human body: a review. Sci Total Environ. 2008, 400: 115-141. 10.1016/j.scitotenv.2008.06.024.PubMedCrossRef
114.
go back to reference Steinbrenner H, Sies H: Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta. 2009, 1790: 1478-85.PubMedCrossRef Steinbrenner H, Sies H: Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta. 2009, 1790: 1478-85.PubMedCrossRef
115.
116.
go back to reference Burk RF, Hill KE, Motley AK: Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J Nutr. 2003, 133 (5 Suppl 1): 1517S-20S.PubMed Burk RF, Hill KE, Motley AK: Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P. J Nutr. 2003, 133 (5 Suppl 1): 1517S-20S.PubMed
117.
go back to reference Holben DH, Smith AM: The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc. 1999, 99: 836-843. 10.1016/S0002-8223(99)00198-4.PubMedCrossRef Holben DH, Smith AM: The diverse role of selenium within selenoproteins: a review. J Am Diet Assoc. 1999, 99: 836-843. 10.1016/S0002-8223(99)00198-4.PubMedCrossRef
118.
go back to reference Ozkaya M, Sahin M, Cakal E, Gisi K, Bilge F, Kilinc M: Selenium levels in first-degree relatives of diabetic patients. Biol Trace Elem Res. 2009, 128: 144-151. 10.1007/s12011-008-8263-z.PubMedCrossRef Ozkaya M, Sahin M, Cakal E, Gisi K, Bilge F, Kilinc M: Selenium levels in first-degree relatives of diabetic patients. Biol Trace Elem Res. 2009, 128: 144-151. 10.1007/s12011-008-8263-z.PubMedCrossRef
119.
go back to reference Yang Z, Xie Y, Chen J, Zhang D, Yang C, Li M: High selenium may be a risk factor of adolescent idiopathic scoliosis. Med Hypotheses. 2010, 75: 126-127. 10.1016/j.mehy.2010.02.006.PubMedCrossRef Yang Z, Xie Y, Chen J, Zhang D, Yang C, Li M: High selenium may be a risk factor of adolescent idiopathic scoliosis. Med Hypotheses. 2010, 75: 126-127. 10.1016/j.mehy.2010.02.006.PubMedCrossRef
120.
go back to reference Vinceti M, Maraldi T, Bergomi M, Malagoli C: Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health. 2009, 24: 231-248.PubMedCrossRef Vinceti M, Maraldi T, Bergomi M, Malagoli C: Risk of chronic low-dose selenium overexposure in humans: insights from epidemiology and biochemistry. Rev Environ Health. 2009, 24: 231-248.PubMedCrossRef
121.
go back to reference Neve J: Selenium as a 'nutraceutical': how to conciliate physiological and supra-nutritional effects for an essential trace element. Curr Opin Clin Nutr Metab Care. 2002, 5: 659-663. 10.1097/00075197-200211000-00008.PubMedCrossRef Neve J: Selenium as a 'nutraceutical': how to conciliate physiological and supra-nutritional effects for an essential trace element. Curr Opin Clin Nutr Metab Care. 2002, 5: 659-663. 10.1097/00075197-200211000-00008.PubMedCrossRef
122.
go back to reference Battin EE, Brumaghim JL: Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009, 55: 1-23. 10.1007/s12013-009-9054-7.PubMedCrossRef Battin EE, Brumaghim JL: Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys. 2009, 55: 1-23. 10.1007/s12013-009-9054-7.PubMedCrossRef
123.
go back to reference Tapiero H, Townsend DM, Tew KD: The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother. 2003, 57: 134-144. 10.1016/S0753-3322(03)00035-0.PubMedCrossRef Tapiero H, Townsend DM, Tew KD: The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother. 2003, 57: 134-144. 10.1016/S0753-3322(03)00035-0.PubMedCrossRef
124.
go back to reference Zheng HT, Zhou LN, Huang CJ, Hua X, Jian R, Su BH, et al: Selenium inhibits high glucose- and high insulin-induced adhesion molecule expression in vascular endothelial cells. Arch Med Res. 2008, 39: 373-379. 10.1016/j.arcmed.2007.12.007.PubMedCrossRef Zheng HT, Zhou LN, Huang CJ, Hua X, Jian R, Su BH, et al: Selenium inhibits high glucose- and high insulin-induced adhesion molecule expression in vascular endothelial cells. Arch Med Res. 2008, 39: 373-379. 10.1016/j.arcmed.2007.12.007.PubMedCrossRef
125.
go back to reference Duntas LH: Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009, 41: 443-447. 10.1055/s-0029-1220724.PubMedCrossRef Duntas LH: Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm Metab Res. 2009, 41: 443-447. 10.1055/s-0029-1220724.PubMedCrossRef
126.
go back to reference Can B, Ulusu NN, Kilinc K, Leyla Acan N, Saran Y, Turan B: Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue. Biol Trace Elem Res. 2005, 105: 135-150. 10.1385/BTER:105:1-3:135.PubMedCrossRef Can B, Ulusu NN, Kilinc K, Leyla Acan N, Saran Y, Turan B: Selenium treatment protects diabetes-induced biochemical and ultrastructural alterations in liver tissue. Biol Trace Elem Res. 2005, 105: 135-150. 10.1385/BTER:105:1-3:135.PubMedCrossRef
127.
go back to reference Erbayraktar Z, Yilmaz O, Artmann AT, Cehreli R, Coker C: Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol Trace Elem Res. 2007, 118: 217-226. 10.1007/s12011-007-0037-5.PubMedCrossRef Erbayraktar Z, Yilmaz O, Artmann AT, Cehreli R, Coker C: Effects of selenium supplementation on antioxidant defense and glucose homeostasis in experimental diabetes mellitus. Biol Trace Elem Res. 2007, 118: 217-226. 10.1007/s12011-007-0037-5.PubMedCrossRef
128.
go back to reference Schrauzer GN: Nutritional selenium supplements: product types, quality, and safety. J Am Coll Nutr. 2001, 20: 1-4.PubMedCrossRef Schrauzer GN: Nutritional selenium supplements: product types, quality, and safety. J Am Coll Nutr. 2001, 20: 1-4.PubMedCrossRef
129.
go back to reference Mueller AS, Pallauf J: Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem. 2006, 17: 548-560. 10.1016/j.jnutbio.2005.10.006.PubMedCrossRef Mueller AS, Pallauf J: Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice. J Nutr Biochem. 2006, 17: 548-560. 10.1016/j.jnutbio.2005.10.006.PubMedCrossRef
130.
go back to reference Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA: Dietary selenium intake is negatively associated with serum sialic acid and metabolic syndrome features in healthy young adults. Nutr Res. 2009, 29: 41-48. 10.1016/j.nutres.2008.11.003.PubMedCrossRef Zulet MA, Puchau B, Hermsdorff HH, Navarro C, Martinez JA: Dietary selenium intake is negatively associated with serum sialic acid and metabolic syndrome features in healthy young adults. Nutr Res. 2009, 29: 41-48. 10.1016/j.nutres.2008.11.003.PubMedCrossRef
131.
go back to reference Puchau B, Zulet MA, Gonzalez de Echavarri A, Navarro-Blasco I, Martinez JA: Selenium intake reduces serum C3, an early marker of metabolic syndrome manifestations, in healthy young adults. Eur J Clin Nutr. 2009, 63: 858-864. 10.1038/ejcn.2008.48.PubMedCrossRef Puchau B, Zulet MA, Gonzalez de Echavarri A, Navarro-Blasco I, Martinez JA: Selenium intake reduces serum C3, an early marker of metabolic syndrome manifestations, in healthy young adults. Eur J Clin Nutr. 2009, 63: 858-864. 10.1038/ejcn.2008.48.PubMedCrossRef
132.
go back to reference Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al: Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007, 147: 217-223.PubMedCrossRef Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, et al: Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med. 2007, 147: 217-223.PubMedCrossRef
133.
go back to reference Bleys J, Navas-Acien A, Guallar E: Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007, 30: 829-834. 10.2337/dc06-1726.PubMedCrossRef Bleys J, Navas-Acien A, Guallar E: Serum selenium and diabetes in U.S. adults. Diabetes Care. 2007, 30: 829-834. 10.2337/dc06-1726.PubMedCrossRef
134.
go back to reference Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E: Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes. 2009, 2: :369-376. 10.1161/CIRCOUTCOMES.108.831552.CrossRef Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E: Serum selenium concentrations and hypertension in the US Population. Circ Cardiovasc Qual Outcomes. 2009, 2: :369-376. 10.1161/CIRCOUTCOMES.108.831552.CrossRef
135.
go back to reference Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O: Selenium or no selenium--that is the question in tumor patients: a new controversy. Integr Cancer Ther. 2010, 9: 136-141. 10.1177/1534735410367648.PubMedCrossRef Muecke R, Schomburg L, Buentzel J, Kisters K, Micke O: Selenium or no selenium--that is the question in tumor patients: a new controversy. Integr Cancer Ther. 2010, 9: 136-141. 10.1177/1534735410367648.PubMedCrossRef
136.
go back to reference Thompson KH, Orvig C: Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. 2006, 100: 1925-1935. 10.1016/j.jinorgbio.2006.08.016.PubMedCrossRef Thompson KH, Orvig C: Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem. 2006, 100: 1925-1935. 10.1016/j.jinorgbio.2006.08.016.PubMedCrossRef
137.
go back to reference Srivastava AK: Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem. 2000, 206: 177-182. 10.1023/A:1007075204494.PubMedCrossRef Srivastava AK: Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem. 2000, 206: 177-182. 10.1023/A:1007075204494.PubMedCrossRef
138.
go back to reference Domingo JL: Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 2002, 88: 97-112. 10.1385/BTER:88:2:097.PubMedCrossRef Domingo JL: Vanadium and tungsten derivatives as antidiabetic agents: a review of their toxic effects. Biol Trace Elem Res. 2002, 88: 97-112. 10.1385/BTER:88:2:097.PubMedCrossRef
139.
go back to reference Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, et al: Vanadium compounds induced mitochondria permeability transition pore [PTP] opening related to oxidative stress. J Inorg Biochem. 2010, 104: 371-378. 10.1016/j.jinorgbio.2009.11.007.PubMedCrossRef Zhao Y, Ye L, Liu H, Xia Q, Zhang Y, Yang X, et al: Vanadium compounds induced mitochondria permeability transition pore [PTP] opening related to oxidative stress. J Inorg Biochem. 2010, 104: 371-378. 10.1016/j.jinorgbio.2009.11.007.PubMedCrossRef
140.
go back to reference Assem FL, Levy LS: A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. J Toxicol Environ Health B Crit Rev. 2009, 12: 289-306.PubMedCrossRef Assem FL, Levy LS: A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. J Toxicol Environ Health B Crit Rev. 2009, 12: 289-306.PubMedCrossRef
141.
go back to reference Mehdi MZ, Pandey SK, Theberge JF, Srivastava AK: Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys. 2006, 44: 73-81. 10.1385/CBB:44:1:073.PubMedCrossRef Mehdi MZ, Pandey SK, Theberge JF, Srivastava AK: Insulin signal mimicry as a mechanism for the insulin-like effects of vanadium. Cell Biochem Biophys. 2006, 44: 73-81. 10.1385/CBB:44:1:073.PubMedCrossRef
142.
go back to reference Vardatsikos G, Mehdi MZ, Srivastava AK: Bis[maltolato]-oxovanadium [IV]-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses. Int J Mol Med. 2009, 24: 303-309.PubMed Vardatsikos G, Mehdi MZ, Srivastava AK: Bis[maltolato]-oxovanadium [IV]-induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses. Int J Mol Med. 2009, 24: 303-309.PubMed
143.
go back to reference Gil J, Miralpeix M, Carreras J, Bartrons R: Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem. 1988, 263: 1868-1871.PubMed Gil J, Miralpeix M, Carreras J, Bartrons R: Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats. J Biol Chem. 1988, 263: 1868-1871.PubMed
144.
go back to reference Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E: Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev. 2001, 17: 55-66. 10.1002/1520-7560(2000)9999:9999<::AID-DMRR165>3.0.CO;2-J.PubMedCrossRef Shafrir E, Spielman S, Nachliel I, Khamaisi M, Bar-On H, Ziv E: Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in the Psammomys obesus gerbil. Diabetes Metab Res Rev. 2001, 17: 55-66. 10.1002/1520-7560(2000)9999:9999<::AID-DMRR165>3.0.CO;2-J.PubMedCrossRef
145.
go back to reference Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H: Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. 1996, 45: 659-666. 10.2337/diabetes.45.5.659.PubMedCrossRef Halberstam M, Cohen N, Shlimovich P, Rossetti L, Shamoon H: Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes. 1996, 45: 659-666. 10.2337/diabetes.45.5.659.PubMedCrossRef
146.
go back to reference Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez-Madrueno JF, Medina-Santillan R: Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab. 2008, 53: 195-198. 10.1159/000175844.PubMedCrossRef Jacques-Camarena O, Gonzalez-Ortiz M, Martinez-Abundis E, Lopez-Madrueno JF, Medina-Santillan R: Effect of vanadium on insulin sensitivity in patients with impaired glucose tolerance. Ann Nutr Metab. 2008, 53: 195-198. 10.1159/000175844.PubMedCrossRef
147.
go back to reference Poucheret P, Verma S, Grynpas MD, McNeill JH: Vanadium and diabetes. Mol Cell Biochem. 1998, 188: 73-80. 10.1023/A:1006820522587.PubMedCrossRef Poucheret P, Verma S, Grynpas MD, McNeill JH: Vanadium and diabetes. Mol Cell Biochem. 1998, 188: 73-80. 10.1023/A:1006820522587.PubMedCrossRef
148.
go back to reference Garcia-Vicente S, Yraola F, Marti L, Gonzalez-Munoz E, Garcia-Barrado MJ, Canto C, et al: Oral insulin-mimetic compounds that act independently of insulin. Diabetes. 2007, 56: 486-493. 10.2337/db06-0269.PubMedCrossRef Garcia-Vicente S, Yraola F, Marti L, Gonzalez-Munoz E, Garcia-Barrado MJ, Canto C, et al: Oral insulin-mimetic compounds that act independently of insulin. Diabetes. 2007, 56: 486-493. 10.2337/db06-0269.PubMedCrossRef
149.
go back to reference Zorzano A, Palacin M, Marti L, Garcia-Vicente S: Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem. 2009, 103: 559-566. 10.1016/j.jinorgbio.2009.01.015.PubMedCrossRef Zorzano A, Palacin M, Marti L, Garcia-Vicente S: Arylalkylamine vanadium salts as new anti-diabetic compounds. J Inorg Biochem. 2009, 103: 559-566. 10.1016/j.jinorgbio.2009.01.015.PubMedCrossRef
150.
go back to reference Smith DM, Pickering RM, Lewith GT: A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM. 2008, 101: 351-358. 10.1093/qjmed/hcn003.PubMedCrossRef Smith DM, Pickering RM, Lewith GT: A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus. QJM. 2008, 101: 351-358. 10.1093/qjmed/hcn003.PubMedCrossRef
151.
go back to reference Boden G, Chen X, Ruiz J, van Rossum GD, Turco S: Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1996, 45: 1130-1135. 10.1016/S0026-0495(96)90013-X.PubMedCrossRef Boden G, Chen X, Ruiz J, van Rossum GD, Turco S: Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism. 1996, 45: 1130-1135. 10.1016/S0026-0495(96)90013-X.PubMedCrossRef
152.
go back to reference Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L: Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995, 95: 2501-2509. 10.1172/JCI117951.PubMedCentralPubMedCrossRef Cohen N, Halberstam M, Shlimovich P, Chang CJ, Shamoon H, Rossetti L: Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1995, 95: 2501-2509. 10.1172/JCI117951.PubMedCentralPubMedCrossRef
153.
go back to reference Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, et al: Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism. 2000, 49: 400-410. 10.1016/S0026-0495(00)90418-9.PubMedCrossRef Goldfine AB, Patti ME, Zuberi L, Goldstein BJ, LeBlanc R, Landaker EJ, et al: Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism. 2000, 49: 400-410. 10.1016/S0026-0495(00)90418-9.PubMedCrossRef
154.
go back to reference Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JC: Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab. 2001, 86: 1410-1417. 10.1210/jc.86.3.1410.PubMed Cusi K, Cukier S, DeFronzo RA, Torres M, Puchulu FM, Redondo JC: Vanadyl sulfate improves hepatic and muscle insulin sensitivity in type 2 diabetes. J Clin Endocrinol Metab. 2001, 86: 1410-1417. 10.1210/jc.86.3.1410.PubMed
155.
go back to reference Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C: Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. 2009, 103: 554-558. 10.1016/j.jinorgbio.2008.12.003.PubMedCrossRef Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C: Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. 2009, 103: 554-558. 10.1016/j.jinorgbio.2008.12.003.PubMedCrossRef
156.
go back to reference Freeman MP, Freeman SA: Lithium: clinical considerations in internal medicine. Am J Med. 2006, 119: 478-481. 10.1016/j.amjmed.2005.11.003.PubMedCrossRef Freeman MP, Freeman SA: Lithium: clinical considerations in internal medicine. Am J Med. 2006, 119: 478-481. 10.1016/j.amjmed.2005.11.003.PubMedCrossRef
157.
go back to reference Livingstone C, Rampes H: Lithium: a review of its metabolic adverse effects. J Psychopharmacol. 2006, 20: 347-355. 10.1177/0269881105057515.PubMedCrossRef Livingstone C, Rampes H: Lithium: a review of its metabolic adverse effects. J Psychopharmacol. 2006, 20: 347-355. 10.1177/0269881105057515.PubMedCrossRef
158.
go back to reference Jope RS: Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003, 24: 441-443. 10.1016/S0165-6147(03)00206-2.PubMedCrossRef Jope RS: Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003, 24: 441-443. 10.1016/S0165-6147(03)00206-2.PubMedCrossRef
160.
go back to reference Henriksen EJ, Kinnick TR, Teachey MK, O'Keefe MP, Ring D, Johnson KW, et al: Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2003, 284: E892-E900.PubMedCrossRef Henriksen EJ, Kinnick TR, Teachey MK, O'Keefe MP, Ring D, Johnson KW, et al: Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab. 2003, 284: E892-E900.PubMedCrossRef
161.
go back to reference Kaidanovich O, Eldar-Finkelman H: The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets. 2002, 6: 555-561. 10.1517/14728222.6.5.555.PubMedCrossRef Kaidanovich O, Eldar-Finkelman H: The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Expert Opin Ther Targets. 2002, 6: 555-561. 10.1517/14728222.6.5.555.PubMedCrossRef
162.
go back to reference Hers HG: The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976, 45: 167-189. 10.1146/annurev.bi.45.070176.001123.PubMedCrossRef Hers HG: The control of glycogen metabolism in the liver. Annu Rev Biochem. 1976, 45: 167-189. 10.1146/annurev.bi.45.070176.001123.PubMedCrossRef
163.
go back to reference Gould TD, Zarate CA, Manji HK: Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry. 2004, 65: 10-21. 10.4088/JCP.v65n0103.PubMedCrossRef Gould TD, Zarate CA, Manji HK: Glycogen synthase kinase-3: a target for novel bipolar disorder treatments. J Clin Psychiatry. 2004, 65: 10-21. 10.4088/JCP.v65n0103.PubMedCrossRef
164.
go back to reference Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG: Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry. 2008, 20: 131-137.PubMedCentralPubMedCrossRef Fiedorowicz JG, Palagummi NM, Forman-Hoffman VL, Miller DD, Haynes WG: Elevated prevalence of obesity, metabolic syndrome, and cardiovascular risk factors in bipolar disorder. Ann Clin Psychiatry. 2008, 20: 131-137.PubMedCentralPubMedCrossRef
165.
go back to reference Sicras A, Rejas J, Navarro R, Serrat J, Blanca M: Metabolic syndrome in bipolar disorder: a cross-sectional assessment of a Health Management Organization database. Bipolar Disord. 2008, 10: 607-616. 10.1111/j.1399-5618.2008.00599.x.PubMedCrossRef Sicras A, Rejas J, Navarro R, Serrat J, Blanca M: Metabolic syndrome in bipolar disorder: a cross-sectional assessment of a Health Management Organization database. Bipolar Disord. 2008, 10: 607-616. 10.1111/j.1399-5618.2008.00599.x.PubMedCrossRef
166.
go back to reference Okosieme OE, Campbell A, Patton K, Evans ML: Transient diabetes associated with withdrawal of lithium therapy. Diabetes Care. 2006, 29: 1181-10.2337/dc06-0291.PubMedCrossRef Okosieme OE, Campbell A, Patton K, Evans ML: Transient diabetes associated with withdrawal of lithium therapy. Diabetes Care. 2006, 29: 1181-10.2337/dc06-0291.PubMedCrossRef
167.
go back to reference Macko AR, Beneze AN, Teachey MK, Henriksen EJ: Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Arch Physiol Biochem. 2008, 114: 331-339. 10.1080/13813450802536067.PubMedCentralPubMedCrossRef Macko AR, Beneze AN, Teachey MK, Henriksen EJ: Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle. Arch Physiol Biochem. 2008, 114: 331-339. 10.1080/13813450802536067.PubMedCentralPubMedCrossRef
168.
go back to reference Harrell NB, Teachey MK, Gifford NJ, Henriksen EJ: Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium. Arch Physiol Biochem. 2007, 113: 221-227. 10.1080/13813450701783158.PubMedCrossRef Harrell NB, Teachey MK, Gifford NJ, Henriksen EJ: Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium. Arch Physiol Biochem. 2007, 113: 221-227. 10.1080/13813450701783158.PubMedCrossRef
169.
go back to reference Hermida OG, Fontela T, Ghiglione M, Uttenthal LO: Effect of lithium on plasma glucose, insulin and glucagon in normal and streptozotocin-diabetic rats: role of glucagon in the hyperglycaemic response. Br J Pharmacol. 1994, 111: 861-865.PubMedCentralPubMedCrossRef Hermida OG, Fontela T, Ghiglione M, Uttenthal LO: Effect of lithium on plasma glucose, insulin and glucagon in normal and streptozotocin-diabetic rats: role of glucagon in the hyperglycaemic response. Br J Pharmacol. 1994, 111: 861-865.PubMedCentralPubMedCrossRef
170.
go back to reference Rodriguez-Gil JE, Fernandez-Novell JM, Barbera A, Guinovart JJ: Lithium's effects on rat liver glucose metabolism in vivo. Arch Biochem Biophys. 2000, 375: 377-384. 10.1006/abbi.1999.1679.PubMedCrossRef Rodriguez-Gil JE, Fernandez-Novell JM, Barbera A, Guinovart JJ: Lithium's effects on rat liver glucose metabolism in vivo. Arch Biochem Biophys. 2000, 375: 377-384. 10.1006/abbi.1999.1679.PubMedCrossRef
171.
go back to reference Bartlett HE, Eperjesi F: Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt. 2008, 28: 503-523. 10.1111/j.1475-1313.2008.00595.x.PubMedCrossRef Bartlett HE, Eperjesi F: Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt. 2008, 28: 503-523. 10.1111/j.1475-1313.2008.00595.x.PubMedCrossRef
172.
go back to reference Chang Y, Zhang GZ, Piao SL, Gao S, Zheng DM, Song Y, et al: Protective effects of combined micronutrients on islet beta-cells of streptozotocin-induced diabetic mice. Int J Vitam Nutr Res. 2009, 79: 104-116. 10.1024/0300-9831.79.2.104.PubMedCrossRef Chang Y, Zhang GZ, Piao SL, Gao S, Zheng DM, Song Y, et al: Protective effects of combined micronutrients on islet beta-cells of streptozotocin-induced diabetic mice. Int J Vitam Nutr Res. 2009, 79: 104-116. 10.1024/0300-9831.79.2.104.PubMedCrossRef
173.
go back to reference Faure P, Barclay D, Joyeux-Faure M, Halimi S: Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats. J Trace Elem Med Biol. 2007, 21: 113-119. 10.1016/j.jtemb.2006.12.005.PubMedCrossRef Faure P, Barclay D, Joyeux-Faure M, Halimi S: Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats. J Trace Elem Med Biol. 2007, 21: 113-119. 10.1016/j.jtemb.2006.12.005.PubMedCrossRef
174.
go back to reference Padmavathi IJ, Rao KR, Venu L, Ganeshan M, Kumar KA, Rao Ch N, et al: Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes. 2010, 59: 98-104. 10.2337/db09-0779.PubMedCentralPubMedCrossRef Padmavathi IJ, Rao KR, Venu L, Ganeshan M, Kumar KA, Rao Ch N, et al: Chronic maternal dietary chromium restriction modulates visceral adiposity: probable underlying mechanisms. Diabetes. 2010, 59: 98-104. 10.2337/db09-0779.PubMedCentralPubMedCrossRef
175.
go back to reference Padmavathi IJ, Rao KR, Venu L, Ismail A, Raghunath M: Maternal dietary chromium restriction programs muscle development and function in the rat offspring. Exp Biol Med. 2010, 235: 349-355. 10.1258/ebm.2009.009199.CrossRef Padmavathi IJ, Rao KR, Venu L, Ismail A, Raghunath M: Maternal dietary chromium restriction programs muscle development and function in the rat offspring. Exp Biol Med. 2010, 235: 349-355. 10.1258/ebm.2009.009199.CrossRef
176.
go back to reference Venu L, Harishankar N, Krishna TP, Raghunath M: Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance?. Eur J Endocrinol. 2004, 151: 287-294. 10.1530/eje.0.1510287.PubMedCrossRef Venu L, Harishankar N, Krishna TP, Raghunath M: Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance?. Eur J Endocrinol. 2004, 151: 287-294. 10.1530/eje.0.1510287.PubMedCrossRef
Metadata
Title
Trace elements in glucometabolic disorders: an update
Authors
Nicolas Wiernsperger
JeanRobert Rapin
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2010
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/1758-5996-2-70

Other articles of this Issue 1/2010

Diabetology & Metabolic Syndrome 1/2010 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.