Skip to main content
Top
Published in: Osteoporosis International 10/2006

01-10-2006 | Original Article

Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength

Authors: S. L. Manske, T. Liu-Ambrose, P. M. de Bakker, D. Liu, S. Kontulainen, P. Guy, T. R. Oxland, H. A. McKay

Published in: Osteoporosis International | Issue 10/2006

Login to get access

Abstract

Introduction

Magnetic resonance imaging (MRI) is a promising medical imaging technique that we used to assess femoral neck cortical geometry.

Objectives

Our primary objective was to assess whether cortical bone in the femoral neck assessed by MRI was associated with failure load in a simulated sideways fall, with and without adjustment for total bone size. Our secondary objective was to assess the reliability of the MRI measurements.

Materials and methods

We imaged 34 human cadaveric proximal femora using MRI and dual-energy X-ray absorptiometry (DXA). MRI measurements of cross-sectional geometry at the femoral neck were the cortical cross-sectional area (CoCSAMRI), second area moment of inertia (x axis; IxMRI), and section modulus (x axis; ZxMRI). DXA images were analyzed with the standard Hologic protocol. From DXA, we report the areal bone mineral density (aBMDDXA) in the femoral neck and trochanteric subregions of interest. The femora were loaded to failure at 100 mm/s in a sideways fall configuration (15° internal rotation, 10° adduction).

Results and observations

Failure load (N) was the primary outcome. We observed that the femoral neck CoCSAMRI and IxMRI were strongly associated with failure load (r 2=0.46 and 0.48, respectively). These associations were similar to those between femoral neck aBMD and failure load (r 2=0.40), but lower than the associations between trochanteric aBMD and failure load (r 2=0.70).

Conclusion

We report that MRI holds considerable promise for measuring cortical bone geometry in the femoral neck and for predicting strength at the proximal femur.
Literature
1.
go back to reference Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M (1999) Hip fractures in Finland between 1970 and 1997 and predictions for the future. Lancet 353(9155):802–805PubMedCrossRef Kannus P, Niemi S, Parkkari J, Palvanen M, Vuori I, Jarvinen M (1999) Hip fractures in Finland between 1970 and 1997 and predictions for the future. Lancet 353(9155):802–805PubMedCrossRef
2.
go back to reference Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767PubMedCrossRef Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359(9319):1761–1767PubMedCrossRef
3.
go back to reference Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289PubMedCrossRef Cooper C, Campion G, Melton LJ 3rd (1992) Hip fractures in the elderly: a world-wide projection. Osteoporos Int 2(6):285–289PubMedCrossRef
4.
go back to reference Papadimitropoulos EA, Coyte PC, Josse RG, Greenwood CE (1997) Current and projected rates of hip fracture in Canada. CMAJ 157(10):1357–1363PubMed Papadimitropoulos EA, Coyte PC, Josse RG, Greenwood CE (1997) Current and projected rates of hip fracture in Canada. CMAJ 157(10):1357–1363PubMed
5.
go back to reference Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA (1996) Etiology and prevention of age-related hip fractures. Bone 18(1 Suppl):77S–86SPubMedCrossRef Hayes WC, Myers ER, Robinovitch SN, Van Den Kroonenberg A, Courtney AC, McMahon TA (1996) Etiology and prevention of age-related hip fractures. Bone 18(1 Suppl):77S–86SPubMedCrossRef
6.
go back to reference Chesnut III CH, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19(8):1241–1249CrossRef Chesnut III CH, Skag A, Christiansen C, Recker R, Stakkestad JA, Hoiseth A, Felsenberg D, Huss H, Gilbride J, Schimmer RC, Delmas PD (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19(8):1241–1249CrossRef
7.
go back to reference Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541PubMedCrossRef Black DM, Cummings SR, Karpf DB, Cauley JA, Thompson DE, Nevitt MC, Bauer DC, Genant HK, Haskell WL, Marcus R, Ott SM, Torner JC, Quandt SA, Reiss TF, Ensrud KE (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–1541PubMedCrossRef
8.
go back to reference Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20(3):213–218PubMedCrossRef Cheng XG, Lowet G, Boonen S, Nicholson PH, Brys P, Nijs J, Dequeker J (1997) Assessment of the strength of proximal femur in vitro: relationship to femoral bone mineral density and femoral geometry. Bone 20(3):213–218PubMedCrossRef
9.
go back to reference Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29(4):388–392PubMedCrossRef Heinonen A, McKay HA, Whittall KP, Forster BB, Khan KM (2001) Muscle cross-sectional area is associated with specific site of bone in prepubertal girls: a quantitative magnetic resonance imaging study. Bone 29(4):388–392PubMedCrossRef
10.
go back to reference Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16(12):2251–2259PubMedCrossRef Woodhead HJ, Kemp AF, Blimkie CJR, Briody JN, Duncan CS, Thompson M, Lam A, Howman-Giles R, Cowell CT (2001) Measurement of midfemoral shaft geometry: repeatability and accuracy using magnetic resonance imaging and dual-energy X-ray absorptiometry. J Bone Miner Res 16(12):2251–2259PubMedCrossRef
11.
go back to reference Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16(11):1307–1314PubMedCrossRef Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S (2005) Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int 16(11):1307–1314PubMedCrossRef
12.
go back to reference Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366(9480):129–135PubMedCrossRef Mayhew PM, Thomas CD, Clement JG, Loveridge N, Beck TJ, Bonfield W, Burgoyne CJ, Reeve J (2005) Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366(9480):129–135PubMedCrossRef
13.
go back to reference Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14(1):111–119PubMedCrossRef Bell KL, Loveridge N, Power J, Garrahan N, Stanton M, Lunt M, Meggitt BF, Reeve J (1999) Structure of the femoral neck in hip fracture: cortical bone loss in the inferoanterior to superoposterior axis. J Bone Miner Res 14(1):111–119PubMedCrossRef
14.
go back to reference Hologic, Inc. (1996) Hologic QDR-4500 user’s guide. Hologic, Inc., Waltham, Massachusetts Hologic, Inc. (1996) Hologic QDR-4500 user’s guide. Hologic, Inc., Waltham, Massachusetts
15.
go back to reference Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77(3):387–395PubMed Courtney AC, Wachtel EF, Myers ER, Hayes WC (1995) Age-related reductions in the strength of the femur tested in a fall-loading configuration. J Bone Joint Surg Am 77(3):387–395PubMed
16.
go back to reference Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30(1):207–216PubMedCrossRef Lochmüller EM, Groll O, Kuhn V, Eckstein F (2002) Mechanical strength of the proximal femur as predicted from geometric and densitometric bone properties at the lower limb versus the distal radius. Bone 30(1):207–216PubMedCrossRef
17.
go back to reference Lochmüller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18(5):906–912PubMedCrossRef Lochmüller EM, Muller R, Kuhn V, Lill CA, Eckstein F (2003) Can novel clinical densitometric techniques replace or improve DXA in predicting bone strength in osteoporosis at the hip and other skeletal sites? J Bone Miner Res 18(5):906–912PubMedCrossRef
18.
go back to reference Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19(3):379–385PubMedCrossRef Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19(3):379–385PubMedCrossRef
19.
go back to reference Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58(4):231–235PubMed Pinilla TP, Boardman KC, Bouxsein ML, Myers ER, Hayes WC (1996) Impact direction from a fall influences the failure load of the proximal femur as much as age-related bone loss. Calcif Tissue Int 58(4):231–235PubMed
20.
go back to reference Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113(4):366–374PubMedCrossRef Robinovitch SN, Hayes WC, McMahon TA (1991) Prediction of femoral impact forces in falls on the hip. J Biomech Eng 113(4):366–374PubMedCrossRef
21.
go back to reference Robinovitch SN, Hayes WC, McMahon TA (1995) Energy-shunting hip padding system attenuates femoral impact force in a simulated fall. J Biomech Eng 117(4):409–413PubMedCrossRef Robinovitch SN, Hayes WC, McMahon TA (1995) Energy-shunting hip padding system attenuates femoral impact force in a simulated fall. J Biomech Eng 117(4):409–413PubMedCrossRef
23.
go back to reference Evans EM (1949) The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br 31B(2):190–203 Evans EM (1949) The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br 31B(2):190–203
24.
go back to reference Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270PubMedCrossRef Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270PubMedCrossRef
25.
go back to reference Fox KM, Cummings SR, Williams E, Stone K (2000) Femoral neck and intertrochanteric fractures have different risk factors: a prospective study. Osteoporos Int 11(12):1018–1023PubMedCrossRef Fox KM, Cummings SR, Williams E, Stone K (2000) Femoral neck and intertrochanteric fractures have different risk factors: a prospective study. Osteoporos Int 11(12):1018–1023PubMedCrossRef
26.
go back to reference Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13(1):69–73PubMedCrossRef Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13(1):69–73PubMedCrossRef
27.
go back to reference Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C, Meunier PJ, Delmas PD (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12(11):1895–1902PubMedCrossRef Duboeuf F, Hans D, Schott AM, Kotzki PO, Favier F, Marcelli C, Meunier PJ, Delmas PD (1997) Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: the EPIDOS Study. J Bone Miner Res 12(11):1895–1902PubMedCrossRef
28.
go back to reference Weber TG, Yang KH, Woo R, Fitzgerald RJ (1992) Proximal femur strength: correlation of the rate of loading and bone mineral density. Adv Bioeng 22:111–114 Weber TG, Yang KH, Woo R, Fitzgerald RJ (1992) Proximal femur strength: correlation of the rate of loading and bone mineral density. Adv Bioeng 22:111–114
29.
go back to reference Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58PubMedCrossRef Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55(1):53–58PubMedCrossRef
30.
go back to reference McKay HA, Sievanen H, Petit MA, MacKelvie KJ, Forkheim KM, Whittall KP, Forster BB, Macdonald H (2004) Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom 7(2):161–168PubMedCrossRef McKay HA, Sievanen H, Petit MA, MacKelvie KJ, Forkheim KM, Whittall KP, Forster BB, Macdonald H (2004) Application of magnetic resonance imaging to evaluation of femoral neck structure in growing girls. J Clin Densitom 7(2):161–168PubMedCrossRef
31.
go back to reference Bousson V, Le Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864PubMedCrossRef Bousson V, Le Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864PubMedCrossRef
33.
go back to reference Bolotin HH, Sievanen H (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res 16(5):799–805PubMedCrossRef Bolotin HH, Sievanen H (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral density can seriously mislead diagnostic/prognostic interpretations of patient-specific bone fragility. J Bone Miner Res 16(5):799–805PubMedCrossRef
Metadata
Title
Femoral neck cortical geometry measured with magnetic resonance imaging is associated with proximal femur strength
Authors
S. L. Manske
T. Liu-Ambrose
P. M. de Bakker
D. Liu
S. Kontulainen
P. Guy
T. R. Oxland
H. A. McKay
Publication date
01-10-2006
Publisher
Springer-Verlag
Published in
Osteoporosis International / Issue 10/2006
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-006-0162-6

Other articles of this Issue 10/2006

Osteoporosis International 10/2006 Go to the issue