Skip to main content
Top
Published in: Osteoporosis International 7/2007

01-07-2007 | Original Article

Tibial geometry is associated with failure load ex vivo: a MRI, pQCT and DXA study

Authors: D. Liu, S. L. Manske, S. A. Kontulainen, C. Tang, P. Guy, T. R. Oxland, H. A. McKay

Published in: Osteoporosis International | Issue 7/2007

Login to get access

Abstract

Summary

We studied the relations between bone geometry and density and the mechanical properties of human cadaveric tibiae. Bone geometry, assessed by MRI and pQCT, and bone density, assessed by DXA, were significantly associated with bone’s mechanical properties. However, cortical density assessed by pQCT was not associated with mechanical properties.

Introduction

The primary objective of this study was to determine the contribution of cross-sectional geometry (by MRI and pQCT) and density (by pQCT and DXA) to mechanical properties of the human cadaveric tibia.

Methods

We assessed 20 human cadaveric tibiae. Bone cross-sectional geometry variables (total area, cortical area, and section modulus) were measured with MRI and pQCT. Cortical density and areal BMD were measured with pQCT and DXA, respectively. The specimens were tested to failure in a four-point bending apparatus. Coefficients of determination between imaging variables of interest and mechanical properties were determined.

Results

Cross-sectional geometry measurements from MRI and pQCT were strongly correlated with bone mechanical properties (r2 range from 0.55 to 0.85). Bone cross-sectional geometry measured by MRI explained a proportion of variance in mechanical properties similar to that explained by pQCT bone cross-sectional geometry measurements and DXA measurements.

Conclusions

We found that there was a close association between geometry and mechanical properties regardless of the imaging modality (MRI or pQCT) used.
Literature
1.
go back to reference Hudelmaier M, Kuhn V, Lochmüller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381PubMedCrossRef Hudelmaier M, Kuhn V, Lochmüller EM, Well H, Priemel M, Link TM, Eckstein F (2004) Can geometry-based parameters from pQCT and material parameters from quantitative ultrasound (QUS) improve the prediction of radial bone strength over that by bone mass (DXA)? Osteoporos Int 15:375–381PubMedCrossRef
2.
go back to reference Lochmüller EM, Zeller JB, Kaiser D, Eckstein F, Landgraf J, Putz R, Steldinger R (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598PubMedCrossRef Lochmüller EM, Zeller JB, Kaiser D, Eckstein F, Landgraf J, Putz R, Steldinger R (1998) Correlation of femoral and lumbar DXA and calcaneal ultrasound, measured in situ with intact soft tissues, with the in vitro failure loads of the proximal femur. Osteoporos Int 8:591–598PubMedCrossRef
3.
go back to reference Bouxsein ML, Coan BS, Lee SC (1999) Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25:49–54PubMedCrossRef Bouxsein ML, Coan BS, Lee SC (1999) Prediction of the strength of the elderly proximal femur by bone mineral density and quantitative ultrasound measurements of the heel and tibia. Bone 25:49–54PubMedCrossRef
4.
go back to reference Sievanen H (2000) A physical model for dual-energy X-ray absorptiometry-derived bone mineral density. Invest Radiol 35:325−330PubMedCrossRef Sievanen H (2000) A physical model for dual-energy X-ray absorptiometry-derived bone mineral density. Invest Radiol 35:325−330PubMedCrossRef
5.
go back to reference Bolotin HH, Sievanen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18:1020–1027PubMedCrossRef Bolotin HH, Sievanen H, Grashuis JL (2003) Patient-specific DXA bone mineral density inaccuracies: quantitative effects of nonuniform extraosseous fat distributions. J Bone Miner Res 18:1020–1027PubMedCrossRef
6.
go back to reference Delmas PD, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34:599–604PubMedCrossRef Delmas PD, Seeman E (2004) Changes in bone mineral density explain little of the reduction in vertebral or nonvertebral fracture risk with anti-resorptive therapy. Bone 34:599–604PubMedCrossRef
7.
go back to reference Bolotin HH (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 28:548–555PubMedCrossRef Bolotin HH (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 28:548–555PubMedCrossRef
8.
go back to reference Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276PubMedCrossRef Gomberg BR, Wehrli FW, Vasilic B, Weening RH, Saha PK, Song HK, Wright AC (2004) Reproducibility and error sources of micro-MRI-based trabecular bone structural parameters of the distal radius and tibia. Bone 35:266–276PubMedCrossRef
9.
go back to reference Wehrli FW, Hilaire L, Fernandez-Seara M, Gomberg BR, Song HK, Zemel B, Loh L, Snyder PJ (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273PubMedCrossRef Wehrli FW, Hilaire L, Fernandez-Seara M, Gomberg BR, Song HK, Zemel B, Loh L, Snyder PJ (2002) Quantitative magnetic resonance imaging in the calcaneus and femur of women with varying degrees of osteopenia and vertebral deformity status. J Bone Miner Res 17:2265–2273PubMedCrossRef
10.
go back to reference Wehrli FW, Leonard MB, Saha PK, Gomberg BR (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20:83–89PubMedCrossRef Wehrli FW, Leonard MB, Saha PK, Gomberg BR (2004) Quantitative high-resolution magnetic resonance imaging reveals structural implications of renal osteodystrophy on trabecular and cortical bone. J Magn Reson Imaging 20:83–89PubMedCrossRef
11.
go back to reference Gomberg BR, Saha PK, Wehrli FW (2005) Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 12:1320–1332PubMedCrossRef Gomberg BR, Saha PK, Wehrli FW (2005) Method for cortical bone structural analysis from magnetic resonance images. Acad Radiol 12:1320–1332PubMedCrossRef
12.
go back to reference Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29:388–392PubMedCrossRef Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29:388–392PubMedCrossRef
13.
go back to reference Hogler W, Blimkie CJ, Cowell CT, Kemp AF, Briody J, Wiebe P, Farpour-Lambert N, Duncan CS, Woodhead HJ (2003) A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 33:771–778PubMedCrossRef Hogler W, Blimkie CJ, Cowell CT, Kemp AF, Briody J, Wiebe P, Farpour-Lambert N, Duncan CS, Woodhead HJ (2003) A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging. Bone 33:771–778PubMedCrossRef
14.
go back to reference Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16:2251–2259PubMedCrossRef Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16:2251–2259PubMedCrossRef
15.
go back to reference Rauch F, Schoenau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res 16:597–604PubMedCrossRef Rauch F, Schoenau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res 16:597–604PubMedCrossRef
16.
go back to reference Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM, Harris T, Ferrucci L (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538PubMedCrossRef Russo CR, Lauretani F, Bandinelli S, Bartali B, Di Iorio A, Volpato S, Guralnik JM, Harris T, Ferrucci L (2003) Aging bone in men and women: beyond changes in bone mineral density. Osteoporos Int 14:531–538PubMedCrossRef
17.
go back to reference Kontulainen SA, Macdonald HM, Khan KM, McKay HA (2005) Examining bone surfaces across puberty: a 20-month pQCT trial. J Bone Miner Res 20:1202–1207PubMedCrossRef Kontulainen SA, Macdonald HM, Khan KM, McKay HA (2005) Examining bone surfaces across puberty: a 20-month pQCT trial. J Bone Miner Res 20:1202–1207PubMedCrossRef
18.
go back to reference Moyer-Mileur LJ, Xie B, Ball SD, Pratt T (2003) Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J Musculoskelet Neuronal Interact 3:63–70PubMed Moyer-Mileur LJ, Xie B, Ball SD, Pratt T (2003) Bone mass and density response to a 12-month trial of calcium and vitamin D supplement in preadolescent girls. J Musculoskelet Neuronal Interact 3:63–70PubMed
19.
go back to reference Chan K, Qin L, Lau M, Woo J, Au S, Choy W, Lee K, Lee S (2004) A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 85:717–722PubMedCrossRef Chan K, Qin L, Lau M, Woo J, Au S, Choy W, Lee K, Lee S (2004) A randomized, prospective study of the effects of Tai Chi Chun exercise on bone mineral density in postmenopausal women. Arch Phys Med Rehabil 85:717–722PubMedCrossRef
20.
go back to reference Liu-Ambrose TY, Khan KM, Eng JJ, Heinonen A, McKay HA (2004) Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom 7:390–398PubMedCrossRef Liu-Ambrose TY, Khan KM, Eng JJ, Heinonen A, McKay HA (2004) Both resistance and agility training increase cortical bone density in 75- to 85-year-old women with low bone mass: a 6-month randomized controlled trial. J Clin Densitom 7:390–398PubMedCrossRef
21.
go back to reference Manske SL, Kontulainen S, Liu D, McKay HA (Submitted) Are MRI-derived measures of cortical bone geometry reliable and accurate?: Comparison with bone histomorphometry in the human distal tibia Manske SL, Kontulainen S, Liu D, McKay HA (Submitted) Are MRI-derived measures of cortical bone geometry reliable and accurate?: Comparison with bone histomorphometry in the human distal tibia
22.
go back to reference Kontulainen S, Liu D, Manske SL, Jamieson M, Sievanen H, McKay HA (2007) Analysing cortical bone cross-sectional geometry by peripheral QCT: Comparison with bone histomorphometry. J Clin Densitom (in press) Kontulainen S, Liu D, Manske SL, Jamieson M, Sievanen H, McKay HA (2007) Analysing cortical bone cross-sectional geometry by peripheral QCT: Comparison with bone histomorphometry. J Clin Densitom (in press)
23.
go back to reference Hologic (1996) Hologic Model QDR-4500 Users guide. MA, Waltham Hologic (1996) Hologic Model QDR-4500 Users guide. MA, Waltham
24.
go back to reference American Society for Testing and Materials (1989) Standard test methods for flexural properties of un-reinforced and reinforced plastics and electrical insulating materials American Society for Testing and Materials (1989) Standard test methods for flexural properties of un-reinforced and reinforced plastics and electrical insulating materials
25.
go back to reference Cristofolini L, Viceconti M (2000) Mechanical validation of whole bone composite tibia models. J Biomech 33:279–288PubMedCrossRef Cristofolini L, Viceconti M (2000) Mechanical validation of whole bone composite tibia models. J Biomech 33:279–288PubMedCrossRef
26.
go back to reference Heiner AD, Brown TD (2001) Structural properties of a new design of composite replicate femurs and tibias. J Biomech 34:773–781PubMedCrossRef Heiner AD, Brown TD (2001) Structural properties of a new design of composite replicate femurs and tibias. J Biomech 34:773–781PubMedCrossRef
27.
go back to reference An YH, Draughn RA (1999) Mechanical testing of bone and the bone-implant interface. CRC Press LLC, Boca Raton, Florida, USA An YH, Draughn RA (1999) Mechanical testing of bone and the bone-implant interface. CRC Press LLC, Boca Raton, Florida, USA
28.
go back to reference Lochmüller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638PubMedCrossRef Lochmüller EM, Lill CA, Kuhn V, Schneider E, Eckstein F (2002) Radius bone strength in bending, compression, and falling and its correlation with clinical densitometry at multiple sites. J Bone Miner Res 17:1629–1638PubMedCrossRef
29.
go back to reference Manske SL, Liu-Ambrose T, de Bakker PM, Liu D, Kontulainen S, Guy P, Oxland TR, McKay HA (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545PubMedCrossRef Manske SL, Liu-Ambrose T, de Bakker PM, Liu D, Kontulainen S, Guy P, Oxland TR, McKay HA (2006) Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength. Osteoporos Int 17:1539–1545PubMedCrossRef
30.
go back to reference Levenston ME, Beaupre GS, van der Meulen MC (1994) Improved method for analysis of whole bone torsion tests. J Bone Miner Res 9:1459–1465PubMedCrossRef Levenston ME, Beaupre GS, van der Meulen MC (1994) Improved method for analysis of whole bone torsion tests. J Bone Miner Res 9:1459–1465PubMedCrossRef
31.
go back to reference Bousson V, Bergot C, Meunier A, Barbot F, Parlier-Cuau C, Laval-Jeantet AM, Laredo JD (2000) CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity. Radiology 217:179–187PubMed Bousson V, Bergot C, Meunier A, Barbot F, Parlier-Cuau C, Laval-Jeantet AM, Laredo JD (2000) CT of the middiaphyseal femur: cortical bone mineral density and relation to porosity. Radiology 217:179–187PubMed
32.
go back to reference Currey JD (1999) What determines the bending strength of compact bone? The Journal of experimental biology 202:2495–2503PubMed Currey JD (1999) What determines the bending strength of compact bone? The Journal of experimental biology 202:2495–2503PubMed
33.
go back to reference Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216PubMedCrossRef Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30:207–216PubMedCrossRef
34.
go back to reference Eckstein F, Kuhn V, Lochmüller EM (2004) Strength prediction of the distal radius by bone densitometry-evaluation using biomechanical tests. Ann Biomed Eng 32:487–503PubMedCrossRef Eckstein F, Kuhn V, Lochmüller EM (2004) Strength prediction of the distal radius by bone densitometry-evaluation using biomechanical tests. Ann Biomed Eng 32:487–503PubMedCrossRef
Metadata
Title
Tibial geometry is associated with failure load ex vivo: a MRI, pQCT and DXA study
Authors
D. Liu
S. L. Manske
S. A. Kontulainen
C. Tang
P. Guy
T. R. Oxland
H. A. McKay
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 7/2007
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-007-0325-0

Other articles of this Issue 7/2007

Osteoporosis International 7/2007 Go to the issue