Skip to main content
Top
Published in: Radiation Oncology 1/2013

Open Access 01-12-2013 | Research

Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study

Authors: Filippo Alongi, Luca Cozzi, Stefano Arcangeli, Cristina Iftode, Tiziana Comito, Elisa Villa, Francesca Lobefalo, Pierina Navarria, Giacomo Reggiori, Pietro Mancosu, Elena Clerici, Antonella Fogliata, Stefano Tomatis, Gianluigi Taverna, Pierpaolo Graziotti, Marta Scorsetti

Published in: Radiation Oncology | Issue 1/2013

Login to get access

Abstract

Background

To evaluate the feasibility and early side effects of a short course hypo-fractionated SBRT programme with Volumetric Modulated Arc Therapy (VMAT) and Flattening Filter Free (FFF) beams.

Methods

A prospective phase I-II study, started on February 2012. Inclusion criteria were: age ≤ 80 years, WHO-PS ≤ 2, PSA ≤ 20 ng/ml, histologically proven prostate adenocarcinoma, T1-T2 stage, no distant metastases, no previous surgery other than TURP, no malignant tumours in the previous 5 years, IPSS 0–7. The schedule was 35 Gy in 5 alternative days. SBRT was delivered with RapidArc VMAT, with 10MV FFF photons. Toxicity assessment was performed according to CTCAE v4.0 scale. EPIC questionnaires assessed Quality-of-Life. Neo-adjuvant/concomitant hormonal-therapy was prescribed according to risk classification. SpaceOAR™ gel was optionally implanted to increase the separation space between the prostate and the rectal wall.

Results

Median follow-up was 11 months (range: 5–16); 40 patients were recruited in the protocol and treated. According to NCCN criteria, 26/40 patients were low-risk and 14/40 were intermediate risk. Median age was 70 years (56–80), median initial PSA was 6.25 ng/ml (0.50-13.43 ng/ml). Median Gleason score was 6 (6–7). All patients completed the treatment as programmed (median 11.8 days (9–22). Acute Toxicities were as follow: Rectum G0: 30/40 cases (75%); G1: 6/40 (15%); G2: 4/40 (10%). Genito-urinary: G0: 16/40 (40%); G1: 8/40 (20%); G2: 16/34 (40%). In two G2 urinary retention cases, intermittent catheter was needed. No acute G3 or greater toxicity was found. Median treatment time was 126 sec (120–136). SpaceOAR™ was implanted in 8 patients. PSA reduction from the pre-treatment value of the marker was documented in all patients.

Conclusions

Early findings suggest that SBRT with RapidArc and FFF beams for prostate cancer in 5 fractions is feasible and tolerated in acute setting. Longer follow-up is needed for assessment of late toxicity and outcome.
Appendix
Available only for authorised users
Literature
1.
go back to reference Arcangeli S, Scorsetti M, Alongi F: Will SBRT replace conventional radiotherapy in patients with low-intermediate risk prostate cancer? A review. Crit Rev Oncol Hematol. 2012, 84: 101-108. 10.1016/j.critrevonc.2011.11.009CrossRefPubMed Arcangeli S, Scorsetti M, Alongi F: Will SBRT replace conventional radiotherapy in patients with low-intermediate risk prostate cancer? A review. Crit Rev Oncol Hematol. 2012, 84: 101-108. 10.1016/j.critrevonc.2011.11.009CrossRefPubMed
2.
go back to reference Scorsetti M, Alongi F, Castiglioni S, et al.: Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments. Radiat Oncol 2011, 6: 113. 10.1186/1748-717X-6-113CrossRefPubMedPubMedCentral Scorsetti M, Alongi F, Castiglioni S, et al.: Feasibility and early clinical assessment of flattening filter free (FFF) based stereotactic body radiotherapy (SBRT) treatments. Radiat Oncol 2011, 6: 113. 10.1186/1748-717X-6-113CrossRefPubMedPubMedCentral
3.
go back to reference Weber DC, Zilli T, Vallee JP, et al.: Intensity modulated proton and photon therapy for early prostate cancer with or without transperineal injection of a polyethylene glycol spacer: a treatment planning comparison study. Int J Radiat Oncol Biol Phys 2012, 84: e311-e318. 10.1016/j.ijrobp.2012.03.028CrossRefPubMed Weber DC, Zilli T, Vallee JP, et al.: Intensity modulated proton and photon therapy for early prostate cancer with or without transperineal injection of a polyethylene glycol spacer: a treatment planning comparison study. Int J Radiat Oncol Biol Phys 2012, 84: e311-e318. 10.1016/j.ijrobp.2012.03.028CrossRefPubMed
4.
go back to reference Song D, Herfarth K, Matthias U, et al.: A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes. Int J Radiat Oncol Biol Phys 2013. in press Song D, Herfarth K, Matthias U, et al.: A Multi-institutional Clinical Trial of Rectal Dose Reduction via Injected Polyethylene-Glycol Hydrogel During Intensity Modulated Radiation Therapy for Prostate Cancer: Analysis of Dosimetric Outcomes. Int J Radiat Oncol Biol Phys 2013. in press
5.
go back to reference Zeng GG, McGowan TS, Larsen TM, et al.: Calcifications are potential surrogates for prostate localization in image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2008, 72: 963-966. 10.1016/j.ijrobp.2008.07.021CrossRefPubMed Zeng GG, McGowan TS, Larsen TM, et al.: Calcifications are potential surrogates for prostate localization in image-guided radiotherapy. Int J Radiat Oncol Biol Phys 2008, 72: 963-966. 10.1016/j.ijrobp.2008.07.021CrossRefPubMed
6.
go back to reference Lukka H, Hayter C, Julian JA, et al.: A randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 2005, 23: 6132-6138. 10.1200/JCO.2005.06.153CrossRefPubMed Lukka H, Hayter C, Julian JA, et al.: A randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 2005, 23: 6132-6138. 10.1200/JCO.2005.06.153CrossRefPubMed
7.
8.
go back to reference Katz AJ, Santoro M, Di Blasio F, et al.: Stereotactic body radiation therapy for low, intermediate and high-risk prostate cancer: disease control and quality of life. Int J Radiat Oncol Biol Phys 2011, 81: S100.CrossRef Katz AJ, Santoro M, Di Blasio F, et al.: Stereotactic body radiation therapy for low, intermediate and high-risk prostate cancer: disease control and quality of life. Int J Radiat Oncol Biol Phys 2011, 81: S100.CrossRef
9.
10.
go back to reference McBride SM, Wong DS, Dombrowski JJ, et al.: Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: Preliminary results of a multi-institutional phase 1 feasibility trial. Cancer 2012, 118: 3681-3690. 10.1002/cncr.26699CrossRefPubMed McBride SM, Wong DS, Dombrowski JJ, et al.: Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: Preliminary results of a multi-institutional phase 1 feasibility trial. Cancer 2012, 118: 3681-3690. 10.1002/cncr.26699CrossRefPubMed
11.
go back to reference Fuller DB, Shirazi R, Naitoh J, et al.: Virtual HDR SBRT For Localized Prostatic Carcinoma: Efficacy And Quality Of Life Assessment. Int J Radiat Oncol Biol Phys 2011, 81: S423-S424.CrossRef Fuller DB, Shirazi R, Naitoh J, et al.: Virtual HDR SBRT For Localized Prostatic Carcinoma: Efficacy And Quality Of Life Assessment. Int J Radiat Oncol Biol Phys 2011, 81: S423-S424.CrossRef
12.
go back to reference Kang JK, Cho CK, Choi CW, et al.: Image-guided stereotactic body radiation therapy for localized prostate cancer. Tumori 2011, 97: 43-48.PubMed Kang JK, Cho CK, Choi CW, et al.: Image-guided stereotactic body radiation therapy for localized prostate cancer. Tumori 2011, 97: 43-48.PubMed
13.
go back to reference King CR, Brooks JD, Gill H, et al.: Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiation Oncology Biol Phys 2012, 82: 877-882. 10.1016/j.ijrobp.2010.11.054CrossRef King CR, Brooks JD, Gill H, et al.: Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiation Oncology Biol Phys 2012, 82: 877-882. 10.1016/j.ijrobp.2010.11.054CrossRef
14.
go back to reference Madsen BL, Hsi RA, Pham HT, et al.: Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 2007, 67: 1099-1105. 10.1016/j.ijrobp.2006.10.050CrossRefPubMed Madsen BL, Hsi RA, Pham HT, et al.: Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys 2007, 67: 1099-1105. 10.1016/j.ijrobp.2006.10.050CrossRefPubMed
15.
go back to reference Boike TP, Lotan Y, Cho LC, et al.: Phase I Dose-Escalation Study of Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer. J Clin Oncol 2011, 29: 2020-2026. 10.1200/JCO.2010.31.4377CrossRefPubMedPubMedCentral Boike TP, Lotan Y, Cho LC, et al.: Phase I Dose-Escalation Study of Stereotactic Body Radiation Therapy for Low- and Intermediate-Risk Prostate Cancer. J Clin Oncol 2011, 29: 2020-2026. 10.1200/JCO.2010.31.4377CrossRefPubMedPubMedCentral
16.
go back to reference Ritter MA, Forman JD, Kupelian P, et al.: Five-year efficacy and toxicity outcomes from phase I/II trial of increasingly hypofractionated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2001,81(S2):S99. Ritter MA, Forman JD, Kupelian P, et al.: Five-year efficacy and toxicity outcomes from phase I/II trial of increasingly hypofractionated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2001,81(S2):S99.
17.
go back to reference Yeoh EE, Botten RJ, Butters J, et al.: Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int J Radiat Oncol Biol Phys 2011, 81: 1271-1278. 10.1016/j.ijrobp.2010.07.1984CrossRefPubMed Yeoh EE, Botten RJ, Butters J, et al.: Hypofractionated versus conventionally fractionated radiotherapy for prostate carcinoma: final results of phase III randomized trial. Int J Radiat Oncol Biol Phys 2011, 81: 1271-1278. 10.1016/j.ijrobp.2010.07.1984CrossRefPubMed
18.
go back to reference Pollack AW, Buyounouski M, Horwitz E, et al.: Five year results of a randomized external beam radiotherapy hypofractionation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2011,81(suppl):S1.CrossRef Pollack AW, Buyounouski M, Horwitz E, et al.: Five year results of a randomized external beam radiotherapy hypofractionation trial for prostate cancer. Int J Radiat Oncol Biol Phys 2011,81(suppl):S1.CrossRef
19.
go back to reference Kuban DA, Nogueras-Gonzalez NG, Hamblin L, et al.: Preliminary report of a randomized dose escalation trial for prostate cancer using hypofractionation. Int J Radiat Oncol Biol Phys 2010,78(suppl):S58.CrossRef Kuban DA, Nogueras-Gonzalez NG, Hamblin L, et al.: Preliminary report of a randomized dose escalation trial for prostate cancer using hypofractionation. Int J Radiat Oncol Biol Phys 2010,78(suppl):S58.CrossRef
20.
go back to reference Arcangeli S, Strigari L, Gomellini S, et al.: Updated results and pattern of failures in a randomized hypofractionation trial for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2012, 84: 1172-1178. 10.1016/j.ijrobp.2012.02.049CrossRefPubMed Arcangeli S, Strigari L, Gomellini S, et al.: Updated results and pattern of failures in a randomized hypofractionation trial for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 2012, 84: 1172-1178. 10.1016/j.ijrobp.2012.02.049CrossRefPubMed
21.
go back to reference Dearnaley D, Syndicus I, Sumo G, et al.: Conventional versus hypofractionated high dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from CHHiP randomized controlled trial. Lancet Oncol 2012, 13: 4354.CrossRef Dearnaley D, Syndicus I, Sumo G, et al.: Conventional versus hypofractionated high dose intensity-modulated radiotherapy for prostate cancer: preliminary safety results from CHHiP randomized controlled trial. Lancet Oncol 2012, 13: 4354.CrossRef
22.
go back to reference Arcangeli G, Fowler J, Gomellini S, et al.: Acute and late toxicity in a randomized trial of conventional versus hypofractionated three-dimensional conformal radiotherapy for prostate cancer. Int J Radiation Oncology Biol Phys 2011, 79: 1013-1021. 10.1016/j.ijrobp.2009.12.045CrossRef Arcangeli G, Fowler J, Gomellini S, et al.: Acute and late toxicity in a randomized trial of conventional versus hypofractionated three-dimensional conformal radiotherapy for prostate cancer. Int J Radiation Oncology Biol Phys 2011, 79: 1013-1021. 10.1016/j.ijrobp.2009.12.045CrossRef
23.
go back to reference Michalski JM, Gay H, Jackson A, et al.: Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 2010,76(3 Suppl):S123-S129.CrossRefPubMedPubMedCentral Michalski JM, Gay H, Jackson A, et al.: Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 2010,76(3 Suppl):S123-S129.CrossRefPubMedPubMedCentral
Metadata
Title
Linac based SBRT for prostate cancer in 5 fractions with VMAT and flattening filter free beams: preliminary report of a phase II study
Authors
Filippo Alongi
Luca Cozzi
Stefano Arcangeli
Cristina Iftode
Tiziana Comito
Elisa Villa
Francesca Lobefalo
Pierina Navarria
Giacomo Reggiori
Pietro Mancosu
Elena Clerici
Antonella Fogliata
Stefano Tomatis
Gianluigi Taverna
Pierpaolo Graziotti
Marta Scorsetti
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2013
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/1748-717X-8-171

Other articles of this Issue 1/2013

Radiation Oncology 1/2013 Go to the issue