Skip to main content
Top
Published in: Radiation Oncology 1/2017

Open Access 01-12-2017 | Research

Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model

Authors: Cheng Zhou, Bleddyn Jones, Mahmoud Moustafa, Christian Schwager, Julia Bauer, Bing Yang, Liji Cao, Min Jia, Andrea Mairani, Ming Chen, Longhua Chen, Juergen Debus, Amir Abdollahi

Published in: Radiation Oncology | Issue 1/2017

Login to get access

Abstract

Background

Normal lung tissue tolerance constitutes a limiting factor in delivering the required dose of radiotherapy to cure thoracic and chest wall malignancies. Radiation-induced lung fibrosis (RILF) is considered a critical determinant for late normal tissue complications. While RILF mouse models are frequently approached e.g., as a single high dose thoracic irradiation to investigate lung fibrosis and candidate modulators, a systematic radiobiological characterization of RILF mouse model is urgently needed to compare relative biological effectiveness (RBE) of particle irradiation with protons, helium-, carbon and oxygen ions now available at HIT. We aimed to study the dose-response relationship and fractionation effect of photon irradiation in development of pulmonary fibrosis in C57BL/6 mouse.

Methods

Lung fibrosis was evaluated 24 weeks after single and fractionated whole thoracic irradiation by quantitative assessment of lung alterations using CT. The fibrosis index (FI) was determined based on 3D-segmentation of the lungs considering the two key fibrosis parameters affected by ionizing radiation i.e., a dose/fractionation dependent reduction of the total lung volume and increase of the mean lung density.

Results

The effective dose required to induce 50% of the maximal possible fibrosis (ED 50 ) was 14.55 ± 0.34Gy and 27.7 ± 1.22Gy, for single and five- fractions irradiation, respectively. Applying a deterministic model an α/β = 4.49 ± 0.38 Gy for the late lung radiosensitivity was determined. Intriguingly, we found that a linear-quadratic model could be applied to in-vivo log transformed fibrosis (FI) vs. irradiation doses. The LQ model revealed an α/β for lung radiosensitivity of 4.4879 Gy for single fraction and 3.9474 for 5-fractions. Our FI based data were in good agreement with a meta-analysis of previous lung radiosensitivity data derived from different clinical endpoints and various mouse strains. The effect of fractionation on RILF development was further estimated by the biologically effective dose (BED) model with threshold BED (BED Tr ) = 30.33 Gy and BED ED50  = 61.63 Gy, respectively.

Conclusion

The systematic radiobiological characterization of RILF in the C57BL/6 mouse reported in this study marks an important step towards precise estimation of dose-response for development of lung fibrosis. These radiobiological parameters combined with a large repertoire of genetically engineered C57BL/6 mouse models, build a solid foundation for further biologically individualized risk assessment of RILF and functional RBE prediction on novel of particle qualities.
Appendix
Available only for authorised users
Literature
1.
go back to reference Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE, Huber PE. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005;201:925–35.CrossRefPubMedPubMedCentral Abdollahi A, Li M, Ping G, Plathow C, Domhan S, Kiessling F, Lee LB, McMahon G, Grone HJ, Lipson KE, Huber PE. Inhibition of platelet-derived growth factor signaling attenuates pulmonary fibrosis. J Exp Med. 2005;201:925–35.CrossRefPubMedPubMedCentral
2.
go back to reference Rusthoven KE, Kavanagh BD, Burri SH, Chen C, Cardenes H, Chidel MA, Pugh TJ, Kane M, Gaspar LE, Schefter TE. Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol. 2009;27:1579–84.CrossRefPubMed Rusthoven KE, Kavanagh BD, Burri SH, Chen C, Cardenes H, Chidel MA, Pugh TJ, Kane M, Gaspar LE, Schefter TE. Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol. 2009;27:1579–84.CrossRefPubMed
3.
go back to reference Eriguchi T, Takeda A, Sanuki N, Nishimura S, Takagawa Y, Enomoto T, Saeki N, Yashiro K, Mizuno T, Aoki Y, et al. Stereotactic body radiotherapy for T3 and T4N0M0 non-small cell lung cancer. J Radiat Res. 2016;57:265–72.CrossRefPubMedPubMedCentral Eriguchi T, Takeda A, Sanuki N, Nishimura S, Takagawa Y, Enomoto T, Saeki N, Yashiro K, Mizuno T, Aoki Y, et al. Stereotactic body radiotherapy for T3 and T4N0M0 non-small cell lung cancer. J Radiat Res. 2016;57:265–72.CrossRefPubMedPubMedCentral
4.
go back to reference Popp I, Grosu AL, Niedermann G, Duda DG. Immune modulation by hypofractionated stereotactic radiation therapy: therapeutic implications. Radiother Oncol. 2016;120:185–94.CrossRefPubMed Popp I, Grosu AL, Niedermann G, Duda DG. Immune modulation by hypofractionated stereotactic radiation therapy: therapeutic implications. Radiother Oncol. 2016;120:185–94.CrossRefPubMed
5.
go back to reference Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Johnstone D, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.CrossRefPubMedPubMedCentral Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J, Fakiris A, Bezjak A, Videtic G, Johnstone D, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303:1070–6.CrossRefPubMedPubMedCentral
6.
go back to reference Solda F, Lodge M, Ashley S, Whitington A, Goldstraw P, Brada M. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort. Radiother Oncol. 2013;109:1–7.CrossRefPubMed Solda F, Lodge M, Ashley S, Whitington A, Goldstraw P, Brada M. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort. Radiother Oncol. 2013;109:1–7.CrossRefPubMed
7.
go back to reference Defraene G, van Elmpt W, Crijns W, Slagmolen P, De Ruysscher D. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother Oncol. 2015;117:29–35.CrossRefPubMed Defraene G, van Elmpt W, Crijns W, Slagmolen P, De Ruysscher D. CT characteristics allow identification of patient-specific susceptibility for radiation-induced lung damage. Radiother Oncol. 2015;117:29–35.CrossRefPubMed
8.
go back to reference Chaudhuri AA, Binkley MS, Rigdon J, Carter JN, Aggarwal S, Dudley SA, Qian Y, Kumar KA, Hara WY, Gensheimer M, et al. Pre-treatment non-target lung FDG-PET uptake predicts symptomatic radiation pneumonitis following stereotactic ablative radiotherapy (SABR). Radiother Oncol. 2016;119:454–60.CrossRefPubMed Chaudhuri AA, Binkley MS, Rigdon J, Carter JN, Aggarwal S, Dudley SA, Qian Y, Kumar KA, Hara WY, Gensheimer M, et al. Pre-treatment non-target lung FDG-PET uptake predicts symptomatic radiation pneumonitis following stereotactic ablative radiotherapy (SABR). Radiother Oncol. 2016;119:454–60.CrossRefPubMed
9.
go back to reference Marks L, Yu X, Vujaskovic Z, Smalljr W, Folz R, Anscher M. Radiation-induced lung injury. Semin Radiat Oncol. 2003;13:333–45.CrossRefPubMed Marks L, Yu X, Vujaskovic Z, Smalljr W, Folz R, Anscher M. Radiation-induced lung injury. Semin Radiat Oncol. 2003;13:333–45.CrossRefPubMed
10.
go back to reference Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys. 2006;66:1281–93.CrossRefPubMed Tsoutsou PG, Koukourakis MI. Radiation pneumonitis and fibrosis: mechanisms underlying its pathogenesis and implications for future research. Int J Radiat Oncol Biol Phys. 2006;66:1281–93.CrossRefPubMed
11.
go back to reference Fowler JF, Parkins CS, Denekamp J, Terry NH, Maughan RL, Travis EL. Early and late effects in mouse lung and rectum. Int J Radiat Oncol Biol Phys. 1982;8:2089–93.CrossRefPubMed Fowler JF, Parkins CS, Denekamp J, Terry NH, Maughan RL, Travis EL. Early and late effects in mouse lung and rectum. Int J Radiat Oncol Biol Phys. 1982;8:2089–93.CrossRefPubMed
12.
go back to reference Thames HD, Hendry JH, Moore JV, Ang KK, Travis EL. The high steepness of dose-response curves for late-responding normal tissues. Radiother Oncol. 1989;15:49–53.CrossRefPubMed Thames HD, Hendry JH, Moore JV, Ang KK, Travis EL. The high steepness of dose-response curves for late-responding normal tissues. Radiother Oncol. 1989;15:49–53.CrossRefPubMed
13.
go back to reference Thames HD Jr, Rozell ME, Tucker SL, Ang KK, Fisher DR, Travis EL. Direct analysis of quantal radiation response data. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49:999–1009.CrossRefPubMed Thames HD Jr, Rozell ME, Tucker SL, Ang KK, Fisher DR, Travis EL. Direct analysis of quantal radiation response data. Int J Radiat Biol Relat Stud Phys Chem Med. 1986;49:999–1009.CrossRefPubMed
14.
go back to reference Travis EL. Early indicators of radiation injury in the lung: are they useful predictors for late changes? Int J Radiat Oncol Biol Phys. 1980;6:1267–9.CrossRefPubMed Travis EL. Early indicators of radiation injury in the lung: are they useful predictors for late changes? Int J Radiat Oncol Biol Phys. 1980;6:1267–9.CrossRefPubMed
15.
go back to reference Parkins CS, Fowler JF, Maughan RL, Roper MJ. Repair in mouse lung for up to 20 fractions of X rays or neutrons. Br J Radiol. 1985;58:225–41.CrossRefPubMed Parkins CS, Fowler JF, Maughan RL, Roper MJ. Repair in mouse lung for up to 20 fractions of X rays or neutrons. Br J Radiol. 1985;58:225–41.CrossRefPubMed
16.
go back to reference Wara WM, Phillips TL, Margolis LW, Smith V. Radiation pneumonitis: a new approach to the derivation of time-dose factors. Cancer. 1973;32:547–52.CrossRefPubMed Wara WM, Phillips TL, Margolis LW, Smith V. Radiation pneumonitis: a new approach to the derivation of time-dose factors. Cancer. 1973;32:547–52.CrossRefPubMed
17.
go back to reference Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66:401–26.CrossRefPubMed Douglas BG, Fowler JF. The effect of multiple small doses of x rays on skin reactions in the mouse and a basic interpretation. Radiat Res. 1976;66:401–26.CrossRefPubMed
18.
go back to reference Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8:1981–97.CrossRefPubMed Barendsen GW. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys. 1982;8:1981–97.CrossRefPubMed
19.
go back to reference Thames HD, Jr., Withers HR, Peters LJ, Fletcher GH: Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 1982, 8:219-226. Thames HD, Jr., Withers HR, Peters LJ, Fletcher GH: Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 1982, 8:219-226.
20.
go back to reference Thames HD. An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47:319–39.CrossRefPubMed Thames HD. An ‘incomplete-repair’ model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47:319–39.CrossRefPubMed
21.
go back to reference Field SB, Hornsey S, Kutsutani Y. Effects of fractionated irradiation on mouse lung and a phenomenon of slow repair. Br J Radiol. 1976;49:700–7.CrossRefPubMed Field SB, Hornsey S, Kutsutani Y. Effects of fractionated irradiation on mouse lung and a phenomenon of slow repair. Br J Radiol. 1976;49:700–7.CrossRefPubMed
22.
go back to reference Van Dyk J, Mah K, Keane TJ. Radiation-induced lung damage: dose-time-fractionation considerations. Radiother Oncol. 1989;14:55–69.CrossRefPubMed Van Dyk J, Mah K, Keane TJ. Radiation-induced lung damage: dose-time-fractionation considerations. Radiother Oncol. 1989;14:55–69.CrossRefPubMed
23.
go back to reference BM B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49:167–79.CrossRef BM B, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49:167–79.CrossRef
24.
go back to reference Plathow C, Li M, Gong P, Zieher H, Kiessling F, Peschke P, Kauczor HU, Abdollahi A, Huber PE. Computed tomography monitoring of radiation-induced lung fibrosis in mice. Investig Radiol. 2004;39:600–9.CrossRef Plathow C, Li M, Gong P, Zieher H, Kiessling F, Peschke P, Kauczor HU, Abdollahi A, Huber PE. Computed tomography monitoring of radiation-induced lung fibrosis in mice. Investig Radiol. 2004;39:600–9.CrossRef
25.
go back to reference Flechsig P, Hartenstein B, Teurich S, Dadrich M, Hauser K, Abdollahi A, Grone HJ, Angel P, Huber PE. Loss of matrix metalloproteinase-13 attenuates murine radiation-induced pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 2010;77:582–90.CrossRefPubMed Flechsig P, Hartenstein B, Teurich S, Dadrich M, Hauser K, Abdollahi A, Grone HJ, Angel P, Huber PE. Loss of matrix metalloproteinase-13 attenuates murine radiation-induced pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 2010;77:582–90.CrossRefPubMed
26.
go back to reference Li M, Abdollahi A, Grone HJ, Lipson KE, Belka C, Huber PE. Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol. 2009;4:66.CrossRefPubMedPubMedCentral Li M, Abdollahi A, Grone HJ, Lipson KE, Belka C, Huber PE. Late treatment with imatinib mesylate ameliorates radiation-induced lung fibrosis in a mouse model. Radiat Oncol. 2009;4:66.CrossRefPubMedPubMedCentral
27.
go back to reference Kallman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62:249–62.CrossRefPubMed Kallman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol. 1992;62:249–62.CrossRefPubMed
28.
go back to reference Jones B, Dale RG, Deehan C, Hopkins KI, Morgan DA. The role of biologically effective dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol). 2001;13:71–81. Jones B, Dale RG, Deehan C, Hopkins KI, Morgan DA. The role of biologically effective dose (BED) in clinical oncology. Clin Oncol (R Coll Radiol). 2001;13:71–81.
29.
go back to reference Hornsey S, Kutsutani Y, Field SB. Damage to mouse lung with fractionated neutrons and x rays. Radiology. 1975;116:171–4.CrossRefPubMed Hornsey S, Kutsutani Y, Field SB. Damage to mouse lung with fractionated neutrons and x rays. Radiology. 1975;116:171–4.CrossRefPubMed
30.
go back to reference Travis EL, Parkins CS, Down JD, Fowler JF, Thames HD Jr. Repair in mouse lung between multiple small doses of X rays. Radiat Res. 1983;94:326–39.CrossRefPubMed Travis EL, Parkins CS, Down JD, Fowler JF, Thames HD Jr. Repair in mouse lung between multiple small doses of X rays. Radiat Res. 1983;94:326–39.CrossRefPubMed
31.
go back to reference Parkins CS, Fowler JF. Repair in mouse lung of multifraction X rays and neutrons: extension to 40 fractions. Br J Radiol. 1985;58:1097–103.CrossRefPubMed Parkins CS, Fowler JF. Repair in mouse lung of multifraction X rays and neutrons: extension to 40 fractions. Br J Radiol. 1985;58:1097–103.CrossRefPubMed
32.
go back to reference Vegesna V, Withers HR, Thames HD Jr, Mason K. Multifraction radiation response of mouse lung. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47:413–22.CrossRefPubMed Vegesna V, Withers HR, Thames HD Jr, Mason K. Multifraction radiation response of mouse lung. Int J Radiat Biol Relat Stud Phys Chem Med. 1985;47:413–22.CrossRefPubMed
33.
go back to reference Travis EL, Thames HD, Watkins TL, Kiss I. The kinetics of repair in mouse lung after fractionated irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;52:903–19.CrossRefPubMed Travis EL, Thames HD, Watkins TL, Kiss I. The kinetics of repair in mouse lung after fractionated irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1987;52:903–19.CrossRefPubMed
34.
go back to reference Travis EL, Curtis SB, Howard J, Fowler JF. Repair but not potentiation observed in mouse lung irradiated with neon ions. Radiat Res. 1987;112:500–7.CrossRefPubMed Travis EL, Curtis SB, Howard J, Fowler JF. Repair but not potentiation observed in mouse lung irradiated with neon ions. Radiat Res. 1987;112:500–7.CrossRefPubMed
35.
go back to reference van der Kogel AJ, Martin JC, Smith AR, Raju MR. Late effects of fractionated pi-mesons compared to X rays on mouse lung. Int J Radiat Oncol Biol Phys. 1988;14:1175–84.CrossRefPubMed van der Kogel AJ, Martin JC, Smith AR, Raju MR. Late effects of fractionated pi-mesons compared to X rays on mouse lung. Int J Radiat Oncol Biol Phys. 1988;14:1175–84.CrossRefPubMed
36.
go back to reference van Rongen E, Thames HD Jr, Travis EL. Recovery from radiation damage in mouse lung: interpretation in terms of two rates of repair. Radiat Res. 1993;133:225–33.CrossRefPubMed van Rongen E, Thames HD Jr, Travis EL. Recovery from radiation damage in mouse lung: interpretation in terms of two rates of repair. Radiat Res. 1993;133:225–33.CrossRefPubMed
37.
go back to reference Van Dyk J, Keane TJ. Determination of parameters for the linear-quadratic model for radiation-induced lung damage. Int J Radiat Oncol Biol Phys. 1989;17:695.CrossRefPubMed Van Dyk J, Keane TJ. Determination of parameters for the linear-quadratic model for radiation-induced lung damage. Int J Radiat Oncol Biol Phys. 1989;17:695.CrossRefPubMed
38.
39.
go back to reference Bentzen SM, Skoczylas JZ, Bernier J. Quantitative clinical radiobiology of early and late lung reactions. Int J Radiat Biol. 2000;76:453–62.CrossRefPubMed Bentzen SM, Skoczylas JZ, Bernier J. Quantitative clinical radiobiology of early and late lung reactions. Int J Radiat Biol. 2000;76:453–62.CrossRefPubMed
40.
go back to reference Fowler JF, Tome WA, Fenwick JD, Mehta MP. A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys. 2004;60:1241–56.CrossRefPubMed Fowler JF, Tome WA, Fenwick JD, Mehta MP. A challenge to traditional radiation oncology. Int J Radiat Oncol Biol Phys. 2004;60:1241–56.CrossRefPubMed
41.
go back to reference Chiblak S, Tang Z, Campos B, Gal Z, Unterberg A, Debus J, Herold-Mende C, Abdollahi A. Radiosensitivity of patient-derived Glioma stem cell 3-dimensional cultures to photon, proton, and carbon irradiation. Int J Radiat Oncol Biol Phys. 2016;95:112–9.CrossRefPubMed Chiblak S, Tang Z, Campos B, Gal Z, Unterberg A, Debus J, Herold-Mende C, Abdollahi A. Radiosensitivity of patient-derived Glioma stem cell 3-dimensional cultures to photon, proton, and carbon irradiation. Int J Radiat Oncol Biol Phys. 2016;95:112–9.CrossRefPubMed
42.
go back to reference Winter M, Dokic I, Schlegel J, Warnken U, Debus J, Abdollahi A, Schnolzer M. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions. Mol Cell Proteomics. 2017. Winter M, Dokic I, Schlegel J, Warnken U, Debus J, Abdollahi A, Schnolzer M. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions. Mol Cell Proteomics. 2017.
43.
go back to reference Niklas M, Abdollahi A, Akselrod MS, Debus J, Jakel O, Greilich S. Subcellular spatial correlation of particle traversal and biological response in clinical ion beams. Int J Radiat Oncol Biol Phys. 2013;87:1141–7.CrossRefPubMed Niklas M, Abdollahi A, Akselrod MS, Debus J, Jakel O, Greilich S. Subcellular spatial correlation of particle traversal and biological response in clinical ion beams. Int J Radiat Oncol Biol Phys. 2013;87:1141–7.CrossRefPubMed
44.
go back to reference Dokic I, Mairani A, Niklas M, Zimmermann F, Chaudhri N, Krunic D, Tessonnier T, Ferrari A, Parodi K, Jakel O, et al. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget. 2016;7:56676–89.CrossRefPubMedPubMedCentral Dokic I, Mairani A, Niklas M, Zimmermann F, Chaudhri N, Krunic D, Tessonnier T, Ferrari A, Parodi K, Jakel O, et al. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams. Oncotarget. 2016;7:56676–89.CrossRefPubMedPubMedCentral
Metadata
Title
Quantitative assessment of radiation dose and fractionation effects on normal tissue by utilizing a novel lung fibrosis index model
Authors
Cheng Zhou
Bleddyn Jones
Mahmoud Moustafa
Christian Schwager
Julia Bauer
Bing Yang
Liji Cao
Min Jia
Andrea Mairani
Ming Chen
Longhua Chen
Juergen Debus
Amir Abdollahi
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2017
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-017-0912-y

Other articles of this Issue 1/2017

Radiation Oncology 1/2017 Go to the issue