Skip to main content
Top
Published in: Reproductive Biology and Endocrinology 1/2019

Open Access 01-12-2019 | Tissue Plasminogen Activator | Research

Expression of the plasminogen system in the physiological mouse ovary and in the pathological polycystic ovary syndrome (PCOS) state

Authors: Genia F. Burchall, Dodie S. Pouniotis, Helena J. Teede, Sanjeeva Ranasinha, Kirsty A. Walters, Terrence J. Piva

Published in: Reproductive Biology and Endocrinology | Issue 1/2019

Login to get access

Abstract

Background

The fibrinolytic system and its inhibitors play a number of roles, apart from their function in blood haemostasis and thrombosis, namely in ovarian folliculogenesis and in ovulation. Plasminogen is converted to active plasmin at the time of follicular rupture through a decrease in plasminogen activator inhibitor-1 (PAI-1) and an increase in plasminogen activators. Oligo−/anovulation and follicle arrest are key characteristics of PCOS, but studies evaluating fibrinolytic/proteolytic markers within human or animal PCOS ovaries are lacking. We aimed to investigate and compare the expression and distribution of the plasminogen system markers in PCOS and control ovaries.

Methods

A hyperandrogenised PCOS mouse model was used that mimics the ovarian, endocrine and metabolic features of the human condition. Immunohistochemistry and digital image analysis were used to investigate and compare fibrinolytic/proteolytic markers plasminogen, plasminogen/plasmin, tissue plasminogen activator, urokinase plasminogen activator and inhibitor PAI-1 in PCOS and control ovaries. Student’s t-test was used to compare data sets for normally distributed data and Wilcoxon-Mann Whitney test for non-normally distributed data.

Results

We noted differences in the ovarian distribution of PAI-1 that was expressed throughout the PCOS ovary, unlike the peripheral distribution observed in control ovaries. Plasminogen was present in small follicles only in PCOS ovaries but not in small follicles of control ovaries. When we assessed and compared PAI-1 expression within follicles of different developmental stages we also noted significant differences for both the PCOS and control ovaries. While we noted differences in distribution and expression within specific ovarian structures, no differences were noted in the overall ovarian expression of markers assessed between acyclical PCOS mice and control mice at the diestrus stage of the estrous cycle.

Conclusions

Our novel study, that comprehensively assessed the fibrinolytic/proteolytic system in the mouse ovary, showed the expression, differential localisation and a potential role for the plasminogen system in the physiological mouse ovary and in PCOS. Androgens may be involved in regulating expression of the ovarian plasminogen system. Further studies evaluating these markers at different time-points of ovulation may help to further clarify both physiological and potential pathological actions these markers play in ovulatory processes distorted in PCOS.
Literature
1.
go back to reference The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.CrossRef The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81(1):19–25.CrossRef
2.
go back to reference March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–51.CrossRef March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod. 2010;25(2):544–51.CrossRef
3.
go back to reference Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust. 2011;195(6):s65–s112.CrossRef Teede HJ, Misso ML, Deeks AA, Moran LJ, Stuckey BG, Wong JL, et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust. 2011;195(6):s65–s112.CrossRef
4.
go back to reference Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod. 2012;27(10):3067–73.CrossRef Yildiz BO, Bozdag G, Yapici Z, Esinler I, Yarali H. Prevalence, phenotype and cardiometabolic risk of polycystic ovary syndrome under different diagnostic criteria. Hum Reprod. 2012;27(10):3067–73.CrossRef
5.
go back to reference Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602–18.CrossRef Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602–18.CrossRef
6.
go back to reference Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364–79.CrossRef Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2018;110(3):364–79.CrossRef
7.
go back to reference Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol. 2018;89(3):251–68.CrossRef Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Clin Endocrinol. 2018;89(3):251–68.CrossRef
8.
go back to reference Burchall G, Linden MD, Teede H, Piva TJ. Hemostatic abnormalities and relationships to metabolic and hormonal status in polycystic ovarian syndrome. Trends Cardiovasc Med. 2011;21(1):6–14.CrossRef Burchall G, Linden MD, Teede H, Piva TJ. Hemostatic abnormalities and relationships to metabolic and hormonal status in polycystic ovarian syndrome. Trends Cardiovasc Med. 2011;21(1):6–14.CrossRef
9.
go back to reference Burchall GF, Piva TJ, Linden MD, Gibson-Helm ME, Ranasinha S, Teede HJ. Comprehensive assessment of the hemostatic system in polycystic ovarian syndrome. Semin Thromb Hemost. 2016;42(1):55–62.CrossRef Burchall GF, Piva TJ, Linden MD, Gibson-Helm ME, Ranasinha S, Teede HJ. Comprehensive assessment of the hemostatic system in polycystic ovarian syndrome. Semin Thromb Hemost. 2016;42(1):55–62.CrossRef
10.
go back to reference Politis I, Srikandakumar A, Turner JD, Tsang BK, Ainsworth L, Downey BR. Changes in and partial identification of the plasminogen activator and plasminogen activator inhibitor systems during ovarian follicular maturation in the pig. Biol Reprod. 1990;43(4):636–42.CrossRef Politis I, Srikandakumar A, Turner JD, Tsang BK, Ainsworth L, Downey BR. Changes in and partial identification of the plasminogen activator and plasminogen activator inhibitor systems during ovarian follicular maturation in the pig. Biol Reprod. 1990;43(4):636–42.CrossRef
11.
go back to reference Devin JK, Johnson JE, Eren M, Gleaves LA, Bradham WS, Bloodworth JR Jr, et al. Transgenic overexpression of plasminogen activator inhibitor-1 promotes the development of polycystic ovarian changes in female mice. J Mol Endocrinol. 2007;39(1):9–16.CrossRef Devin JK, Johnson JE, Eren M, Gleaves LA, Bradham WS, Bloodworth JR Jr, et al. Transgenic overexpression of plasminogen activator inhibitor-1 promotes the development of polycystic ovarian changes in female mice. J Mol Endocrinol. 2007;39(1):9–16.CrossRef
12.
go back to reference Liu YX, Liu XM, Nin LF, Shi L, Chen SR. Serine protease and ovarian paracrine factors in regulation of ovulation. Front Biosci (Landmark Ed). 2013;18:650–64.CrossRef Liu YX, Liu XM, Nin LF, Shi L, Chen SR. Serine protease and ovarian paracrine factors in regulation of ovulation. Front Biosci (Landmark Ed). 2013;18:650–64.CrossRef
13.
go back to reference Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 2004;53(2):336–46.CrossRef Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, et al. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 2004;53(2):336–46.CrossRef
14.
go back to reference Beers WH. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell. 1975;6(3):379–86.CrossRef Beers WH. Follicular plasminogen and plasminogen activator and the effect of plasmin on ovarian follicle wall. Cell. 1975;6(3):379–86.CrossRef
15.
go back to reference Piquette GN, Crabtree ME, el-Danasouri I, Milki A, Polan ML. Regulation of plasminogen activator inhibitor-1 and -2 messenger ribonucleic acid levels in human cumulus and granulosa-luteal cells. J Clin Endocrinol Metab. 1993;76(2):518–23.PubMed Piquette GN, Crabtree ME, el-Danasouri I, Milki A, Polan ML. Regulation of plasminogen activator inhibitor-1 and -2 messenger ribonucleic acid levels in human cumulus and granulosa-luteal cells. J Clin Endocrinol Metab. 1993;76(2):518–23.PubMed
16.
go back to reference Atiomo WU, Hilton D, Fox R, Lee D, Shaw S, Friend J, et al. Immunohistochemical detection of plasminogen activator inhibitor-1 in polycystic ovaries. Gynecol Endocrinol. 2000;14(3):162–8.CrossRef Atiomo WU, Hilton D, Fox R, Lee D, Shaw S, Friend J, et al. Immunohistochemical detection of plasminogen activator inhibitor-1 in polycystic ovaries. Gynecol Endocrinol. 2000;14(3):162–8.CrossRef
17.
go back to reference Ambekar AS, Kelkar DS, Pinto SM, Sharma R, Hinduja I, Zaveri K, et al. Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. J Clin Endocrinol Metab. 2015;100(2):744–53.CrossRef Ambekar AS, Kelkar DS, Pinto SM, Sharma R, Hinduja I, Zaveri K, et al. Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. J Clin Endocrinol Metab. 2015;100(2):744–53.CrossRef
18.
go back to reference Pierre A, Peigne M, Grynberg M, Arouche N, Taieb J, Hesters L, et al. Loss of LH-induced down-regulation of anti-Mullerian hormone receptor expression may contribute to anovulation in women with polycystic ovary syndrome. Hum Reprod. 2013;28(3):762–9.CrossRef Pierre A, Peigne M, Grynberg M, Arouche N, Taieb J, Hesters L, et al. Loss of LH-induced down-regulation of anti-Mullerian hormone receptor expression may contribute to anovulation in women with polycystic ovary syndrome. Hum Reprod. 2013;28(3):762–9.CrossRef
19.
go back to reference Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the androgen excess and polycystic ovary syndrome (AE-PCOS) society. J Clin Endocrinol Metab. 2010;95(5):2038–49.CrossRef Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, et al. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the androgen excess and polycystic ovary syndrome (AE-PCOS) society. J Clin Endocrinol Metab. 2010;95(5):2038–49.CrossRef
20.
go back to reference Caldwell AS, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146–59.CrossRef Caldwell AS, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146–59.CrossRef
21.
go back to reference Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA, Zajac JD, et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007;148(8):3674–84.CrossRef Walters KA, Allan CM, Jimenez M, Lim PR, Davey RA, Zajac JD, et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology. 2007;148(8):3674–84.CrossRef
22.
go back to reference Simanainen U, Gao YR, Walters KA, Watson G, Desai R, Jimenez M, et al. Androgen resistance in female mice increases susceptibility to DMBA-induced mammary tumors. Horm Cancer. 2012;3(3):113–24.CrossRef Simanainen U, Gao YR, Walters KA, Watson G, Desai R, Jimenez M, et al. Androgen resistance in female mice increases susceptibility to DMBA-induced mammary tumors. Horm Cancer. 2012;3(3):113–24.CrossRef
23.
go back to reference Myers M, Britt KL, Wreford NGM, Ebling FJP, Kerr JB. Methods for quantifying follicular numbers within the mouse ovary. Reproduction. 2004;127(5):569–80.CrossRef Myers M, Britt KL, Wreford NGM, Ebling FJP, Kerr JB. Methods for quantifying follicular numbers within the mouse ovary. Reproduction. 2004;127(5):569–80.CrossRef
24.
go back to reference Liu YX, Peng XR, Ny T. Tissue-specific and time-coordinated hormone regulation of plasminogen-activator-inhibitor type-I and tissue-type plasminogen-activator in the rat ovary during gonadotropin-induced ovulation. Eur J Biochem. 1991;195(2):549–55.CrossRef Liu YX, Peng XR, Ny T. Tissue-specific and time-coordinated hormone regulation of plasminogen-activator-inhibitor type-I and tissue-type plasminogen-activator in the rat ovary during gonadotropin-induced ovulation. Eur J Biochem. 1991;195(2):549–55.CrossRef
25.
go back to reference Liu K, Liu YX, Hu ZY, Zou RY, Chen YJ, Mu XM, et al. Temporal expression of urokinase type plasminogen activator, tissue type plasminogen activator, plasminogen activator inhibitor type 1 in rhesus monkey corpus luteum during the luteal maintenance and regression. Mol Cell Endocrinol. 1997;133(2):109–16.CrossRef Liu K, Liu YX, Hu ZY, Zou RY, Chen YJ, Mu XM, et al. Temporal expression of urokinase type plasminogen activator, tissue type plasminogen activator, plasminogen activator inhibitor type 1 in rhesus monkey corpus luteum during the luteal maintenance and regression. Mol Cell Endocrinol. 1997;133(2):109–16.CrossRef
26.
go back to reference Liu K, Feng Q, Gao HJ, Hu ZY, Zou RJ, Li YC, et al. Expression and regulation of plasminogen activators, plasminogen activator inhibitor type-1, and steroidogenic acute regulatory protein in the rhesus monkey corpus luteum. Endocrinology. 2003;144(8):3611–7.CrossRef Liu K, Feng Q, Gao HJ, Hu ZY, Zou RJ, Li YC, et al. Expression and regulation of plasminogen activators, plasminogen activator inhibitor type-1, and steroidogenic acute regulatory protein in the rhesus monkey corpus luteum. Endocrinology. 2003;144(8):3611–7.CrossRef
Metadata
Title
Expression of the plasminogen system in the physiological mouse ovary and in the pathological polycystic ovary syndrome (PCOS) state
Authors
Genia F. Burchall
Dodie S. Pouniotis
Helena J. Teede
Sanjeeva Ranasinha
Kirsty A. Walters
Terrence J. Piva
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Reproductive Biology and Endocrinology / Issue 1/2019
Electronic ISSN: 1477-7827
DOI
https://doi.org/10.1186/s12958-019-0472-0

Other articles of this Issue 1/2019

Reproductive Biology and Endocrinology 1/2019 Go to the issue