Skip to main content
Top
Published in: World Journal of Surgical Oncology 1/2013

Open Access 01-12-2013 | Research

The value of chest CT for prediction of breast tumor size: comparison with pathology measurement

Authors: Su Joa Ahn, Young Saing Kim, Eun Young Kim, Heung Kyu Park, Eun Kyung Cho, Yoon Kyung Kim, Yon Mi Sung, Hye-Young Choi

Published in: World Journal of Surgical Oncology | Issue 1/2013

Login to get access

Abstract

Background

Little information is available on the use of chest computed tomography (CT) to predict breast tumor size in breast cancer, despite the fact that chest CT examinations are being increasingly used. The purpose of this study was to evaluate the value of chest CT for predicting breast tumor size using pathology measurements as reference standards.

Methods

Tumor sizes (defined as greatest diameter) were retrospectively measured on the preoperative chest CT images of 285 patients with surgically proven unifocal, invasive breast carcinoma. Greatest tumor diameters as determined by chest CT and pathologic examinations were compared by linear regression and Spearman’s rho correlation analysis. Concordance between CT and pathology results was defined as a diameter difference of <5 mm. Subgroup analyses were also performed with respect to tumor size (<20 mm or ≥20 mm) and histological subtype (invasive ductal carcinoma(IDC) or non-IDC).

Results

CT and pathology measured diameters were found to be linearly related (size at pathology = 1.086 × CT determined tumor size - 1.141; Spearman’s rho correlation coefficient = 0.84, P<0.001). Most tumors (n = 228, 80.0%) were concordant by chest CT and pathology, but 36 tumors (12.7%) were underestimated by CT (average underestimation, 11 mm; range, 6–36 mm) and 21 tumors (7.4%) were overestimated (average overestimation by CT, 10 mm; range, 6–19 mm). The concordance rate between the two sets of measurements was greater for tumor of <20 mm and for IDC (P<0.001 and P = 0.011, respectively).

Conclusions

Tumor size by chest CT is well correlated with pathology determined tumor size in breast cancer patients, and the diameters of the majority of tumors by chest CT and pathology differed by <5 mm. In addition, the concordance rate was higher for breast tumors of <20 mm and for tumors of the IDC histologic subtype.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin. 2010, 60: 277-300. 10.3322/caac.20073.CrossRefPubMed
2.
go back to reference Anscher MS, Jones P, Prosnitz LR, Blackstock W, Hebert M, Reddick R, Tucker A, Dodge R, Leight G, Iglehart JD: Local failure and margin status in early-stage breast carcinoma treated with conservation surgery and radiation therapy. Ann Surg. 1993, 218: 22-28. 10.1097/00000658-199307000-00005.PubMedCentralCrossRefPubMed Anscher MS, Jones P, Prosnitz LR, Blackstock W, Hebert M, Reddick R, Tucker A, Dodge R, Leight G, Iglehart JD: Local failure and margin status in early-stage breast carcinoma treated with conservation surgery and radiation therapy. Ann Surg. 1993, 218: 22-28. 10.1097/00000658-199307000-00005.PubMedCentralCrossRefPubMed
3.
go back to reference Fortin A, Larochelle M, Laverdiere J, Lavertu S, Tremblay D: Local failure is responsible for the decrease in survival for patients with breast cancer treated with conservative surgery and postoperative radiotherapy. J ClinOncol. 1999, 17: 101-109. Fortin A, Larochelle M, Laverdiere J, Lavertu S, Tremblay D: Local failure is responsible for the decrease in survival for patients with breast cancer treated with conservative surgery and postoperative radiotherapy. J ClinOncol. 1999, 17: 101-109.
5.
go back to reference Kim H, Han W, Moon HG, Min J, Ahn SK, Kim TY, Im SA, Oh DY, Han SW, Chie EK, Ha SW, Noh DY: The value of preoperative staging chest computed tomography to detect asymptomatic lung and liver metastasis in patients with primary breast carcinoma. Breast Cancer Res Treat. 2011, 126: 637-641. 10.1007/s10549-011-1368-7.CrossRefPubMed Kim H, Han W, Moon HG, Min J, Ahn SK, Kim TY, Im SA, Oh DY, Han SW, Chie EK, Ha SW, Noh DY: The value of preoperative staging chest computed tomography to detect asymptomatic lung and liver metastasis in patients with primary breast carcinoma. Breast Cancer Res Treat. 2011, 126: 637-641. 10.1007/s10549-011-1368-7.CrossRefPubMed
6.
go back to reference Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G, Lowry C: Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: implications for cancer induction. Radiology. 2007, 245: 742-750. 10.1148/radiol.2453062046.CrossRefPubMed Hurwitz LM, Reiman RE, Yoshizumi TT, Goodman PC, Toncheva G, Nguyen G, Lowry C: Radiation dose from contemporary cardiothoracic multidetector CT protocols with an anthropomorphic female phantom: implications for cancer induction. Radiology. 2007, 245: 742-750. 10.1148/radiol.2453062046.CrossRefPubMed
7.
go back to reference Hata T, Takahashi H, Watanabe K, Takahashi M, Taguchi K, Itoh T, Todo S: Magnetic resonance imaging for preoperative evaluation of breast cancer: a comparative study with mammography and ultrasonography. J Am CollSurg. 2004, 198: 190-197. Hata T, Takahashi H, Watanabe K, Takahashi M, Taguchi K, Itoh T, Todo S: Magnetic resonance imaging for preoperative evaluation of breast cancer: a comparative study with mammography and ultrasonography. J Am CollSurg. 2004, 198: 190-197.
8.
go back to reference Nakahara H, Namba K, Wakamatsu H, Watanabe R, Furusawa H, Shirouzu M, Matsu T, Tanaka C, Akiyama F, Ifuku H, Nakahara M, Tamura S: Extension of breast cancer: comparison of CT and MRI. Radiat Med. 2002, 20: 17-23.PubMed Nakahara H, Namba K, Wakamatsu H, Watanabe R, Furusawa H, Shirouzu M, Matsu T, Tanaka C, Akiyama F, Ifuku H, Nakahara M, Tamura S: Extension of breast cancer: comparison of CT and MRI. Radiat Med. 2002, 20: 17-23.PubMed
9.
go back to reference Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, Ioffe OB: Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004, 233: 830-849. 10.1148/radiol.2333031484.CrossRefPubMed Berg WA, Gutierrez L, NessAiver MS, Carter WB, Bhargavan M, Lewis RS, Ioffe OB: Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology. 2004, 233: 830-849. 10.1148/radiol.2333031484.CrossRefPubMed
10.
go back to reference Onesti JK, Mangus BE, Helmer SD, Osland JS: Breast cancer tumor size: correlation between magnetic resonance imaging and pathology measurements. Am J Surg. 2008, 196: 844-848. 10.1016/j.amjsurg.2008.07.028. discussion 849–850CrossRefPubMed Onesti JK, Mangus BE, Helmer SD, Osland JS: Breast cancer tumor size: correlation between magnetic resonance imaging and pathology measurements. Am J Surg. 2008, 196: 844-848. 10.1016/j.amjsurg.2008.07.028. discussion 849–850CrossRefPubMed
11.
go back to reference Vandermeer FQ, Bluemke DA: Breast MRI: state of the art. Cancer Invest. 2007, 25: 384-392. 10.1080/07357900701360013.CrossRefPubMed Vandermeer FQ, Bluemke DA: Breast MRI: state of the art. Cancer Invest. 2007, 25: 384-392. 10.1080/07357900701360013.CrossRefPubMed
12.
go back to reference Uematsu T, Sano M, Homma K: False-positive helical CT findings of multifocal and multicentric breast cancer: is attenuation of tumor useful for diagnosing enhanced lesions?. Breast Cancer. 2002, 9: 62-68. 10.1007/BF02967549.CrossRefPubMed Uematsu T, Sano M, Homma K: False-positive helical CT findings of multifocal and multicentric breast cancer: is attenuation of tumor useful for diagnosing enhanced lesions?. Breast Cancer. 2002, 9: 62-68. 10.1007/BF02967549.CrossRefPubMed
13.
go back to reference Uematsu T, Sano M, Homma K, Shiina M, Kobayashi S: Three-dimensional helical CT of the breast: accuracy for measuring extent of breast cancer candidates for breast conserving surgery. Breast Cancer Res Treat. 2001, 65: 249-257. 10.1023/A:1010641223012.CrossRefPubMed Uematsu T, Sano M, Homma K, Shiina M, Kobayashi S: Three-dimensional helical CT of the breast: accuracy for measuring extent of breast cancer candidates for breast conserving surgery. Breast Cancer Res Treat. 2001, 65: 249-257. 10.1023/A:1010641223012.CrossRefPubMed
14.
go back to reference Uematsu TSM, Sano M, Homma K, Sato N: Comparison between high resolution helical CT and pathology in breast examination. Acta Radiol. 2002, 43: 385-390. 10.1034/j.1600-0455.2002.430408.x.CrossRefPubMed Uematsu TSM, Sano M, Homma K, Sato N: Comparison between high resolution helical CT and pathology in breast examination. Acta Radiol. 2002, 43: 385-390. 10.1034/j.1600-0455.2002.430408.x.CrossRefPubMed
15.
go back to reference Uematsu T, Sano M, Homma K, Makino H, Shiina M, Kobayashi S, Shimizu K: Staging of palpable T1-2 invasive breast cancer with helical CT. Breast Cancer. 2001, 8: 125-130. 10.1007/BF02967491.CrossRefPubMed Uematsu T, Sano M, Homma K, Makino H, Shiina M, Kobayashi S, Shimizu K: Staging of palpable T1-2 invasive breast cancer with helical CT. Breast Cancer. 2001, 8: 125-130. 10.1007/BF02967491.CrossRefPubMed
16.
go back to reference Takase K, Furuta A, Harada N, Takahashi T, Igarashi K, Chiba Y, Haga K, Takahashi S: Assessing the extent of breast cancer using multidetector row helical computed tomography. J Comput Assist Tomogr. 2006, 30: 479-485. 10.1097/00004728-200605000-00021.CrossRefPubMed Takase K, Furuta A, Harada N, Takahashi T, Igarashi K, Chiba Y, Haga K, Takahashi S: Assessing the extent of breast cancer using multidetector row helical computed tomography. J Comput Assist Tomogr. 2006, 30: 479-485. 10.1097/00004728-200605000-00021.CrossRefPubMed
17.
go back to reference Inoue M, Sano T, Watai R, Ashikaga R, Ueda K, Watatani M, Nishimura Y: Dynamic multidetector CT of breast tumors: diagnostic features and comparison with conventional techniques. AJR Am J Roentgenol. 2003, 181: 679-686. 10.2214/ajr.181.3.1810679.CrossRefPubMed Inoue M, Sano T, Watai R, Ashikaga R, Ueda K, Watatani M, Nishimura Y: Dynamic multidetector CT of breast tumors: diagnostic features and comparison with conventional techniques. AJR Am J Roentgenol. 2003, 181: 679-686. 10.2214/ajr.181.3.1810679.CrossRefPubMed
18.
go back to reference Sardanelli F, Calabrese M, Zandrino F, Melani E, Parodi R, Imperiale A, Massa T, Parodi G, Canavese G: Dynamic helical CT of breast tumors. J Comput Assist Tomogr. 1998, 22: 398-407. 10.1097/00004728-199805000-00010.CrossRefPubMed Sardanelli F, Calabrese M, Zandrino F, Melani E, Parodi R, Imperiale A, Massa T, Parodi G, Canavese G: Dynamic helical CT of breast tumors. J Comput Assist Tomogr. 1998, 22: 398-407. 10.1097/00004728-199805000-00010.CrossRefPubMed
19.
go back to reference Evans SH, Davis R, Cooke J, Anderson W: A comparison of radiation doses to the breast in computed tomographic chest examinations for two scanning protocols. ClinRadiol. 1989, 40: 45-46. Evans SH, Davis R, Cooke J, Anderson W: A comparison of radiation doses to the breast in computed tomographic chest examinations for two scanning protocols. ClinRadiol. 1989, 40: 45-46.
20.
go back to reference Behjatnia B, Sim J, Bassett LW, Moatamed NA, Apple SK: Does size matter? Comparison study between MRI, gross, and microscopic tumor sizes in breast cancer in lumpectomy specimens. Int J ClinExpPathol. 2010, 3: 303-309. Behjatnia B, Sim J, Bassett LW, Moatamed NA, Apple SK: Does size matter? Comparison study between MRI, gross, and microscopic tumor sizes in breast cancer in lumpectomy specimens. Int J ClinExpPathol. 2010, 3: 303-309.
21.
go back to reference Pritt B, Ashikaga T, Oppenheimer RG, Weaver DL: Influence of breast cancer histology on the relationship between ultrasound and pathology tumor size measurements. Mod Pathol. 2004, 17: 905-910. 10.1038/modpathol.3800138.CrossRefPubMed Pritt B, Ashikaga T, Oppenheimer RG, Weaver DL: Influence of breast cancer histology on the relationship between ultrasound and pathology tumor size measurements. Mod Pathol. 2004, 17: 905-910. 10.1038/modpathol.3800138.CrossRefPubMed
22.
go back to reference Ramirez SI, Scholle M, Buckmaster J, Paley RH, Kowdley GC: Breast cancer tumor size assessment with mammography, ultrasonography, and magnetic resonance imaging at a community based multidisciplinary breast center. Am Surg. 2012, 78: 440-446.PubMed Ramirez SI, Scholle M, Buckmaster J, Paley RH, Kowdley GC: Breast cancer tumor size assessment with mammography, ultrasonography, and magnetic resonance imaging at a community based multidisciplinary breast center. Am Surg. 2012, 78: 440-446.PubMed
23.
go back to reference March DE, Wechsler RJ, Kurtz AB, Rosenberg AL, Needleman L: CT-pathologic correlation of axillary lymph nodes in breast carcinoma. J Comput Assist Tomogr. 1991, 15: 440-444. 10.1097/00004728-199105000-00017.CrossRefPubMed March DE, Wechsler RJ, Kurtz AB, Rosenberg AL, Needleman L: CT-pathologic correlation of axillary lymph nodes in breast carcinoma. J Comput Assist Tomogr. 1991, 15: 440-444. 10.1097/00004728-199105000-00017.CrossRefPubMed
24.
go back to reference Sagel SS: HSL, pleura, chest wall. Computed body tomography with MRI correlation. Edited by: Lee JKT, Sagel SS, Stanley RY. 2003, New York, NY: Raven Sagel SS: HSL, pleura, chest wall. Computed body tomography with MRI correlation. Edited by: Lee JKT, Sagel SS, Stanley RY. 2003, New York, NY: Raven
25.
go back to reference Pritt B, Tessitore JJ, Weaver DL, Blaszyk H: The effect of tissue fixation and processing on breast cancer size. Hum Pathol. 2005, 36: 756-760. 10.1016/j.humpath.2005.04.018.CrossRefPubMed Pritt B, Tessitore JJ, Weaver DL, Blaszyk H: The effect of tissue fixation and processing on breast cancer size. Hum Pathol. 2005, 36: 756-760. 10.1016/j.humpath.2005.04.018.CrossRefPubMed
Metadata
Title
The value of chest CT for prediction of breast tumor size: comparison with pathology measurement
Authors
Su Joa Ahn
Young Saing Kim
Eun Young Kim
Heung Kyu Park
Eun Kyung Cho
Yoon Kyung Kim
Yon Mi Sung
Hye-Young Choi
Publication date
01-12-2013
Publisher
BioMed Central
Published in
World Journal of Surgical Oncology / Issue 1/2013
Electronic ISSN: 1477-7819
DOI
https://doi.org/10.1186/1477-7819-11-130

Other articles of this Issue 1/2013

World Journal of Surgical Oncology 1/2013 Go to the issue